JP2002043644A - Thin film piezoelectric element - Google Patents

Thin film piezoelectric element

Info

Publication number
JP2002043644A
JP2002043644A JP2000222270A JP2000222270A JP2002043644A JP 2002043644 A JP2002043644 A JP 2002043644A JP 2000222270 A JP2000222270 A JP 2000222270A JP 2000222270 A JP2000222270 A JP 2000222270A JP 2002043644 A JP2002043644 A JP 2002043644A
Authority
JP
Japan
Prior art keywords
thin film
piezoelectric
substrate
lower electrode
piezoelectric thin
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2000222270A
Other languages
Japanese (ja)
Inventor
Isaku Jinno
伊策 神野
Shintaro Hara
慎太郎 原
Takanori Nakano
貴徳 中野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP2000222270A priority Critical patent/JP2002043644A/en
Publication of JP2002043644A publication Critical patent/JP2002043644A/en
Pending legal-status Critical Current

Links

Landscapes

  • Micromachines (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a practically durable thin film piezoelectric element inexpensively by forming a diffusion preventive layer between a substrate and an electrode material formed thereon thereby forming a piezoelectric thin film having high piezoelectric characteristics on an iron based general purpose substrate. SOLUTION: The thin film piezoelectric element comprises a lower electrode formed on a substrate, a piezoelectric thin film containing lead formed on the lower electrode and an upper electrode arranged on the piezoelectric thin film wherein a material principally comprising iron is employed in the substrate and one or more diffusion preventive layer is arranged between the lower electrode and the substrate.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、圧電薄膜材料を用
いる圧電素子に関するものである。
The present invention relates to a piezoelectric element using a piezoelectric thin film material.

【0002】[0002]

【従来の技術】一般に圧電体は、種々の目的に応じて様
々な圧電素子に加工され、特に電圧を加えて変形を生じ
させるアクチュエータや、逆に素子の変形から電圧を発
生するセンサなどの機能性電子部品として、広く利用さ
れている。
2. Description of the Related Art In general, a piezoelectric material is processed into various piezoelectric elements for various purposes, and in particular, functions such as an actuator for generating a deformation by applying a voltage and a sensor for generating a voltage from the deformation of the element. Widely used as conductive electronic components.

【0003】アクチュエータやセンサの用途に利用され
ている圧電体として、大きな圧電特性を有する鉛系の誘
電体、特にPZTと呼ばれるPb(Zr1-xTix)O3系のペロブス
カイト型強誘電体がこれまで広く用いられており、これ
は通常、個々の元素からなる酸化物を焼結することによ
り形成される。
As a piezoelectric material used for actuators and sensors, a lead-based dielectric material having large piezoelectric characteristics, particularly a Pb (Zr 1-x Ti x ) O 3 -based perovskite ferroelectric material called PZT Has been widely used so far, and is usually formed by sintering an oxide composed of individual elements.

【0004】現在、各種電子部品の小型化、高性能化が
進むにつれ、圧電素子においても小型化、高性能化が強
く求められるようになった。しかし、従来の焼結法を中
心とした製造方法により作製した圧電材料は、その厚み
を薄くするに連れて、特に厚みが10μm程度の厚さに近
づくに連れて、材料を構成する結晶粒の大きさに近づ
き、その影響が無視できなくなり、特性のばらつきや劣
化が顕著になるといった問題点が発生した。それを回避
するために、近年、焼結法に変わる薄膜技術等を応用し
た圧電体の形成法が研究されている。
At present, as various electronic components have been reduced in size and improved in performance, there has been a strong demand for piezoelectric elements to be reduced in size and improved in performance. However, as the thickness of a piezoelectric material manufactured by a manufacturing method centered on a conventional sintering method decreases, particularly as the thickness approaches a thickness of about 10 μm, the crystal grains constituting the material are reduced. As the size approaches the size, the influence cannot be ignored, and there is a problem in that the characteristic variation and deterioration become remarkable. In order to avoid this, in recent years, a method of forming a piezoelectric body using a thin film technology or the like instead of the sintering method has been studied.

