JP2002045844A - Water quality simulation system - Google Patents

Water quality simulation system

Info

Publication number
JP2002045844A
JP2002045844A JP2000239578A JP2000239578A JP2002045844A JP 2002045844 A JP2002045844 A JP 2002045844A JP 2000239578 A JP2000239578 A JP 2000239578A JP 2000239578 A JP2000239578 A JP 2000239578A JP 2002045844 A JP2002045844 A JP 2002045844A
Authority
JP
Japan
Prior art keywords
water quality
simulation
tank
data
treatment plant
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2000239578A
Other languages
Japanese (ja)
Other versions
JP2002045844A5 (en
Inventor
Akio Sato
明雄 佐藤
Joachim Gukke Hans
ヨアヒム グツケ ハンス
Ryuzo Sugii
杉井  隆造
Kazuya Hirabayashi
和也 平林
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Yaskawa Electric Corp
Original Assignee
Yaskawa Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Yaskawa Electric Corp filed Critical Yaskawa Electric Corp
Priority to JP2000239578A priority Critical patent/JP2002045844A/en
Publication of JP2002045844A publication Critical patent/JP2002045844A/en
Publication of JP2002045844A5 publication Critical patent/JP2002045844A5/ja
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W10/00Technologies for wastewater treatment
    • Y02W10/10Biological treatment of water, waste water, or sewage

Landscapes

  • Management, Administration, Business Operations System, And Electronic Commerce (AREA)
  • Activated Sludge Processes (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a water quality simulation system which can shorten the time for simulation. SOLUTION: This water quality simulation system has a data accumulation device 1 which accumulates the water quality data of a sewage disposal plant, a disposal plant specification setting device 2 which sets the disposal plant specifications, such as civil engineering construction, an operating condition setting device 3 which sets operating conditions, a model parameter setting device 4 which sets water quality model parameters, and a simulation calculating device which receives the data from the respective devices and predicts the water quality of the disposal plant to predict the water quality of the disposal plant and is provided with a prediction interval setting device 7 which changes the prediction interval of the simulation, an organic matter deciding device 6 which decides the organic matter data of fermentation products, fermentable and easily biodegradable organic substrates, or the like, from the data of the data accumulation device, and a prediction interval fine segmenting device 71 which segments the prediction intervals of the simulation calculating device when the value by the organic matter deciding device exceeds a reference value.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、都市下水や産業廃
水などの汚水を活性汚泥法、嫌気・好気汚泥処理法など
によって浄化する際に、その処理方法を決定ための水質
シミュレーション装置に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a water quality simulation apparatus for determining a treatment method when purifying wastewater such as municipal sewage or industrial wastewater by an activated sludge method, an anaerobic / aerobic sludge treatment method, or the like.

【0002】[0002]

