JP2002043644A - Thin film piezoelectric element - Google Patents

Thin film piezoelectric element

Info

Publication number
JP2002043644A
JP2002043644A JP2000222270A JP2000222270A JP2002043644A JP 2002043644 A JP2002043644 A JP 2002043644A JP 2000222270 A JP2000222270 A JP 2000222270A JP 2000222270 A JP2000222270 A JP 2000222270A JP 2002043644 A JP2002043644 A JP 2002043644A
Authority
JP
Grant status
Application
Patent type
Prior art keywords
thin film
piezoelectric
substrate
lower electrode
piezoelectric thin
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2000222270A
Other languages
Japanese (ja)
Inventor
Shintaro Hara
Isaku Jinno
Takanori Nakano
貴徳 中野
慎太郎 原
伊策 神野
Original Assignee
Matsushita Electric Ind Co Ltd
松下電器産業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date

Links

Abstract

PROBLEM TO BE SOLVED: To provide a practically durable thin film piezoelectric element inexpensively by forming a diffusion preventive layer between a substrate and an electrode material formed thereon thereby forming a piezoelectric thin film having high piezoelectric characteristics on an iron based general purpose substrate. SOLUTION: The thin film piezoelectric element comprises a lower electrode formed on a substrate, a piezoelectric thin film containing lead formed on the lower electrode and an upper electrode arranged on the piezoelectric thin film wherein a material principally comprising iron is employed in the substrate and one or more diffusion preventive layer is arranged between the lower electrode and the substrate.

Description

【発明の詳細な説明】 DETAILED DESCRIPTION OF THE INVENTION

【0001】 [0001]

【発明の属する技術分野】本発明は、圧電薄膜材料を用いる圧電素子に関するものである。 The present invention relates to relates to a piezoelectric element using a piezoelectric thin film material.

【0002】 [0002]

【従来の技術】一般に圧電体は、種々の目的に応じて様々な圧電素子に加工され、特に電圧を加えて変形を生じさせるアクチュエータや、逆に素子の変形から電圧を発生するセンサなどの機能性電子部品として、広く利用されている。 The piezoelectric bodies of the Related Art Generally, are processed into various piezoelectric elements according to various purposes, in particular actuators and cause deformation energized, functions such as a sensor for generating a voltage in the opposite from the deformation of the element as sex electronic components, it is widely used.

【0003】アクチュエータやセンサの用途に利用されている圧電体として、大きな圧電特性を有する鉛系の誘電体、特にPZTと呼ばれるPb(Zr 1-x Ti x )O 3系のペロブスカイト型強誘電体がこれまで広く用いられており、これは通常、個々の元素からなる酸化物を焼結することにより形成される。 [0003] As piezoelectric body which is used in applications of the actuator and the sensor, a large dielectric lead system having piezoelectric properties, Pb (Zr 1-x Ti x) O 3 perovskite ferroelectrics particularly called PZT There are widely used heretofore, which is typically formed by sintering an oxide of individual elements.

【0004】現在、各種電子部品の小型化、高性能化が進むにつれ、圧電素子においても小型化、高性能化が強く求められるようになった。 [0004] Currently, various miniaturization of electronic components, as the performance progresses, miniaturization in the piezoelectric element, began to high performance is strongly demanded. しかし、従来の焼結法を中心とした製造方法により作製した圧電材料は、その厚みを薄くするに連れて、特に厚みが10μm程度の厚さに近づくに連れて、材料を構成する結晶粒の大きさに近づき、その影響が無視できなくなり、特性のばらつきや劣化が顕著になるといった問題点が発生した。 However, the piezoelectric material is manufactured by the manufacturing method around the conventional sintering method, as the thinner the thickness, especially a thickness nears to about 10μm thick, crystal grains constituting the material close to the size, the effect can not be ignored, a problem that variation or deterioration of the characteristics becomes remarkable occurs. それを回避するために、近年、焼結法に変わる薄膜技術等を応用した圧電体の形成法が研究されている。 To avoid this, in recent years, a method of forming a piezoelectric body by applying the thin film technology such as an alternative to sintering method have been studied.