【0005】これまでに、圧電性を有する薄膜、つまり
圧電薄膜の形成法としては、圧電体を構成する物質を蒸
発、気化させ基板上に堆積させる気相成長法、一般にr
fスパッタ法やMOCVD法などが検討されている。しか
し、これらの手法を用いて形成した圧電薄膜において
も、バルク材料といわれる焼結形成した圧電体の圧電特
性と比較して、結晶粒界および結晶配向性の問題から特
性のばらつきが大きく、センサやアクチュエータなどの
実用に十分な圧電特性を得るまでには未だ至っていな
い。
Heretofore, as a method of forming a thin film having piezoelectricity, that is, a piezoelectric thin film, a vapor phase growth method of evaporating and evaporating a substance constituting a piezoelectric substance and depositing the substance on a substrate, generally, an r method
An f-sputtering method, a MOCVD method and the like are being studied. However, even in piezoelectric thin films formed using these techniques, the characteristics vary greatly due to the problem of crystal grain boundaries and crystal orientation compared to the piezoelectric characteristics of sintered piezoelectric materials called bulk materials. It has not yet reached piezoelectric properties sufficient for practical use such as actuators and actuators.

【0006】特に、圧電薄膜を用いたマイクロアクチュ
エータおよびマイクロセンサを実現するために、バイモ
ルフもしくはユニモルフ構造の圧電素子を形成すること
がその応用の一つとして考えられるが、その際、圧電特
性として圧電定数d31の値が重要である。マイクロ素子
として実用化するためには、圧電薄膜として圧電定数d
31がバルク材料なみの-100pC/V以上の値を有することが
求められている。
In particular, in order to realize a microactuator and a microsensor using a piezoelectric thin film, forming a piezoelectric element having a bimorph or unimorph structure can be considered as one of its applications. value of the constant d 31 is important. For practical use as a micro element, the piezoelectric constant d
31 is required to have a value of -100 pC / V or more, which is equivalent to that of a bulk material.

【0007】また、量産性を考慮した場合、圧電薄膜を
それ以外の素子作製プロセスと両立可能な基板を使用す
る必要があり、高い圧電性の実現と合わせた圧電薄膜の
材料開発および製造技術の開発が求められている。
Further, in consideration of mass productivity, it is necessary to use a substrate capable of making the piezoelectric thin film compatible with other element manufacturing processes. Development is required.

【0008】[0008]

【発明が解決しようとする課題】しかしながら、圧電特
性を有する薄膜を形成する場合、例えばPZTと総称され
る圧電体では高温処理または500℃以上の高温に加熱し
た基板上での薄膜成長を行う必要がある。そのため薄膜
と基板材料間での熱拡散が顕著となり、それによって圧
電特性の劣化が起こる。従って、従来より融点の高い酸
化マグネシウムやアルミナなど、比較的高価で加工性の
悪い基板を用いる必要があったが、安価で加工性の良
い、例えば鉄を主成分とするステンレススチール等の基
板上においても良好な圧電特性を有する圧電薄膜を形成
する技術が求められている。
However, when a thin film having piezoelectric characteristics is formed, for example, in the case of a piezoelectric material collectively referred to as PZT, it is necessary to perform high-temperature processing or thin-film growth on a substrate heated to a high temperature of 500 ° C. or more. There is. Therefore, thermal diffusion between the thin film and the substrate material becomes remarkable, thereby deteriorating the piezoelectric characteristics. Therefore, it was necessary to use a relatively expensive and inferior workability substrate such as magnesium oxide or alumina having a higher melting point than before. Also, there is a need for a technique for forming a piezoelectric thin film having good piezoelectric characteristics.

【0009】本発明は、鉄系の汎用基板上で高い圧電特
性を有する圧電薄膜を形成することを実現し、実用に耐
えうる薄膜圧電素子を安価に提供することを目的とす
る。
SUMMARY OF THE INVENTION It is an object of the present invention to provide a thin-film piezoelectric element that can be used practically at low cost by realizing the formation of a piezoelectric thin film having high piezoelectric characteristics on an iron-based general-purpose substrate.