【従来の技術】都市下水処理、工場廃水などの処理プロ
セスは、微生物の動作状態、気候などから運転方法を決
定する必要がある。図3は従来の水質シミュレーション
装置とその周辺との接続状況を示すブロック図である。
先ず、下水処理プラントの概要について述べる。図にお
いて、10は最初沈殿池、11は反応槽、12は最終沈
殿池である。下水処理プラントでは、流入した下水は、
最初沈殿池10、反応槽11、最終沈殿池12の順に流
れて処理される。汚濁物質を含む下水は、最初沈殿池1
0に導入され、汚濁物質の中の沈降しやすいものを沈降
分離して上澄水を反応槽11に流出する。反応槽11に
は最終沈殿池12の汚泥の一部が返送汚泥ポンプによっ
て返送されており、反応槽11はその返送汚泥と最初沈
殿池10の上澄水を処理する。反応槽11では、ブロワ
ー( 図示せず) から圧送された空気が曝気槽内の散気管
によって放出されており、汚濁物質は活性汚泥により吸
着、分解されて最終沈殿池12に導かれる。最終沈殿池
12では活性汚泥を沈降分離し、沈降汚泥は余剰汚泥ポ
ンプ(図示せず)により汚泥処理系(図示せず)に排出
され、清澄水は処理水として滅菌槽(図示せず)を経て
放流される。つぎに、水質シミュレーション装置の動作
について述べる。図2において、1はデータ蓄積装置、
2は処理場仕様設定装置、3は運転条件設定装置、4は
モデルパラメータ設定装置、5はシミュレーション計算
装置である。 (1) 水質測定・分析データをデータ蓄積装置1に蓄積す
る。データ蓄積装置1は、a、b、c、dのサンプリン
グ地点から水質をシミュレーションする上で必要な情
報、たとえば、リン酸態リン濃度や、硝酸態窒素濃度、
アンモニア態窒素濃度、Total-COD 、溶解性COD など水
質が分析されたデータを蓄積する。 (2) 反応槽の体積、管路などの処理場土木構造を、処理
場仕様設定装置2により設定する。 (3) 返送率、SRT 、DO濃度など、処理場を運転する上で
必要な条件について、各処理場に最も適した値を、運転
条件設定装置3により設定する。 (4) シミュレーションに用いる水質モデルのパラメータ
( 増殖速度、分解速度など) を、モデルパラメータ設定
装置4により設定する。 (5) 予測計算をシミュレーション装置5により行う。蓄
積装置1に蓄積された分析データのうち下水処理プラン
トの入口に流入する水質と、処理場仕様設定装置2に入
力された値と、運転条件設定装置3で設定された値と、
モデルパラメータ設定装置4によって設定された値とを
入力し、反応槽、処理水の水質の予測を行う。その予測
計算に用いる式は10数個あり、その一つを例示する
と、例えば発酵生成物濃度の計算は、式(1) を用いて行
われる。
2. Description of the Related Art It is necessary to determine an operation method of a treatment process such as municipal sewage treatment and industrial wastewater from the operating state of microorganisms, climate and the like. FIG. 3 is a block diagram showing a connection state between a conventional water quality simulation apparatus and its surroundings.
First, the outline of the sewage treatment plant will be described. In the figure, 10 is a first settling tank, 11 is a reaction tank, and 12 is a final settling tank. In a sewage treatment plant, the incoming sewage is
The first sedimentation basin 10, the reaction tank 11, and the final sedimentation basin 12 flow in this order and are treated. The sewage containing pollutants is the first settling basin 1
Then, the sediment that is likely to settle out of the pollutants is settled and separated, and the supernatant water flows out to the reaction tank 11. A part of the sludge from the final settling tank 12 is returned to the reaction tank 11 by a return sludge pump. The reaction tank 11 processes the returned sludge and the supernatant water of the first settling tank 10. In the reaction tank 11, air fed from a blower (not shown) is released by a diffuser pipe in the aeration tank, and pollutants are adsorbed and decomposed by activated sludge and guided to the final sedimentation basin 12. In the final sedimentation basin 12, the activated sludge is settled and separated, the settled sludge is discharged to a sludge treatment system (not shown) by an excess sludge pump (not shown), and the clarified water is treated in a sterilization tank (not shown) as treated water. It is released after passing through. Next, the operation of the water quality simulation apparatus will be described. In FIG. 2, 1 is a data storage device,
2 is a treatment plant specification setting device, 3 is an operation condition setting device, 4 is a model parameter setting device, and 5 is a simulation calculation device. (1) Water quality measurement / analysis data is stored in the data storage device 1. The data storage device 1 provides information necessary for simulating the water quality from the sampling points a, b, c, and d, for example, the concentration of phosphate phosphorus, the concentration of nitrate nitrogen,
It accumulates data on analyzed water quality such as ammonia nitrogen concentration, Total-COD, and soluble COD. (2) The treatment plant civil engineering structure such as the volume of the reaction tank and the pipeline is set by the treatment plant specification setting device 2. (3) For the conditions necessary for operating the treatment plant, such as the return rate, SRT, and DO concentration, the most suitable values for each treatment plant are set by the operation condition setting device 3. (4) Water quality model parameters used for simulation
(Growth rate, decomposition rate, etc.) are set by the model parameter setting device 4. (5) The prediction calculation is performed by the simulation device 5. Of the analysis data stored in the storage device 1, the quality of the water flowing into the inlet of the sewage treatment plant, the value input to the treatment plant specification setting device 2, the value set by the operation condition setting device 3,
The values set by the model parameter setting device 4 are input, and the reaction tank and the quality of the treated water are predicted. There are more than ten formulas used for the prediction calculation. For example, calculation of the fermentation product concentration is performed by using the formula (1).

【0003】[0003]

【数1】 (Equation 1)

【0004】ただし、各記号の意味はつぎのとおりであ
る。 SA (i):i 時点の対象タンクの発酵生成物濃度(gCOD/
m3) SA(i) R : i 時点の対象タンクの化学反応による変化量
を考慮に入れた発酵生成物濃度(gN/m3) SA(i) in:i 時点の対象タンクに流入する発酵生成物濃
度(gCOD/m3) SA(i) out :i 時点の対象タンクから流出する発酵生成
物濃度(gCOD/m3) V:対象タンクの体積(m3) Qin:対象タンクへ流入する量(m3/h) Qout :対象タンクから流出する量(m3/h) T:対象タンクから流入・流出する時間(h) i:シミュレーションのための予測間隔(h) ただし、各変数は(2) 〜(9) に示すように計算される。
However, the meaning of each symbol is as follows. SA (i): Fermentation product concentration (gCOD /
m 3 ) SA (i) R: Concentration of fermentation product (gN / m 3 ) taking into account the change due to chemical reaction in the target tank at time i SA (i) in : Fermentation flowing into the target tank at time i Product concentration (gCOD / m 3 ) SA (i) out : Fermentation product concentration (gCOD / m 3 ) flowing out of the target tank at time i V: Volume of the target tank (m 3 ) Q in : Flow into the target tank the amount of (m 3 / h) Q out : the amount flowing out of the target tank (m 3 / h) T: time to flow in or out from the subject tank (h) i: prediction interval for simulation (h) where each Variables are calculated as shown in (2) to (9).

【0005】[0005]

【数2】 (Equation 2)