【0005】これまでに、圧電性を有する薄膜、つまり圧電薄膜の形成法としては、圧電体を構成する物質を蒸発、気化させ基板上に堆積させる気相成長法、一般にr [0005] So far, a thin film having a piezoelectric property, a means that the method of forming the piezoelectric thin film, the material constituting the piezoelectric evaporation, vapor deposition to deposit on the substrate is vaporized, generally r
fスパッタ法やMOCVD法などが検討されている。 Such as f sputtering method or the MOCVD method has been studied. しかし、これらの手法を用いて形成した圧電薄膜においても、バルク材料といわれる焼結形成した圧電体の圧電特性と比較して、結晶粒界および結晶配向性の問題から特性のばらつきが大きく、センサやアクチュエータなどの実用に十分な圧電特性を得るまでには未だ至っていない。 However, even in the piezoelectric thin film formed by using these techniques, as compared with the piezoelectric properties of the sintered formed the piezoelectric called a bulk material, large variations in the crystal grain boundaries and crystal orientation issues from characteristics, sensor the obtaining sufficient piezoelectric characteristics for practical use, such as and actuators have not yet reached.

【0006】特に、圧電薄膜を用いたマイクロアクチュエータおよびマイクロセンサを実現するために、バイモルフもしくはユニモルフ構造の圧電素子を形成することがその応用の一つとして考えられるが、その際、圧電特性として圧電定数d 31の値が重要である。 [0006] Particularly, in order to realize a micro-actuator and micro-sensor using a piezoelectric thin film, but by forming the piezoelectric elements of the bimorph or unimorph structure is considered as one of its applications, in which the piezoelectric piezoelectric properties value of the constant d 31 is important. マイクロ素子として実用化するためには、圧電薄膜として圧電定数d To practice as microelements, piezoelectric constant d as a piezoelectric thin film
31がバルク材料なみの-100pC/V以上の値を有することが求められている。 31 are required to have a value of more than -100pC / V comparable to bulk material.

【0007】また、量産性を考慮した場合、圧電薄膜をそれ以外の素子作製プロセスと両立可能な基板を使用する必要があり、高い圧電性の実現と合わせた圧電薄膜の材料開発および製造技術の開発が求められている。 Further, in consideration of mass productivity, the piezoelectric thin film should be used both with high substrate and the other element manufacturing process, high piezoelectric properties realized with the combined piezoelectric thin film materials development and manufacturing techniques development has been demanded.

【0008】 [0008]

【発明が解決しようとする課題】しかしながら、圧電特性を有する薄膜を形成する場合、例えばPZTと総称される圧電体では高温処理または500℃以上の高温に加熱した基板上での薄膜成長を行う必要がある。 [0007] However, when forming a thin film having piezoelectric properties, for example, in a piezoelectric body which is collectively referred to as PZT necessary to perform a thin film growth on the substrate heated to a temperature higher than the high temperature processing or 500 ° C. there is. そのため薄膜と基板材料間での熱拡散が顕著となり、それによって圧電特性の劣化が起こる。 Therefore the thermal diffusion between the thin film and the substrate material becomes remarkable, whereby the deterioration of the piezoelectric characteristics occurs. 従って、従来より融点の高い酸化マグネシウムやアルミナなど、比較的高価で加工性の悪い基板を用いる必要があったが、安価で加工性の良い、例えば鉄を主成分とするステンレススチール等の基板上においても良好な圧電特性を有する圧電薄膜を形成する技術が求められている。 Accordingly, such conventionally high melting point of magnesium oxide and alumina, relatively although expensive it is necessary to use the workability poor substrate, good processability inexpensive, on a substrate such as stainless steel as a main component such as iron technique for forming a piezoelectric thin film has been demanded even with good piezoelectric properties at.

【0009】本発明は、鉄系の汎用基板上で高い圧電特性を有する圧電薄膜を形成することを実現し、実用に耐えうる薄膜圧電素子を安価に提供することを目的とする。 [0009] The present invention implements the formation of a piezoelectric thin film having a high piezoelectric property on a general-purpose board ferrous, and an object thereof is to provide an inexpensive thin film piezoelectric element that can withstand practical use.

【0010】その方法として、鉄系の基板上に基板成分の拡散を防止する適切な層を挿入することにより圧電薄膜の特性劣化を防ぎバルク材料なみの高い圧電特性を有し、更に圧電薄膜の材料組成を最適化し組成を変調させた形成方法を用いることにより、特性ばらつきの少ない圧電薄膜を安定に形成する技術を実現する。 [0010] As the method, it has a piezoelectric characteristic high bulk material comparable to prevent characteristic deterioration of the piezoelectric thin film by inserting a suitable layer that prevents the diffusion of substrate components on the substrate of ferrous, further piezoelectric thin film by using the forming method is modulated optimized composition of the material composition, to realize a technology to stably form a small piezoelectric thin film characteristic variation. 本発明により、鉄を含有する汎用基板上においてもマイクロアクチュエータもしくはマイクロセンサとして実用可能な薄膜圧電素子を提供することを目的とする。 The present invention aims to provide a practical thin film piezoelectric element as a micro actuator or microsensors even on a general-purpose substrate containing iron.