【0010】その方法として、鉄系の基板上に基板成分
の拡散を防止する適切な層を挿入することにより圧電薄
膜の特性劣化を防ぎバルク材料なみの高い圧電特性を有
し、更に圧電薄膜の材料組成を最適化し組成を変調させ
た形成方法を用いることにより、特性ばらつきの少ない
圧電薄膜を安定に形成する技術を実現する。本発明によ
り、鉄を含有する汎用基板上においてもマイクロアクチ
ュエータもしくはマイクロセンサとして実用可能な薄膜
圧電素子を提供することを目的とする。
[0010] As a method therefor, an appropriate layer for preventing the diffusion of substrate components is inserted on an iron-based substrate to prevent deterioration of the characteristics of the piezoelectric thin film, to have a piezoelectric characteristic as high as that of a bulk material. By using a forming method in which the material composition is optimized and the composition is modulated, a technique for stably forming a piezoelectric thin film with small characteristic variations is realized. An object of the present invention is to provide a thin-film piezoelectric element that can be used as a microactuator or microsensor even on a general-purpose substrate containing iron.

【0011】[0011]

【課題を解決するための手段】本発明にかかる薄膜圧電
素子は、基板上に下部電極を形成し、下部電極上に鉛を
含有する圧電薄膜を形成し、圧電薄膜の上に更に上部電
極を配した構成を有し、基板材料として、加工性がよく
汎用材料である鉄を主成分とする材料を用い、下部電極
と基板との間に1層以上の拡散防止層を配した薄膜圧電
素子である。
A thin film piezoelectric element according to the present invention comprises a lower electrode formed on a substrate, a lead-containing piezoelectric thin film formed on the lower electrode, and an upper electrode further formed on the piezoelectric thin film. A thin-film piezoelectric element having a structure in which one or more anti-diffusion layers are disposed between a lower electrode and a substrate, using a material mainly composed of iron, which is a general-purpose material with good workability, as a substrate material. It is.

【0012】鉄を主成分とする基板としてステンレスス
チールを用いた場合、下部電極としてPt、もしくは導電
性酸化物を用い、ステンレススチール基板と下部電極と
の間に、Ti、TiN、TiO2、SiO2、酸化マグネシウム、ア
ルミナ、酸化ジルコニウムのうち少なくとも一つを主成
分とする拡散防止層が、少なくとも1層以上有する薄膜
圧電素子であることが好ましい。
When stainless steel is used as the substrate mainly composed of iron, Pt or a conductive oxide is used as the lower electrode, and Ti, TiN, TiO 2 , SiO 2 is provided between the stainless steel substrate and the lower electrode. 2. It is preferable that the thin-film piezoelectric element has at least one or more diffusion prevention layers containing at least one of magnesium oxide, alumina and zirconium oxide as a main component.

【0013】さらに、基板上に形成した鉛を含有する圧
電薄膜の組成において、その構成元素としてチタンおよ
びジルコニウムを含み、かつ表面部のZr/(Zr+Ti)組成比
が基板界面部のZr/(Zr+Ti)組成比よりも10%以上少ない
圧電薄膜であればなお好ましい。
Further, in the composition of the lead-containing piezoelectric thin film formed on the substrate, the composition contains titanium and zirconium as constituent elements, and the composition ratio of Zr / (Zr + Ti) at the surface portion is Zr / Zr at the substrate interface portion. It is more preferable that the piezoelectric thin film be at least 10% less than the (Zr + Ti) composition ratio.

【0014】さらに、圧電薄膜を形成するステンレスス
チール基板の厚みを、圧電薄膜の厚みの5倍よりも薄く
することにより、圧電薄膜に残留する応力を低下させ、
圧電振動特性を向上させた薄膜圧電素子であればなお良
い。
Further, by reducing the thickness of the stainless steel substrate on which the piezoelectric thin film is formed to less than five times the thickness of the piezoelectric thin film, the stress remaining on the piezoelectric thin film is reduced.
A thin film piezoelectric element having improved piezoelectric vibration characteristics is more preferable.

【0015】[0015]

【発明の実施の形態】以下本発明の一実施形態におい
て、圧電素子の構成を、図面を参照しながら説明する。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS In one embodiment of the present invention, the structure of a piezoelectric element will be described below with reference to the drawings.

【0016】図1において、圧電薄膜1は、組成がPb(Z
r1-xTix)O3(0≦x≦1)(以後PZTと呼ぶ)の組成を有し、
膜厚が3μmである。まず、これをステンレス基板6上
に形成し、その後、ステンレス基板6を連続したダイヤ
フラム構造へと加工した。
In FIG. 1, a piezoelectric thin film 1 has a composition of Pb (Z
r 1-x Ti x ) O 3 (0 ≦ x ≦ 1) (hereinafter referred to as PZT),
The film thickness is 3 μm. First, this was formed on a stainless steel substrate 6, and then the stainless steel substrate 6 was processed into a continuous diaphragm structure.