【0006】ただし、各記号の意味はつぎのとおりであ
る。 SA(i) :i 時点の対象タンクで増殖・減少した発酵生成
物(gCOD/m3) ρ5 :SAによる好気的増殖(gCOD/d) ρ7 :SAによる無酸素的増殖と脱窒(gCOD/d) ρ8 :発酵(gCOD/d) ρ10:ポリヒドロキシアルカノエートの蓄積(gCOD/d) ρ15:ポリヒドロキシアルカノエートの分解(gCOD/d) データ蓄積装置1のから入力される分析データ SO2:溶存酸素濃度(gO2/m3) SNH4 溶解性のアンモニア濃度(gN/m3) SNO3 :溶解性の硝酸性窒素濃度(gN/m3) SPO4 :無機溶解性リン酸性リン濃度(gP/m3) SALK :アルカリ度(mole HCO3/m3) SF :易分解性有機物濃度(gCOD/m3) SA :発酵生成物濃度(gCOD/m3) XAUT :硝化菌濃度(gCOD/m3) XH :従属栄養微生物(gCOD/m3) XPHA :ポリヒドロキシアルカノエート(gCOD/m3) XPP:ポリリン酸(gP/m3) XPAO :リン酸蓄積細菌(gCOD/m3) モデルパラメータ設定装置4のから設定されるパラメー
タ、つぎのとおりである。 uH :基質の最大増殖速度(1/d) ηNO3 :硝酸性窒素濃度の無酸素状態の加水分解による
減少係数(-) kA :発酵生成物濃度飽和係数(gO2/m3) kO2:酸素飽和係数(gO2/m3) kF :易分解性基質増殖飽和係数(gCOD/m3) kNO3 :硝酸性窒素飽和係数(gN/m3) 。このシミュレー
ションでは亜硝酸性窒素と硝酸性窒素を同じ物質として
扱う。 kNH4 :アンモニア飽和係数(gN/m3) kP :リン酸性リン酸飽和係数(gP/m3) kALK :アルカリ度飽和係数(mole HCO3/m3) kfe:SFの発酵飽和濃度(gCOD/m3) qfe:発酵の最大速度(1/d) kPP:ポリリン酸の飽和濃度(gPP/gPAO) qPHA :ポリヒドロキシアルカノエート蓄積速度(gCOD/
(gPAO ・d) bPHA :ポリヒドロキシアルカノエート分解速度(1/d) シミュレーション計算装置5では、上記のように硝酸性
窒素だけでなく、リン酸性リン濃度、アルカリ度、アン
モニア性窒素濃度なども同時に計算される。
However, the meaning of each symbol is as follows. SA (i): Fermentation product (gCOD / m 3 ) that grew and decreased in the target tank at the time i. Ρ 5 : Aerobic growth with SA (gCOD / d). Ρ 7 : Anoxic growth and denitrification with SA. (gCOD / d) ρ 8 : Fermentation (gCOD / d) ρ 10 : Storage of polyhydroxyalkanoate (gCOD / d) ρ 15 : Decomposition of polyhydroxyalkanoate (gCOD / d) Input from the data storage device 1 Analytical data S O2 : dissolved oxygen concentration (gO 2 / m 3 ) S NH4 soluble ammonia concentration (gN / m 3 ) S NO3 : soluble nitrate nitrogen concentration (gN / m 3 ) S PO4 : inorganic dissolved Phosphoric acid phosphorus concentration (gP / m 3 ) S ALK : alkalinity (mole HCO3 / m 3 ) S F : easily decomposable organic matter concentration (gCOD / m 3 ) S A : Fermentation product concentration (gCOD / m 3 ) X AUT : nitrifying bacteria concentration (gCOD / m 3 ) X H : heterotrophic microorganism (gCOD / m 3 ) X PHA : polyhydroxyalkanoate (gCOD / m 3 ) X PP : polyphosphoric acid (gP / m 3 ) X PAO phosphate accumulating organisms (gCOD / m 3) model parameter set Parameters set from the device 4 to, is as follows. u H : maximum growth rate of substrate (1 / d) η NO3 : reduction coefficient of nitrate nitrogen concentration by anoxic hydrolysis (-) k A : fermentation product concentration saturation coefficient (gO 2 / m 3 ) k O2 : oxygen saturation coefficient (gO 2 / m 3 ) k F : readily degradable substrate growth saturation coefficient (gCOD / m 3 ) k NO3 : nitrate nitrogen saturation coefficient (gN / m 3 ) In this simulation, nitrite nitrogen and nitrate nitrogen are treated as the same substance. k NH4 : Ammonia saturation coefficient (gN / m 3 ) k P : Phosphate phosphoric acid saturation coefficient (gP / m 3 ) k ALK : Alkaline saturation coefficient (mole HCO3 / m 3 ) k fe : Fermentation saturation concentration of SF ( gCOD / m 3 ) q fe : Maximum fermentation rate (1 / d) k PP : Saturated concentration of polyphosphoric acid (gPP / gPAO) q PHA : Polyhydroxyalkanoate accumulation rate (gCOD /
(gPAO.d) b PHA : Decomposition rate of polyhydroxyalkanoate (1 / d) In the simulation calculation device 5, not only the nitrate nitrogen but also the phosphate phosphorus concentration, alkalinity, ammonia nitrogen concentration, etc. Calculated at the same time.

【0007】[0007]

【発明が解決しようとする課題】ところが、上記のよう
な従来の水質シミュレーション装置では、発酵生成物、
易分解性有機物などの有機物量、水質の変化量に関わら
ずシミュレーションのための予測間隔を通常、例えば1
秒間と短く固定していた。そのためシミュレーション時
間が長くなるという問題があった。また、反応槽が多数
存在する場合にもシミュレーション時間がかかるという
問題があった。そこで、本発明はこのような問題点に鑑
みてなされたもので、水質シミュレーションの有機物
量、水質の変化量によってシミュレーションの予測間隔
を設定することおよび反応槽の状態によりシミュレーシ
ョンを行う槽を少なくすることにより、シミュレーショ
ン時間を短縮できる水質シミュレーション装置を提供す
ることを目的とする。
However, in the conventional water quality simulation apparatus as described above, fermentation products,
The prediction interval for simulation is usually set to, for example, 1 regardless of the amount of organic substances such as easily decomposable organic substances and the amount of change in water quality.
It was fixed as short as seconds. Therefore, there is a problem that the simulation time becomes long. In addition, there is a problem that it takes a long simulation time even when a large number of reaction vessels are present. Therefore, the present invention has been made in view of such a problem, and it is possible to set the prediction interval of the simulation based on the amount of organic matter in the water quality simulation, the amount of change in the water quality, and to reduce the number of the simulation tanks depending on the state of the reaction tank. Accordingly, an object of the present invention is to provide a water quality simulation device capable of reducing the simulation time.