【0011】 [0011]

【課題を解決するための手段】本発明にかかる薄膜圧電素子は、基板上に下部電極を形成し、下部電極上に鉛を含有する圧電薄膜を形成し、圧電薄膜の上に更に上部電極を配した構成を有し、基板材料として、加工性がよく汎用材料である鉄を主成分とする材料を用い、下部電極と基板との間に1層以上の拡散防止層を配した薄膜圧電素子である。 Thin film piezoelectric device according to the present invention SUMMARY OF THE INVENTION are the lower electrode is formed on a substrate, forming a piezoelectric thin film containing lead on the lower electrode, the further upper electrode on the piezoelectric thin film has a configuration which arranged, as a substrate material, a material workability is composed mainly of iron is a well universal material, thin film piezoelectric elements arranged one or more layers of anti-diffusion layer between the lower electrode and the substrate it is.

【0012】鉄を主成分とする基板としてステンレススチールを用いた場合、下部電極としてPt、もしくは導電性酸化物を用い、ステンレススチール基板と下部電極との間に、Ti、TiN、TiO 2 、SiO 2 、酸化マグネシウム、アルミナ、酸化ジルコニウムのうち少なくとも一つを主成分とする拡散防止層が、少なくとも1層以上有する薄膜圧電素子であることが好ましい。 [0012] When using stainless steel as a substrate mainly composed of iron, Pt, or a conductive oxide is used as a lower electrode, between the stainless steel substrate and the lower electrode, Ti, TiN, TiO 2, SiO 2, magnesium oxide, alumina, diffusion barrier layer composed mainly of at least one of the zirconium oxide is preferably a thin film piezoelectric element having at least one layer.

【0013】さらに、基板上に形成した鉛を含有する圧電薄膜の組成において、その構成元素としてチタンおよびジルコニウムを含み、かつ表面部のZr/(Zr+Ti)組成比が基板界面部のZr/(Zr+Ti)組成比よりも10%以上少ない圧電薄膜であればなお好ましい。 Furthermore, in the composition of the piezoelectric thin film containing a lead formed on a substrate, comprising titanium and zirconium as constituent elements, and Zr / (Zr + Ti) composition ratio of the surface portion of the substrate interface section Zr / (Zr + Ti) if less piezoelectric film 10% or more than the composition ratio further preferred.

【0014】さらに、圧電薄膜を形成するステンレススチール基板の厚みを、圧電薄膜の厚みの5倍よりも薄くすることにより、圧電薄膜に残留する応力を低下させ、 Furthermore, the thickness of the stainless steel substrate to form the piezoelectric thin film, by thinning than 5 times the thickness of the piezoelectric thin film, reducing the stress remaining in the piezoelectric thin film,
圧電振動特性を向上させた薄膜圧電素子であればなお良い。 If the thin film piezoelectric device having improved piezoelectric vibration characteristics even better.

【0015】 [0015]

【発明の実施の形態】以下本発明の一実施形態において、圧電素子の構成を、図面を参照しながら説明する。 In one embodiment of the DETAILED DESCRIPTION OF THE INVENTION Hereinafter the present invention, the configuration of the piezoelectric element will be described with reference to the drawings.

【0016】図1において、圧電薄膜1は、組成がPb(Z [0016] In FIG. 1, the piezoelectric thin film 1 has a composition of Pb (Z
r 1-x Ti x )O 3 (0≦x≦1)(以後PZTと呼ぶ)の組成を有し、 r 1-x Ti x) O 3 (0 ≦ x ≦ 1) ( having a composition of subsequent PZT hereinafter),
膜厚が3μmである。 The film thickness is 3μm. まず、これをステンレス基板6上に形成し、その後、ステンレス基板6を連続したダイヤフラム構造へと加工した。 First, it was formed on the stainless steel substrate 6 and then processed stainless substrate 6 into a continuous diaphragm structure.