【0017】ここで、圧電薄膜1は、形成した薄膜とほ
ぼ同じ組成を有する焼結体ターゲットを真空槽内に設置
し、ターゲット上で酸化雰囲気のガス中でプラズマを発
生させて、加熱した基板上に蒸着させるスパッタ法によ
り形成した。より詳細には、圧電薄膜1を、約600℃に
加熱したステンレス基板6上にスパッタ法を用いて成長
させるか、もしくは300℃程度に加熱したステンレス基
板6上に形成した後、600℃以上の高温で熱処理するこ
とにより、圧電特性を有するペロブスカイト構造の圧電
薄膜1を形成した。
Here, the piezoelectric thin film 1 is obtained by placing a sintered target having substantially the same composition as the formed thin film in a vacuum chamber, generating plasma in an oxidizing atmosphere on the target, and heating the substrate. It was formed by a sputtering method of vapor deposition on top. More specifically, the piezoelectric thin film 1 is grown by sputtering on a stainless steel substrate 6 heated to about 600 ° C., or formed on a stainless steel substrate 6 heated to about 300 ° C. By performing heat treatment at a high temperature, a piezoelectric thin film 1 having a perovskite structure having piezoelectric characteristics was formed.

【0018】圧電薄膜1の作製については、スパッタ法
の他、CVDやゾルゲル法においても、同様の結晶構造の
圧電薄膜1を形成することができた。
Regarding the production of the piezoelectric thin film 1, the piezoelectric thin film 1 having the same crystal structure could be formed not only by sputtering but also by CVD or sol-gel method.

【0019】使用したステンレス基板6は、長さ500μ
m、幅50μmの多数の溝をあらかじめ形成したものであ
り、その一方の表面はスパッタ法で形成した厚み5μmの
Crからなる振動層2で表面を全面に覆った構造である。
その上に、拡散防止層7としてTiO2を厚み0.5μmで形成
し、更にその上に、厚み0.2μmのPt下部電極層3をスパ
ッタ法で形成した。
The used stainless steel substrate 6 has a length of 500 μm.
m, a number of grooves with a width of 50μm are formed in advance, one surface of which has a thickness of 5μm formed by sputtering.
The structure is such that the entire surface is covered with the vibration layer 2 made of Cr.
TiO 2 was formed thereon as a diffusion preventing layer 7 to a thickness of 0.5 μm, and a Pt lower electrode layer 3 having a thickness of 0.2 μm was further formed thereon by sputtering.

【0020】また、形成した圧電薄膜1の上部には、各
ダイヤフラムに対応する箇所にダイヤフラムと同じ形状
の厚み0.2μmのPt上部電極4を形成した。
On the upper part of the formed piezoelectric thin film 1, a Pt upper electrode 4 having the same shape as the diaphragm and a thickness of 0.2 μm was formed at a position corresponding to each diaphragm.

【0021】この素子の上下電極間に1kHzのサイン波を
印加し、ダイヤフラム上の圧電薄膜1の上下振動を計測
することにより圧電特性の評価を行った。振動量は、振
動量が最大となるダイヤフラムの中央で計測した値で規
定した。
A 1 kHz sine wave was applied between the upper and lower electrodes of this device, and the vertical vibration of the piezoelectric thin film 1 on the diaphragm was measured to evaluate the piezoelectric characteristics. The amount of vibration was defined by a value measured at the center of the diaphragm where the amount of vibration was maximum.

【0022】通常、鉄を主成分とする基板上にPZT等の
圧電薄膜1を形成した場合、基板材料である鉄や圧電薄
膜1の成分である鉛などが相互拡散し、圧電特性の大幅
な劣化が問題となっていた。しかし、本発明において、
下部電極3となる白金と基板との界面に厚み0.5μmのTi
O2を拡散防止層7として入れることにより、圧電薄膜1
に拡散してくる鉄を大幅に減少させることができた。
Normally, when a piezoelectric thin film 1 such as PZT is formed on a substrate mainly composed of iron, iron as a substrate material and lead as a component of the piezoelectric thin film 1 are mutually diffused, resulting in a large piezoelectric characteristic. Deterioration was a problem. However, in the present invention,
A 0.5 μm thick Ti layer is formed on the interface between platinum and the substrate as the lower electrode 3.
O 2 is introduced as the diffusion preventing layer 7 so that the piezoelectric thin film 1
The amount of iron that diffuses into the area was greatly reduced.