【0008】[0008]

【課題を解決するための手段】上記課題を解決するため
本発明は、最初沈澱地、反応槽、最終沈澱地などからな
る下水処理場の水質データを蓄積するデータ蓄積装置
と、土木構造などの処理場仕様を設定する処理場仕様設
定装置と、運転条件を設定する運転条件設定装置と、水
質モデルパラメータを設定するモデルパラメータ設定装
置と、前記各装置からのデータを受け取り処理場の水質
を予測する処理場の水質を予測するシミュレーション計
算装置とを備えた水質シミュレーション装置において、
前記データ蓄積装置と前記シミュレーション計算装置と
の間に予測間隔を変更する予測間隔設定装置と、前記デ
ータ蓄積装置のデータから、発酵生成物、発酵性易生物
分解性有機基質などの有機物データを判定する有機物判
定装置と、前記有機物判定装置による値が基準値を超え
た場合に前記予測間隔をさらに分割してシミュレーショ
ンを行なう予測間隔細分割装置とを設けた構成にしてい
る。また、前記有機物判定装置は、前記シミュレーショ
ン計算装置による水質の変化量を判定する変化量判定装
置または有機物の濃度を判定する濃度判定装置をもうけ
てもよい。また、最初沈澱地、反応槽、最終沈澱地など
からなる下水処理場の水質データを蓄積するデータ蓄積
装置と、土木構造などの処理場仕様を設定する処理場仕
様設定装置と、運転条件を設定する運転条件設定装置
と、水質モデルパラメータを設定するモデルパラメータ
設定装置と、前記各装置からのデータを受け取り処理場
の水質を予測する処理場の水質を予測するシミュレーシ
ョン計算装置とを備えた水質シミュレーション装置にお
いて、前記データ蓄積装置と前記シミュレーション計算
装置との間に前記反応槽各槽のDOデータを判定するDO判
定装置と、前記反応槽の槽変更を行う槽変更装置とを設
けた構成にしている。また、前記槽変更装置は、前記DO
判定装置からの信号をチェックした後、槽と槽を合成し
てシミュレーションする槽合成装置または前記反応槽を
分割してシミュレーションする槽分割装置をもうけても
よい。
SUMMARY OF THE INVENTION In order to solve the above-mentioned problems, the present invention provides a data storage device for storing water quality data of a sewage treatment plant consisting of a primary sedimentation site, a reaction tank, a final sedimentation site, and the like. A treatment plant specification setting device that sets treatment plant specifications, an operation condition setting device that sets operation conditions, a model parameter setting device that sets water quality model parameters, and receives data from the devices to predict water quality of the treatment plant A simulation calculation device for predicting the water quality of the treatment plant,
A prediction interval setting device that changes a prediction interval between the data storage device and the simulation calculation device; and determining data of an organic substance such as a fermentation product and a fermentable biodegradable organic substrate from the data of the data storage device. And a prediction interval subdivision device that further divides the prediction interval to perform a simulation when a value obtained by the organic substance determination device exceeds a reference value. The organic matter determination device may include a change amount determination device that determines a change amount of water quality by the simulation calculation device or a concentration determination device that determines the concentration of the organic matter. In addition, a data storage device for storing water quality data of a sewage treatment plant consisting of a first sedimentation site, a reaction tank, and a final sedimentation site, a treatment plant specification setting device for setting a treatment plant specification such as a civil engineering structure, and an operating condition are set. A water quality simulation comprising an operating condition setting device for setting, a model parameter setting device for setting a water quality model parameter, and a simulation calculating device for receiving data from the respective devices and for predicting the water quality of the treatment plant for predicting the water quality of the treatment plant In the apparatus, between the data storage device and the simulation calculation device, a DO determination device that determines DO data of each tank of the reaction tank, and a tank change device that changes a tank of the reaction tank are provided. I have. Further, the tank changing device is provided with the DO
After checking the signal from the judging device, a tank synthesizing device for synthesizing and simulating the tanks or a tank dividing device for dividing and simulating the reaction tank may be provided.