【0017】ここで、圧電薄膜1は、形成した薄膜とほぼ同じ組成を有する焼結体ターゲットを真空槽内に設置し、ターゲット上で酸化雰囲気のガス中でプラズマを発生させて、加熱した基板上に蒸着させるスパッタ法により形成した。 [0017] Here, the piezoelectric thin film 1, the sintered body target having approximately the same composition as the formed thin film was placed in the vacuum chamber, plasma is generated in a gas in an oxidizing atmosphere on the target, heated substrate It was formed by sputtering to deposit on. より詳細には、圧電薄膜1を、約600℃に加熱したステンレス基板6上にスパッタ法を用いて成長させるか、もしくは300℃程度に加熱したステンレス基板6上に形成した後、600℃以上の高温で熱処理することにより、圧電特性を有するペロブスカイト構造の圧電薄膜1を形成した。 More specifically, the piezoelectric thin film 1, after forming on the stainless steel substrate 6 or, or heated to about 300 ° C. to grow by a sputtering method on a stainless substrate 6 was heated to about 600 ° C., above 600 ° C. by heat treatment at high temperature, to form a piezoelectric thin film 1 of a perovskite structure having piezoelectric properties.

【0018】圧電薄膜1の作製については、スパッタ法の他、CVDやゾルゲル法においても、同様の結晶構造の圧電薄膜1を形成することができた。 [0018] For manufacturing the piezoelectric thin film 1, in addition to sputtering, in CVD or sol-gel method, it was possible to form a piezoelectric thin film 1 having the same crystal structure.

【0019】使用したステンレス基板6は、長さ500μ [0019] The stainless steel substrate 6 was used, the length of 500μ
m、幅50μmの多数の溝をあらかじめ形成したものであり、その一方の表面はスパッタ法で形成した厚み5μmの m, is obtained by pre-forming a number of grooves of width 50 [mu] m, the one surface of the thickness 5μm was formed by sputtering
Crからなる振動層2で表面を全面に覆った構造である。 The surface vibration layer 2 made of Cr the structure of covering the entire surface.
その上に、拡散防止層7としてTiO 2を厚み0.5μmで形成し、更にその上に、厚み0.2μmのPt下部電極層3をスパッタ法で形成した。 Thereon, the TiO 2 was formed in a thickness 0.5μm as a diffusion preventing layer 7, further thereon, to form a Pt lower electrode layer 3 having a thickness of 0.2μm by sputtering.

【0020】また、形成した圧電薄膜1の上部には、各ダイヤフラムに対応する箇所にダイヤフラムと同じ形状の厚み0.2μmのPt上部電極4を形成した。 Further, the formed upper piezoelectric thin film 1 to form a Pt upper electrode 4 having a thickness of 0.2μm of the same shape as the diaphragm at positions corresponding to the respective diaphragms.

【0021】この素子の上下電極間に1kHzのサイン波を印加し、ダイヤフラム上の圧電薄膜1の上下振動を計測することにより圧電特性の評価を行った。 [0021] were evaluated piezoelectric characteristics by applying a sine wave of 1kHz between the upper and lower electrodes of the device, to measure the vertical vibration of the piezoelectric thin film 1 on the diaphragm. 振動量は、振動量が最大となるダイヤフラムの中央で計測した値で規定した。 Vibration amount, the vibration amount is defined by the value measured at the center of the diaphragm having the largest.

【0022】通常、鉄を主成分とする基板上にPZT等の圧電薄膜1を形成した場合、基板材料である鉄や圧電薄膜1の成分である鉛などが相互拡散し、圧電特性の大幅な劣化が問題となっていた。 [0022] Normally, in the case of forming the piezoelectric thin film 1 of PZT or the like on a substrate mainly composed of iron, lead and mutual diffusion is a component of the iron and the piezoelectric thin film 1 as a substrate material, a significant piezoelectric properties deterioration has been a problem. しかし、本発明において、 However, in the present invention,
下部電極3となる白金と基板との界面に厚み0.5μmのTi Ti with a thickness of 0.5μm on the interface between the platinum and the substrate serving as the lower electrode 3
O 2を拡散防止層7として入れることにより、圧電薄膜1 By placing the O 2 as a diffusion preventing layer 7, the piezoelectric thin film 1
に拡散してくる鉄を大幅に減少させることができた。 The iron that diffuse to could be greatly reduced.

【0023】図2にTiO 2の拡散防止層7を用いずに形成したPZT圧電薄膜1と、拡散防止層7を用いて形成した圧電薄膜1とのオージェ電子分光測定による断面元素分布を示す。 [0023] 2 and PZT piezoelectric thin film 1 formed without using the diffusion prevention layer 7 of the TiO 2, the cross-section element distribution by Auger electron spectroscopy measurement of the piezoelectric thin film 1 formed by using the diffusion preventing layer 7. 図2の上図はTiO 2拡散防止層がある場合であり、下図は拡散防止層のない場合である。 Top view of FIG. 2 is a case where there is a TiO 2 diffusion preventing layer, below is a case where there is no anti-diffusion layer.