【0023】図2にTiO2の拡散防止層7を用いずに形成
したPZT圧電薄膜1と、拡散防止層7を用いて形成した
圧電薄膜1とのオージェ電子分光測定による断面元素分
布を示す。図2の上図はTiO2拡散防止層がある場合であ
り、下図は拡散防止層のない場合である。
FIG. 2 shows cross-sectional element distributions of the PZT piezoelectric thin film 1 formed without using the TiO 2 diffusion preventing layer 7 and the piezoelectric thin film 1 formed using the diffusion preventing layer 7 by Auger electron spectroscopy. The upper diagram in FIG. 2 shows the case with the TiO 2 diffusion preventing layer, and the lower diagram shows the case without the diffusion preventing layer.

【0024】図2に示されるように、TiO2の拡散防止層
7を導入することにより、基板成分の拡散防止効果が確
認できた。この結果、圧電薄膜1の圧電特性は劣化する
ことなく、良好な圧電振動が得られることが確認でき、
ステンレス等の鉄を主成分とする汎用基板上においても
実用上問題のない良好な圧電特性を有する薄膜圧電素子
を実現することができた。
As shown in FIG. 2, the effect of preventing the diffusion of the substrate component was confirmed by introducing the TiO 2 diffusion preventing layer 7. As a result, it was confirmed that the piezoelectric characteristics of the piezoelectric thin film 1 were not degraded and good piezoelectric vibration was obtained.
A thin-film piezoelectric element having good piezoelectric characteristics without practical problems was realized even on a general-purpose substrate mainly composed of iron such as stainless steel.

【0025】この拡散防止層として、TiO2の他、Ti、Ti
N、SiO2、酸化マグネシウム、アルミナ、酸化ジルコニ
ウムを使用しても同様の効果が確認できた。
As this diffusion preventing layer, in addition to TiO 2 , Ti, Ti
Similar effects were confirmed when N, SiO 2 , magnesium oxide, alumina, and zirconium oxide were used.

【0026】更に、圧電薄膜1としてPZTを用いた場
合、ZrとTiとの組成比が圧電特性に大きく影響し、かつ
圧電薄膜1の結晶性にも影響を与えることが明らかとな
った。圧電薄膜1の圧電特性およびその安定性は、圧電
薄膜1の微細結晶構造と大きな関係があるが、この結晶
構造は基板との界面付近で大きく影響することがわかっ
た。
Further, when PZT is used as the piezoelectric thin film 1, it has been clarified that the composition ratio of Zr and Ti greatly affects the piezoelectric characteristics and also affects the crystallinity of the piezoelectric thin film 1. The piezoelectric characteristics and stability of the piezoelectric thin film 1 have a great relationship with the fine crystal structure of the piezoelectric thin film 1, and it has been found that this crystal structure has a significant effect near the interface with the substrate.

【0027】そこで、基板界面付近と表面付近とで組成
が異なる圧電薄膜1を形成し、その圧電特性を調べた。
その結果、圧電薄膜1の表面側の方が基板界面側よりZr
/(Zr+Ti)組成比が大きいほど安定な圧電振動が得られ、
特に圧電薄膜1の表面側のZr/(Zr+Ti)組成比が基板界面
側より10%以上大きい場合に安定で、かつ良好な圧電振
動が得られた。
Therefore, a piezoelectric thin film 1 having a composition different between the vicinity of the substrate interface and the vicinity of the surface was formed, and its piezoelectric characteristics were examined.
As a result, the surface side of the piezoelectric thin film 1 is more Zr than the substrate interface side.
The larger the / (Zr + Ti) composition ratio, the more stable piezoelectric vibration is obtained,
In particular, when the composition ratio of Zr / (Zr + Ti) on the surface side of the piezoelectric thin film 1 was 10% or more than that on the interface side of the substrate, stable and good piezoelectric vibration was obtained.

【0028】これは、圧電薄膜の形成がZrを少なくする
ことによって、ステンレス基板上においても圧電薄膜1
が良好な微細結晶構造を有した状態で成長しやすくなっ
たことに起因すると考えられる。
This is because the formation of the piezoelectric thin film reduces Zr, so that the piezoelectric thin film 1 can be formed on a stainless steel substrate.
Is considered to be caused by the fact that it is easy to grow with a good fine crystal structure.