【0009】[0009]

【発明の実施の形態】以下、本発明の実施の形態を図に
基づいて説明する。 (第一実施例)本発明の第一実施例を図1に示す。図1
は水質シミュレーション装置の構成とその周辺との接続
状況ブロック図である。図において、6は有機物判定装
置、7は予測間隔を設定する予測間隔設定装置、71は
予測間隔をさらに分割する予測間隔分割装置である。有
機物判定装置6は、変化量判定装置61および濃度判定
装置62からなる。その他の符号およびサンプリング地
点を示すa、b、c、dは、従来の技術の項で述べたも
のと同一であるため説明を省略する。 つぎに、水質シ
ミュレーション装置の動作について述べる。 (1) 水質測定・分析データをデータ蓄積装置1に蓄積す
る(従来技術に同じ)。 (2) 処理場土木構造を処理場仕様設定装置2により設定
する(従来技術に同じ)。 (3) 返送率、SRT 、DO濃度など処理場に最も適した値を
運転条件設定装置3により設定する(従来技術に同
じ)。 (4) 増殖速度、分解速度などの水質モデルのパラメータ
をモデルパラメータ設定装置4により設定する(従来技
術に同じ)。 (5) 予測間隔を予測間隔設定装置7により設定する。シ
ミュレーションの予測間隔を1分に設定する。従来の予
測間隔とシミューションの効果を調査した結果、通常は
有機物量が少なく、水質の変化量が少ないため予測間隔
が短すぎることが判明した。ここでは、予測間隔を従来
より長く設定した。 (6) 予測計算をシミュレーション計算装置5により行
う。従来技術と同様に各装置の出力データを基に反応槽
の水質や処理水の水質の予測を行うが、従来と異なると
ころは、有機物の判定とその結果によりシミュレーショ
ンの予測間隔を細分割する点である。 (6a)有機物の判定を行なう。有機物の変化量判定装置6
1により、発酵生成物(SA)、発酵性易生物分解性有機物
(SF)などの水質の予測間隔の変化量が基準値を超えたか
否かを判断する。超えた場合、予測間隔細分割装置71
に結果を送信する。超えてなければシミュレーション計
算装置5に戻り次のステップのシミュレーションを行
う。有機物の濃度判定装置62により、発酵生成物(S
A)、発酵性易生物分解性有機物(SF)などの濃度が基準値
を超えたか否かを判断する。超えた場合、予測間隔細分
割装置71にその結果を送信する。超えていなければ、
シミュレーション計算装置5に戻り次のステップのシミ
ュレーションを行う。 (6b)予測間隔を細分割する。予測間隔細分割装置71
は、有機物判定装置6から情報を受け取るとシミュレー
ションの予測間隔をさらに分割してシミュレーションを
行なう。ここでは、通常の予測間隔1分を10分の1に
分割し、シミュレーション計算装置5にて再シミュレー
ションを行った。再シミュレーションの結果、有機物量
が基準値を超えるか、水質の変化量が基準値を超えると
を100分の1に分割し、再々シミュレーションを行
う。この作業により反応が活発な時の微生物の動きを詳
細に計算できるため精度を維持したシミュレーションを
行うことができる。このように、水質シミュレーション
装置では、有機物量、水質の変化量などを検出し、シミ
ュレーションの予測間隔を設定できる。上述の予測間隔
細分割装置の追加により、シミュレーションの精度を維
持させることができ、標準状態(変化の少ない状態)で
予測間隔はを長くできるため、シミュレーション時間を
短縮することができる。 (第二実施例)本発明の第二実施例を図2に示す。図2
は水質シミュレーション装置の構成とその周辺との接続
状況ブロック図である。図において、8はDO判定装置、
9は槽変更装置であり、合成装置91および分割装置9
2からなる。つぎに、水質シミュレーション装置の動作
について述べる。 (1) 水質測定・分析データをデータ蓄積装置1に蓄積す
る(従来技術に同じ)。 (2) 処理場土木構造を処理場仕様設定装置2により設定
する(従来技術に同じ)。 (3) 返送率、SRT 、DO濃度など処理場に最も適した値を
運転条件設定装置3により設定する(従来技術に同
じ)。 (4) 増殖速度、分解速度などの水質モデルのパラメータ
をモデルパラメータ設定装置4により設定する(従来技
術に同じ)。 (5) DO濃度を判定する。DO判定装置8により、各反応槽
のDO濃度を判定し、その結果を槽変更装置6に送信す
る。 (6) 槽変更の判定を行なう。DOが0mg/l 以上の場合、槽
変更装置6の槽合成装置61により、槽を合成する指令
を出し、DOが0mg/l の槽を合成する。また、DOが0mg/l
以上の場合、槽はほとんど同様の反応をし、DOが0mg/l
の時も同様であるためこのような合成が可能となる。槽
中の前端部または後端部など、槽中の反応を詳細に見る
ために槽分割装置62により槽を分割する。 (7) 予測計算をシミュレーション計算装置5により行う
(従来技術に同じ)。このように、水質シミュレーショ
ン装置では、槽変更装置によって、反応が同じと考えら
れる槽を合成でき、また、槽の詳細な反応を見たいとき
は槽を分割することができる。このような装置の追加に
より、反応プロセスが減少するためシミュレーション時
間を短縮することができる。なお、本実施例に前述の第
一実施例を加えた構成のシミュレーションを用いること
により、さらに、シミュレーション時間の短縮と精度向
上に大きな効果が得られる。
DESCRIPTION OF THE PREFERRED EMBODIMENTS Embodiments of the present invention will be described below with reference to the drawings. (First Embodiment) FIG. 1 shows a first embodiment of the present invention. Figure 1
FIG. 3 is a block diagram of a configuration of a water quality simulation apparatus and a connection status with the periphery thereof. In the figure, reference numeral 6 denotes an organic substance determination device, 7 denotes a prediction interval setting device for setting a prediction interval, and 71 denotes a prediction interval dividing device for further dividing the prediction interval. The organic substance determination device 6 includes a change amount determination device 61 and a concentration determination device 62. The other symbols and a, b, c, and d indicating the sampling points are the same as those described in the section of the related art, and thus description thereof is omitted. Next, the operation of the water quality simulation apparatus will be described. (1) The water quality measurement / analysis data is stored in the data storage device 1 (same as the conventional technology). (2) The treatment plant civil engineering structure is set by the treatment plant specification setting device 2 (same as the conventional technology). (3) The most suitable values for the treatment plant, such as the return rate, SRT, and DO concentration, are set by the operating condition setting device 3 (the same as in the prior art). (4) The parameters of the water quality model, such as the growth rate and decomposition rate, are set by the model parameter setting device 4 (same as the conventional technique). (5) The prediction interval is set by the prediction interval setting device 7. Set the simulation prediction interval to 1 minute. As a result of investigating the effect of the conventional prediction interval and simulation, it was found that the prediction interval is too short because the amount of organic matter is usually small and the amount of change in water quality is small. Here, the prediction interval is set longer than before. (6) The prediction calculation is performed by the simulation calculation device 5. Similar to the conventional technology, the water quality of the reaction tank and the quality of the treated water are predicted based on the output data of each device. The difference from the conventional technology is that the prediction interval of the simulation is subdivided based on the determination of the organic matter and the result. It is. (6a) An organic substance is determined. Organic matter change amount determination device 6
1, fermentation product (SA), fermentable biodegradable organic matter
It is determined whether or not the change amount of the prediction interval of the water quality such as (SF) exceeds the reference value. If it exceeds, the prediction interval subdivision device 71
Send the result to. If not, the process returns to the simulation calculation device 5 to perform the simulation of the next step. The fermentation product (S
A), It is determined whether or not the concentration of fermentable easily biodegradable organic matter (SF) has exceeded a reference value. If it exceeds, the result is transmitted to the prediction interval subdivision device 71. If not,
Returning to the simulation calculation device 5, the simulation of the next step is performed. (6b) Subdivide the prediction interval. Prediction interval subdivision device 71
When the information is received from the organic substance determination device 6, the simulation is performed by further dividing the prediction interval of the simulation. Here, the normal prediction interval of 1 minute was divided into 1/10, and the simulation calculation device 5 re-simulated. As a result of the re-simulation, when the amount of organic matter exceeds the reference value or the amount of change in water quality exceeds the reference value, the simulation is performed again by dividing it by 1/100. With this operation, the movement of the microorganism when the reaction is active can be calculated in detail, so that the simulation can be performed while maintaining the accuracy. As described above, the water quality simulation apparatus can detect the amount of organic matter, the amount of change in water quality, and the like, and set the prediction interval of the simulation. By adding the prediction interval subdivision device described above, the accuracy of the simulation can be maintained, and the prediction interval can be lengthened in the standard state (a state with little change), so that the simulation time can be shortened. (Second Embodiment) FIG. 2 shows a second embodiment of the present invention. FIG.
FIG. 3 is a block diagram of a configuration of a water quality simulation apparatus and a connection status with the periphery thereof. In the figure, 8 is a DO determination device,
Reference numeral 9 denotes a tank changing device, and the synthesizing device 91 and the dividing device 9
Consists of two. Next, the operation of the water quality simulation apparatus will be described. (1) The water quality measurement / analysis data is stored in the data storage device 1 (same as the conventional technology). (2) The treatment plant civil engineering structure is set by the treatment plant specification setting device 2 (same as the conventional technology). (3) The most suitable values for the treatment plant, such as the return rate, SRT, and DO concentration, are set by the operating condition setting device 3 (the same as in the prior art). (4) The parameters of the water quality model, such as the growth rate and decomposition rate, are set by the model parameter setting device 4 (same as the conventional technique). (5) Determine the DO concentration. The DO determination device 8 determines the DO concentration of each reaction tank, and transmits the result to the tank change device 6. (6) Determine tank change. When the DO is 0 mg / l or more, the tank synthesizing unit 61 of the tank changing device 6 issues a command to synthesize the tanks, and synthesizes a tank with a DO of 0 mg / l. DO is 0mg / l
In the above case, the tank performed almost the same reaction, and the DO was 0 mg / l
Since the same applies to the case of, such a combination is possible. The tank is divided by a tank dividing device 62 in order to see the reaction in the tank in detail, such as the front end or the rear end in the tank. (7) The prediction calculation is performed by the simulation calculation device 5 (same as the conventional technology). As described above, in the water quality simulation device, a tank whose reaction is considered to be the same can be synthesized by the tank change device, and the tank can be divided when a detailed reaction of the tank is desired. By adding such a device, the simulation process can be shortened because the reaction process is reduced. By using the simulation of the configuration obtained by adding the above-described first embodiment to the present embodiment, a great effect can be obtained in further shortening the simulation time and improving the accuracy.