【0024】図2に示されるように、TiO 2の拡散防止層7を導入することにより、基板成分の拡散防止効果が確認できた。 [0024] As shown in FIG. 2, by introducing a diffusion preventing layer 7 of TiO 2, the diffusion preventing effect of the substrate component was confirmed. この結果、圧電薄膜1の圧電特性は劣化することなく、良好な圧電振動が得られることが確認でき、 As a result, the piezoelectric characteristics of the piezoelectric thin film 1 without degradation, confirmed that excellent piezoelectric vibration is obtained,
ステンレス等の鉄を主成分とする汎用基板上においても実用上問題のない良好な圧電特性を有する薄膜圧電素子を実現することができた。 Iron such as stainless steel could also be realized a thin film piezoelectric device having good piezoelectric properties no practical problem on a general-purpose substrate mainly.

【0025】この拡散防止層として、TiO 2の他、Ti、Ti [0025] As the anti-diffusion layer, other TiO 2, Ti, Ti
N、SiO 2 、酸化マグネシウム、アルミナ、酸化ジルコニウムを使用しても同様の効果が確認できた。 N, SiO 2, magnesium oxide, alumina, were confirmed similar effects by using zirconium oxide.

【0026】更に、圧電薄膜1としてPZTを用いた場合、ZrとTiとの組成比が圧電特性に大きく影響し、かつ圧電薄膜1の結晶性にも影響を与えることが明らかとなった。 Furthermore, in the case of using PZT as the piezoelectric thin film 1, the composition ratio of Zr and Ti are greatly affect the piezoelectric properties, and it was revealed that also affects the crystallinity of the piezoelectric thin film 1. 圧電薄膜1の圧電特性およびその安定性は、圧電薄膜1の微細結晶構造と大きな関係があるが、この結晶構造は基板との界面付近で大きく影響することがわかった。 Piezoelectric characteristics and stability of the piezoelectric thin film 1, a large related to the fine crystalline structure of the piezoelectric thin film 1, the crystal structure was found to be greatly affected by the vicinity of the interface with the substrate.

【0027】そこで、基板界面付近と表面付近とで組成が異なる圧電薄膜1を形成し、その圧電特性を調べた。 [0027] Therefore, to form a piezoelectric thin film 1 having different compositions in the vicinity of the substrate interface and near the surface, it was examined their piezoelectric properties.
その結果、圧電薄膜1の表面側の方が基板界面側よりZr Zr result, towards the surface side of the piezoelectric thin film 1 is from the substrate interface side
/(Zr+Ti)組成比が大きいほど安定な圧電振動が得られ、 / (Zr + Ti) stable piezoelectric vibration is obtained as the composition ratio is large,
特に圧電薄膜1の表面側のZr/(Zr+Ti)組成比が基板界面側より10%以上大きい場合に安定で、かつ良好な圧電振動が得られた。 Especially Zr / (Zr + Ti) composition ratio of the surface side of the piezoelectric thin film 1 is stable when larger than 10% from the substrate interface side, and good piezoelectric vibrating obtained.

【0028】これは、圧電薄膜の形成がZrを少なくすることによって、ステンレス基板上においても圧電薄膜1 [0028] This is because the formation of the piezoelectric thin film is less Zr, the piezoelectric thin film 1 even in the stainless steel substrate
が良好な微細結晶構造を有した状態で成長しやすくなったことに起因すると考えられる。 It is considered to be due to that is easier to grow in a state of having a good fine crystal structure.

【0029】更に、圧電薄膜1を、厚みの薄いステンレス基板6上に形成した場合、圧電薄膜1とのユニモルフ構造圧電素子として使用することができる。 Furthermore, the piezoelectric thin film 1, when formed on a thin stainless steel substrate 6 thick, can be used as a unimorph structure piezoelectric element of the piezoelectric thin film 1. ステンレス箔については、厚みが10μm程度のものが安定に入手できる。 The stainless steel foil, as a thickness of approximately 10μm can be obtained stably.