【0029】更に、圧電薄膜1を、厚みの薄いステンレ
ス基板6上に形成した場合、圧電薄膜1とのユニモルフ
構造圧電素子として使用することができる。ステンレス
箔については、厚みが10μm程度のものが安定に入手で
きる。
Further, when the piezoelectric thin film 1 is formed on the stainless steel substrate 6 having a small thickness, it can be used as a piezoelectric element having a unimorph structure with the piezoelectric thin film 1. As for stainless steel foils, those having a thickness of about 10 μm can be stably obtained.

【0030】一方、前述した拡散防止層7を有する圧電
薄膜としては、8μm以上の膜厚となると内部応力の影
響等で剥離等の不良が頻繁に発生した。特に圧電薄膜1
の膜厚(t1)とステンレス基板6の厚み(t2)との割合
(t2/t1)において、t2/t1が大きくなるに連れ
て基板の剛性に対して圧電薄膜の内部応力とのバランス
が崩れ、圧電薄膜が基板から剥離する割合が増加した。
On the other hand, when the thickness of the piezoelectric thin film having the diffusion preventing layer 7 is 8 μm or more, defects such as peeling frequently occur due to the influence of internal stress and the like. Especially the piezoelectric thin film 1
Of the thickness (t1) of the substrate and the thickness (t2) of the stainless steel substrate 6
At (t2 / t1), as t2 / t1 increased, the balance between the rigidity of the substrate and the internal stress of the piezoelectric thin film was lost, and the rate at which the piezoelectric thin film peeled from the substrate increased.

【0031】厚みの比t2/t1が5倍よりも小さい場
合は、基板となるステンレスも若干変形することによ
り、内部応力を緩和する効果が働くことから、素子剥離
の不良も5%程度となり、実用上問題のない歩留まりを
確保することができた。
When the thickness ratio t2 / t1 is less than 5, the stainless steel serving as the substrate is slightly deformed, so that the effect of alleviating the internal stress is exerted. A practically acceptable yield could be ensured.

【0032】以上の結果、汎用基板である鉄系の基板に
おいても、拡散防止層7を導入することにより圧電特性
を劣化させずに素子化することが可能となり、またステ
ンレス基板を用いた薄膜圧電素子において、その厚みの
比を最適化させることにより、圧電薄膜1の剥離を大幅
に減少させることができた。
As a result, the introduction of the diffusion preventing layer 7 makes it possible to make a device without deteriorating the piezoelectric characteristics even on an iron-based substrate which is a general-purpose substrate. In the element, the peeling of the piezoelectric thin film 1 could be greatly reduced by optimizing the thickness ratio.

【0033】[0033]

【発明の効果】本発明は、基板と基板上に形成した電極
材料との間に拡散防止層を形成することによって、鉄系
の汎用基板上で高い圧電特性を有する圧電薄膜を形成す
ることを実現し、実用に耐えうる薄膜圧電素子を安価に
提供することができた。
According to the present invention, it is possible to form a piezoelectric thin film having high piezoelectric characteristics on an iron-based general-purpose substrate by forming a diffusion preventing layer between a substrate and an electrode material formed on the substrate. A thin-film piezoelectric element that can be realized and practically used can be provided at low cost.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の一実施形態における薄膜圧電素子の斜
視図
FIG. 1 is a perspective view of a thin film piezoelectric element according to an embodiment of the present invention.

【図2】オージェ電子分光測定による断面元素分布を示
すグラフ
FIG. 2 is a graph showing cross-sectional element distribution by Auger electron spectroscopy.