【0010】[0010]

【発明の効果】以上述べたように、本発明によると、下
水処理場の水質シミュレーション装置に予測間隔設定装
置と濃度判定装置および変化量判定装置からなる有機物
判定装置と予測間隔細分割装置を設けたので、水質シミ
ュレーションを微生物の状態によって分割できるため、
シミュレーションの予測間隔を1分にしてもシミュレー
ションの精度は維持することができ、シミュレーション
全体の時間の短縮が可能という効果がある。また、水質
シミュレーション装置にDO検出装置および槽変更装置を
もちい槽を合成することにより、従来は多数の槽、多数
の系列の処理場シミュレーションにおいて多大な時間を
要していたが、反応プロセスが減少しシミュレーション
時間が短縮できるとういう効果がある。
As described above, according to the present invention, a water quality simulation device for a sewage treatment plant is provided with an organic substance determination device including a prediction interval setting device, a concentration determination device, and a change amount determination device, and a prediction interval subdivision device. Since the water quality simulation can be divided according to the state of microorganisms,
Even if the prediction interval of the simulation is set to one minute, the accuracy of the simulation can be maintained, and the time of the entire simulation can be reduced. In addition, by combining a water quality simulation device with a DO detection device and a tank change device and synthesizing a tank, it took a long time to simulate a large number of tanks and many series of treatment plants, but the reaction process decreased. This has the effect of reducing the simulation time.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の第一実施例を示す水質シミュレーショ
ン装置のブロック図である。
FIG. 1 is a block diagram of a water quality simulation apparatus showing a first embodiment of the present invention.