【0030】一方、前述した拡散防止層7を有する圧電薄膜としては、8μm以上の膜厚となると内部応力の影響等で剥離等の不良が頻繁に発生した。 On the other hand, as the piezoelectric thin film having a diffusion preventing layer 7 described above, defects such as exfoliation in the influence of internal stress occurs frequently when the above thickness 8 [mu] m. 特に圧電薄膜1 Especially the piezoelectric thin film 1
の膜厚(t1)とステンレス基板6の厚み(t2)との割合 Ratio of film thickness (t1) and the thickness of the stainless steel substrate 6 (t2) of
(t2/t1)において、t2/t1が大きくなるに連れて基板の剛性に対して圧電薄膜の内部応力とのバランスが崩れ、圧電薄膜が基板から剥離する割合が増加した。 (T2 / t1) in the balance between the internal stress of the piezoelectric thin film with respect to the stiffness of the substrate taken to t2 / t1 becomes larger collapses, the ratio of the piezoelectric thin film is peeled off from the substrate is increased.

【0031】厚みの比t2/t1が5倍よりも小さい場合は、基板となるステンレスも若干変形することにより、内部応力を緩和する効果が働くことから、素子剥離の不良も5%程度となり、実用上問題のない歩留まりを確保することができた。 [0031] When the ratio of the thickness t2 / t1 is smaller than 5 times, by deforming slightly stainless steel serving as a substrate also, since the working effect of relaxing the internal stress, becomes poor also about 5 percent of the element peeling, it was able to secure a yield no practical problem.

【0032】以上の結果、汎用基板である鉄系の基板においても、拡散防止層7を導入することにより圧電特性を劣化させずに素子化することが可能となり、またステンレス基板を用いた薄膜圧電素子において、その厚みの比を最適化させることにより、圧電薄膜1の剥離を大幅に減少させることができた。 [0032] As a result, even in a substrate of ferrous a universal substrate, it is possible to elements of without deteriorating the piezoelectric properties by introducing a diffusion preventing layer 7, also thin film piezoelectric using stainless steel substrate in the device, by optimizing the ratio of its thickness, it was possible to greatly reduce the peeling of the piezoelectric thin film 1.

【0033】 [0033]

【発明の効果】本発明は、基板と基板上に形成した電極材料との間に拡散防止層を形成することによって、鉄系の汎用基板上で高い圧電特性を有する圧電薄膜を形成することを実現し、実用に耐えうる薄膜圧電素子を安価に提供することができた。 According to the present invention, by forming a diffusion barrier layer between the electrode material formed on the substrate and on the substrate, forming a piezoelectric thin film having a high piezoelectric property on a general-purpose board ferrous realized, it is possible to provide an inexpensive thin film piezoelectric element that can withstand practical use.

【図面の簡単な説明】 BRIEF DESCRIPTION OF THE DRAWINGS

【図1】本発明の一実施形態における薄膜圧電素子の斜視図 Perspective view of the thin film piezoelectric device according to an embodiment of the invention; FIG

【図2】オージェ電子分光測定による断面元素分布を示すグラフ 2 is a graph showing a cross-section element distribution by Auger electron spectroscopy

【符号の説明】 DESCRIPTION OF SYMBOLS

1 圧電薄膜 2 振動層 3 下部電極 4 上部電極 6 ステンレス基板 7 拡散防止層 First piezoelectric thin film 2 vibrating layer 3 lower electrode 4 upper electrode 6 the stainless steel substrate 7 diffusion prevention layer

Claims (4)

    【特許請求の範囲】 [The claims]
  1. 【請求項1】 基板上に下部電極を形成し、該下部電極上に鉛を含有する圧電薄膜を形成し、該圧電薄膜の上に更に上部電極を配した薄膜圧電素子において、該基板として鉄を主成分とする材料を用い、かつ該下部電極と基板との間に1層以上の拡散防止層を配することを特徴とする薄膜圧電素子。 1. A forming a lower electrode on a substrate, forming a piezoelectric thin film containing lead on the lower electrode, the further thin film piezoelectric elements which arranged upper electrode on the piezoelectric thin film, iron as substrate thin film piezoelectric element characterized by the use of a material mainly, and arranging one or more layers of anti-diffusion layer between the lower electrode and the substrate.
  2. 【請求項2】 圧電薄膜を形成する基板がステンレススチールであり、下部電極がPtもしくは導電性酸化物であり、該基板と該下部電極との間の拡散防止層が、Ti、Ti Wherein a substrate of stainless steel to form a piezoelectric thin film, a lower electrode Pt or conductive oxide, the diffusion prevention layer between the substrate and the lower electrode is, Ti, Ti
    N、TiO 2 、SiO 2 、酸化マグネシウム、アルミナ、酸化ジルコニウムのうち少なくとも一つを主成分とすることを特徴とする請求項1に記載の薄膜圧電素子。 N, TiO 2, SiO 2, magnesium oxide, alumina, a thin film piezoelectric device according to claim 1, characterized in that a main component at least one of the zirconium oxide.
  3. 【請求項3】 圧電薄膜の組成において、構成元素としてチタンおよびジルコニウムを含み、かつ表面部のZr/ 3. A composition of the piezoelectric thin film includes a titanium and zirconium as constituent elements, and the surface of the Zr /
    (Zr+Ti)組成比が基板界面部のZr/(Zr+Ti)組成比よりも1 (Zr + Ti) composition ratio of the substrate interface section Zr / (Zr + Ti) 1 than the composition ratio
    0%以上少ないことを特徴とする請求項1または2に記載の薄膜圧電素子。 Thin-film piezoelectric element according to claim 1 or 2, characterized in that more than 0% less.
  4. 【請求項4】 ステンレススチール基板の厚みが、圧電薄膜の厚みの5倍よりも薄いことを特徴とする、請求項1〜3の何れかに記載の薄膜圧電素子。 4. A stainless steel substrate having a thickness, characterized in that thinner than 5 times the thickness of the piezoelectric thin film, thin film piezoelectric device according to any one of claims 1 to 3.
JP2000222270A 2000-07-24 2000-07-24 Thin film piezoelectric element Pending JP2002043644A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2000222270A JP2002043644A (en) 2000-07-24 2000-07-24 Thin film piezoelectric element

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2000222270A JP2002043644A (en) 2000-07-24 2000-07-24 Thin film piezoelectric element

Publications (1)

Publication Number Publication Date
JP2002043644A true true JP2002043644A (en) 2002-02-08

Family

ID=18716533

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000222270A Pending JP2002043644A (en) 2000-07-24 2000-07-24 Thin film piezoelectric element

Country Status (1)

Country Link
JP (1) JP2002043644A (en)

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006054442A (en) * 2004-07-13 2006-02-23 Brother Ind Ltd Manufacturing method of piezoelectric actuator and ink jet head, piezoelectric actuator and ink jet head
EP1693907A1 (en) * 2005-02-21 2006-08-23 Brother Kogyo Kabushiki Kaisha Piezoelectric actuator and method of producing the same
JP2007098727A (en) * 2005-10-03 2007-04-19 Fujifilm Corp Manufacturing method for liquid discharging head, liquid discharging head, and image forming device
JP2007165385A (en) * 2005-12-09 2007-06-28 Nec Tokin Corp Piezoelectric film lamination structure, and its manufacturing method
JP2007173400A (en) * 2005-12-20 2007-07-05 Fujifilm Corp Method of manufacturing piezoelectric actuator, method of manufacturing liquid discharge head, piezoelectric actuator, liquid discharge head, and image forming apparatus
JP2007227408A (en) * 2005-12-13 2007-09-06 Fujifilm Corp Piezoelectric actuator, liquid ejection head, method for manufacturing the same, and image forming apparatus
JP2007229961A (en) * 2006-02-27 2007-09-13 Fujifilm Corp Method for manufacturing liquid discharge head
JP2011189586A (en) * 2010-03-12 2011-09-29 Seiko Epson Corp Liquid ejecting head and liquid ejecting apparatus
WO2012144185A1 (en) * 2011-04-21 2012-10-26 パナソニック株式会社 Dielectric element base material, method for producing same, and piezoelectric element using said dielectric element base material
JP2014177124A (en) * 2014-04-08 2014-09-25 Seiko Epson Corp Piezoelectric element and ultrasonic device
JP2015153850A (en) * 2014-02-13 2015-08-24 株式会社サイオクス Piezoelectric material thin film element, manufacturing method thereof, and electronic device with piezoelectric material thin film element
US9186898B2 (en) 2007-03-28 2015-11-17 Brother Kogyo Kabushiki Kaisha Method for producing piezoelectric actuator
JP5845424B2 (en) * 2011-02-18 2016-01-20 パナソニックIpマネジメント株式会社 Piezoelectric element