【図2】本発明の第二実施例を示す水質シミュレーショ
ン装置のブロック図である。
FIG. 2 is a block diagram of a water quality simulation apparatus according to a second embodiment of the present invention.

【図3】従来の水質シミュレーション装置のブロック図
である。
FIG. 3 is a block diagram of a conventional water quality simulation device.

【符号の説明】[Explanation of symbols]

1 データ蓄積装置 7 予測間
隔設定装置 2 処理場仕様設定装置 71 予測
間隔細分割装置 3 運転条件設定装置 8 DO判定
装置 4 モデルパラメータ設定装置 9 槽変更
装置 5 シミュレーション装置 91 槽合
成装置 6 有機物判定装置 92 槽分
割装置 61 変化量判定装置 10 最初
沈殿池 62 濃度判定装置 11 反応
槽 12 最終沈殿池
REFERENCE SIGNS LIST 1 data storage device 7 prediction interval setting device 2 treatment plant specification setting device 71 prediction interval subdivision device 3 operating condition setting device 8 DO judgment device 4 model parameter setting device 9 tank changing device 5 simulation device 91 tank synthesis device 6 organic matter judgment device 92 Tank dividing device 61 Change amount judging device 10 First sedimentation tank 62 Concentration judging device 11 Reaction tank 12 Final sedimentation tank

───────────────────────────────────────────────────── フロントページの続き (72)発明者 平林 和也 福岡県北九州市八幡西区黒崎城石2番1号 株式会社安川電機内 Fターム(参考) 4D028 CC02 CC12 CE03 5B049 BB00 CC02 CC31 EE03 EE41 ────────────────────────────────────────────────── ─── Continuing on the front page (72) Inventor Kazuya Hirabayashi 2-1 Kurosaki Castle Stone, Yawatanishi-ku, Kitakyushu-shi, Fukuoka F-term (reference) 4D028 CC02 CC12 CE03 5B049 BB00 CC02 CC31 EE03 EE41

Claims (6)

【特許請求の範囲】[Claims] 【請求項1】 最初沈澱地、反応槽、最終沈澱地などか
らなる下水処理場の水質データを蓄積するデータ蓄積装
置と、土木構造などの処理場仕様を設定する処理場仕様
設定装置と、運転条件を設定する運転条件設定装置と、
水質モデルパラメータを設定するモデルパラメータ設定
装置と、前記各装置からのデータを受け取り処理場の水
質を予測する処理場の水質を予測するシミュレーション
計算装置とを備えた水質シミュレーション装置におい
て、 前記データ蓄積装置と前記シミュレーション計算装置と
の間に予測間隔を変更する予測間隔設定装置と、前記デ
ータ蓄積装置のデータから、発酵生成物、発酵性易生物
分解性有機基質などの有機物データを判定する有機物判
定装置と、前記有機物判定装置による値が基準値を超え
た場合に前記予測間隔をさらに分割してシミュレーショ
ンを行なう予測間隔細分割装置とを設けたことを特徴と
する水質シミュレーション装置。
1. A data storage device for storing water quality data of a sewage treatment plant comprising a first sedimentation site, a reaction tank, a final sedimentation site, etc., a treatment plant specification setting device for setting a treatment plant specification such as a civil engineering structure, and an operation An operating condition setting device for setting conditions;
A water quality simulation device comprising: a model parameter setting device for setting a water quality model parameter; and a simulation calculation device for receiving data from each of the devices and for predicting the water quality of the treatment plant for predicting the water quality of the treatment plant. A prediction interval setting device that changes a prediction interval between the simulation calculation device and an organic matter determination device that determines organic matter data such as a fermentation product and a fermentable biodegradable organic substrate from data of the data storage device. And a prediction interval subdivision device that further divides the prediction interval to perform a simulation when a value obtained by the organic substance determination device exceeds a reference value.
【請求項2】 前記有機物判定装置は、前記シミュレー
ション計算装置による水質の変化量を判定する変化量判
定装置からなる請求項1記載の水質シミュレーション装
置。
2. The water quality simulation device according to claim 1, wherein the organic matter determination device includes a change amount determination device that determines a change amount of water quality by the simulation calculation device.
【請求項3】 前記有機物判定装置は、有機物の濃度を
判定する濃度判定装置からなる請求項1または2記載の
水質シミュレーション装置。
3. The water quality simulation device according to claim 1, wherein the organic matter determination device includes a concentration determination device that determines a concentration of the organic matter.
【請求項4】 最初沈澱地、反応槽、最終沈澱地などか
らなる下水処理場の水質データを蓄積するデータ蓄積装
置と、土木構造などの処理場仕様を設定する処理場仕様
設定装置と、運転条件を設定する運転条件設定装置と、
水質モデルパラメータを設定するモデルパラメータ設定
装置と、前記各装置からのデータを受け取り処理場の水
質を予測する処理場の水質を予測するシミュレーション
計算装置とを備えた水質シミュレーション装置におい
て、 前記データ蓄積装置と前記シミュレーション計算装置と
の間に前記反応槽各槽のDOデータを判定するDO判定装置
と、前記反応槽の槽変更を行う槽変更装置とを備えてい
ることを特徴とする水質シミュレーション装置。
4. A data storage device for storing water quality data of a sewage treatment plant comprising a first sedimentation site, a reaction tank, a final sedimentation site, etc., a treatment plant specification setting device for setting a treatment plant specification such as a civil engineering structure, and an operation An operating condition setting device for setting conditions;
A water quality simulation device comprising: a model parameter setting device for setting a water quality model parameter; and a simulation calculation device for receiving data from each of the devices and for predicting the water quality of the treatment plant for predicting the water quality of the treatment plant. A water quality simulation device comprising: a DO determination device that determines DO data of each of the reaction tanks; and a tank change device that changes a tank of the reaction tank between the simulation calculation device and the simulation calculation device.
【請求項5】 前記槽変更装置は、前記DO判定装置から
の信号をチェックした後、槽と槽を合成してシミュレー
ションする槽合成装置からなる請求項4記載の水質シミ
ュレーション装置。
5. The water quality simulation device according to claim 4, wherein the tank changing device comprises a tank synthesizing device for synthesizing a tank and a tank after checking a signal from the DO determination device.
【請求項6】 前記槽変更装置は、前記反応槽を分割し
てシミュレーションする槽分割装置からなる請求項4ま
たは5記載の水質シミュレーション装置。
6. The water quality simulation apparatus according to claim 4, wherein the tank changing device is a tank dividing device that divides and simulates the reaction tank.
JP2000239578A 2000-08-08 2000-08-08 Water quality simulation system Pending JP2002045844A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2000239578A JP2002045844A (en) 2000-08-08 2000-08-08 Water quality simulation system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2000239578A JP2002045844A (en) 2000-08-08 2000-08-08 Water quality simulation system

Publications (2)

Publication Number Publication Date
JP2002045844A true JP2002045844A (en) 2002-02-12
JP2002045844A5 JP2002045844A5 (en) 2005-10-27

Family

ID=18731092

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000239578A Pending JP2002045844A (en) 2000-08-08 2000-08-08 Water quality simulation system

Country Status (1)

Country Link
JP (1) JP2002045844A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102750448A (en) * 2012-06-11 2012-10-24 中国水利水电科学研究院 Water quantity and quality regulating method based on water function area
CN111125936A (en) * 2020-01-09 2020-05-08 广州市市政工程设计研究总院有限公司 Method and system for converting designed water quality of sewage and model water quality and storage medium

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102750448A (en) * 2012-06-11 2012-10-24 中国水利水电科学研究院 Water quantity and quality regulating method based on water function area
CN111125936A (en) * 2020-01-09 2020-05-08 广州市市政工程设计研究总院有限公司 Method and system for converting designed water quality of sewage and model water quality and storage medium
CN111125936B (en) * 2020-01-09 2024-01-30 广州市市政工程设计研究总院有限公司 Method, system and storage medium for converting designed water quality and model water quality of sewage

Similar Documents

Publication Publication Date Title
Li et al. Effect of aeration rate on nutrient removal from slaughterhouse wastewater in intermittently aerated sequencing batch reactors
Urbain et al. Integration of performance, molecular biology and modeling to describe the activated sludge process
Almomani Prediction the performance of multistage moving bed biological process using artificial neural network (ANN)
CN100475715C (en) Sewage treatment system
Yu et al. Combined treatment of domestic wastewater with landfill leachate by using A2/O process
WO1989010898A1 (en) Method of sewage treatment
Corsino et al. Achieving complete nitrification below the washout SRT with hybrid membrane aerated biofilm reactor (MABR) treating municipal wastewater
KR20180104413A (en) Oxygen control system for activated sludge process using harmony search algorithm
KR100633831B1 (en) Computing process apparatus for information on water quality
Moragaspitiya et al. Simulation of dynamic behaviour of a biological wastewater treatment plant in South East Queensland, Australia using bio-win software
JP3823863B2 (en) Operation support system and control system for water treatment process
JP2002045844A (en) Water quality simulation system
CN107720975B (en) Sewage treatment optimization simulation method using ethanol substances as external carbon source
JPH0716595A (en) Operation control method in modified method for circulating active sludge
JP3985180B2 (en) Water quality simulation equipment
Michioku et al. A water quality model for aeration of leachate from garbage dumped landfill
KR100401720B1 (en) Apparatus for treating sewage and wastewater by using anaerobic/anoxic reactor, anoxic/aerobic reactor and membrane
JP2002102878A (en) Operation support system in sewage treatment plant
Abdul-Talib et al. Half saturation constants for nitrate and nitrite by in-sewer anoxic transformations of wastewater organic matter
JP4026057B2 (en) Water quality simulation equipment
Tak et al. Design of denitrification systems using methanol
JP2004066119A (en) Operation support apparatus
JP2002320958A (en) Operation-supporting system
JP2001047080A (en) Sewage treatment control device
JP3945274B2 (en) Plant operation support device

Legal Events

Date Code Title Description
A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20050907

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050907

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20081028

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20081215

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20091217