Cited By (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006054442A (en) * 2004-07-13 2006-02-23 Brother Ind Ltd Manufacturing method of piezoelectric actuator and ink jet head, piezoelectric actuator and ink jet head
EP1693907A1 (en) * 2005-02-21 2006-08-23 Brother Kogyo Kabushiki Kaisha Piezoelectric actuator and method of producing the same
US7644479B2 (en) 2005-02-21 2010-01-12 Brother Kogyo Kabushiki Kaisha Method of producing a piezoelectric actuator
JP2007098727A (en) * 2005-10-03 2007-04-19 Fujifilm Corp Manufacturing method for liquid discharging head, liquid discharging head, and image forming device
JP2007165385A (en) * 2005-12-09 2007-06-28 Nec Tokin Corp Piezoelectric film lamination structure, and its manufacturing method
JP2007227408A (en) * 2005-12-13 2007-09-06 Fujifilm Corp Piezoelectric actuator, liquid ejection head, method for manufacturing the same, and image forming apparatus
JP2007173400A (en) * 2005-12-20 2007-07-05 Fujifilm Corp Method of manufacturing piezoelectric actuator, method of manufacturing liquid discharge head, piezoelectric actuator, liquid discharge head, and image forming apparatus
JP2007229961A (en) * 2006-02-27 2007-09-13 Fujifilm Corp Method for manufacturing liquid discharge head
US9186898B2 (en) 2007-03-28 2015-11-17 Brother Kogyo Kabushiki Kaisha Method for producing piezoelectric actuator
JP2011189586A (en) * 2010-03-12 2011-09-29 Seiko Epson Corp Liquid ejecting head and liquid ejecting apparatus
JP5845424B2 (en) * 2011-02-18 2016-01-20 パナソニックIpマネジメント株式会社 Piezoelectric element
US9391258B2 (en) 2011-02-18 2016-07-12 Panasonic Intellectual Property Management Co., Ltd. Piezoelectric element
WO2012144185A1 (en) * 2011-04-21 2012-10-26 パナソニック株式会社 Dielectric element base material, method for producing same, and piezoelectric element using said dielectric element base material
JP5909656B2 (en) * 2011-04-21 2016-04-27 パナソニックIpマネジメント株式会社 And manufacturing method thereof dielectric element base material, and a piezoelectric device using the dielectric element base material
JP2015153850A (en) * 2014-02-13 2015-08-24 株式会社サイオクス Piezoelectric material thin film element, manufacturing method thereof, and electronic device with piezoelectric material thin film element
JP2014177124A (en) * 2014-04-08 2014-09-25 Seiko Epson Corp Piezoelectric element and ultrasonic device

Similar Documents

Publication Publication Date Title
US6543107B1 (en) Method of producing a piezoelectric thin film
US7323806B2 (en) Piezoelectric thin film element
EP0526048A1 (en) Piezoelectric/electrostrictive element having ceramic substrate formed essentially of stabilized zirconia
US20020149296A1 (en) Thin-film piezoelectric bimorph element, mechanical detector and inkjet head using the same, and methods of manufacturing the same
US6217979B1 (en) Piezoelectric/electrostrictive film element
US6432546B1 (en) Microelectronic piezoelectric structure and method of forming the same
Aoki et al. Effects of titanium buffer layer on lead-zirconate-titanate crystallization processes in sol-gel deposition technique
US5814920A (en) Piezoelectric/electrostrictive film-type element and method for producing the same
US20090096328A1 (en) Substrate with a piezoelectric thin film
US5191510A (en) Use of palladium as an adhesion layer and as an electrode in ferroelectric memory devices
US6190963B1 (en) Composite iridium-metal-oxygen barrier structure with refractory metal companion barrier and method for same
Maiwa et al. Preparation and properties of Ru and RuO2 thin film electrodes for ferroelectric thin films
JP2004265899A (en) Piezoelectric element and its manufacturing method
JP2009295786A (en) Piezoelectric thin film element
JPH09223831A (en) Piezoelectric thin film, and its manufacture and ink jet recording head using it
JPH08253324A (en) Ferroelectric thin film constitution body
US6682772B1 (en) High temperature deposition of Pt/TiOx for bottom electrodes
JPH06350154A (en) Piezoelectric thin film element
US20020195612A1 (en) Method of making a nickel-coated copper substrate and thin film composite containing the same
JPH05235268A (en) Manufacture for ferroelectric thin film
Jiang et al. Deposition and characterization of ferroelectric Pb [(Mg1/3Nb2/3) xTi1-x] O3 thin films by RF magnetron sputtering
JP2004186436A (en) Piezoelectric/electrostrictive film element
US20060119229A1 (en) Piezoelectric/electrostrictive device and method for manufacturing the same
US6555886B1 (en) Device having two perovskite crystalline layers that shows hysteresis and piezoelectric behavior
JP2001077438A (en) Piezoelectric element, ink-jet recorder head and manufacture thereof

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20040824

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20041020

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20050315

RD01 Notification of change of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7421

Effective date: 20050630

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20050719