【符号の説明】[Explanation of symbols]

1 圧電薄膜 2 振動層 3 下部電極 4 上部電極 6 ステンレス基板 7 拡散防止層 DESCRIPTION OF SYMBOLS 1 Piezoelectric thin film 2 Vibration layer 3 Lower electrode 4 Upper electrode 6 Stainless steel substrate 7 Diffusion prevention layer

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】 基板上に下部電極を形成し、該下部電極
上に鉛を含有する圧電薄膜を形成し、該圧電薄膜の上に
更に上部電極を配した薄膜圧電素子において、該基板と
して鉄を主成分とする材料を用い、かつ該下部電極と基
板との間に1層以上の拡散防止層を配することを特徴と
する薄膜圧電素子。
1. A thin-film piezoelectric element comprising: a lower electrode formed on a substrate; a piezoelectric thin film containing lead formed on the lower electrode; and an upper electrode further disposed on the piezoelectric thin film. A thin film piezoelectric element comprising: a material mainly composed of: a lower electrode; and one or more diffusion prevention layers disposed between the lower electrode and the substrate.
【請求項2】 圧電薄膜を形成する基板がステンレスス
チールであり、下部電極がPtもしくは導電性酸化物であ
り、該基板と該下部電極との間の拡散防止層が、Ti、Ti
N、TiO2、SiO2、酸化マグネシウム、アルミナ、酸化ジ
ルコニウムのうち少なくとも一つを主成分とすることを
特徴とする請求項1に記載の薄膜圧電素子。
2. A substrate for forming a piezoelectric thin film is made of stainless steel, a lower electrode is made of Pt or a conductive oxide, and a diffusion preventing layer between the substrate and the lower electrode is made of Ti, Ti.
N, TiO 2, SiO 2, magnesium oxide, alumina, a thin film piezoelectric device according to claim 1, characterized in that a main component at least one of the zirconium oxide.
【請求項3】 圧電薄膜の組成において、構成元素とし
てチタンおよびジルコニウムを含み、かつ表面部のZr/
(Zr+Ti)組成比が基板界面部のZr/(Zr+Ti)組成比よりも1
0%以上少ないことを特徴とする請求項1または2に記載
の薄膜圧電素子。
3. The composition of the piezoelectric thin film contains titanium and zirconium as constituent elements, and has a Zr /
The (Zr + Ti) composition ratio is 1 more than the Zr / (Zr + Ti) composition ratio at the substrate interface.
3. The thin-film piezoelectric element according to claim 1, wherein the amount is less than 0%.
【請求項4】 ステンレススチール基板の厚みが、圧電
薄膜の厚みの5倍よりも薄いことを特徴とする、請求項
1〜3の何れかに記載の薄膜圧電素子。
4. The thin film piezoelectric element according to claim 1, wherein the thickness of the stainless steel substrate is smaller than five times the thickness of the piezoelectric thin film.
JP2000222270A 2000-07-24 2000-07-24 Thin film piezoelectric element Pending JP2002043644A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2000222270A JP2002043644A (en) 2000-07-24 2000-07-24 Thin film piezoelectric element

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2000222270A JP2002043644A (en) 2000-07-24 2000-07-24 Thin film piezoelectric element

Publications (1)

Publication Number Publication Date
JP2002043644A true JP2002043644A (en) 2002-02-08

Family

ID=18716533

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000222270A Pending JP2002043644A (en) 2000-07-24 2000-07-24 Thin film piezoelectric element

Country Status (1)

Country Link
JP (1) JP2002043644A (en)

Cited By (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005135993A (en) * 2003-10-28 2005-05-26 National Institute Of Advanced Industrial & Technology Photosensor
JP2006054442A (en) * 2004-07-13 2006-02-23 Brother Ind Ltd Manufacturing method of piezoelectric actuator and ink jet head, piezoelectric actuator and ink jet head
EP1693907A1 (en) * 2005-02-21 2006-08-23 Brother Kogyo Kabushiki Kaisha Piezoelectric actuator and method of producing the same
JP2007098727A (en) * 2005-10-03 2007-04-19 Fujifilm Corp Manufacturing method for liquid discharging head, liquid discharging head, and image forming device
JP2007165385A (en) * 2005-12-09 2007-06-28 Nec Tokin Corp Piezoelectric film lamination structure, and its manufacturing method
JP2007173400A (en) * 2005-12-20 2007-07-05 Fujifilm Corp Method of manufacturing piezoelectric actuator, method of manufacturing liquid discharge head, piezoelectric actuator, liquid discharge head, and image forming apparatus
JP2007227408A (en) * 2005-12-13 2007-09-06 Fujifilm Corp Piezoelectric actuator, liquid ejection head, method for manufacturing the same, and image forming apparatus
JP2007229961A (en) * 2006-02-27 2007-09-13 Fujifilm Corp Method for manufacturing liquid discharge head
JP2011189586A (en) * 2010-03-12 2011-09-29 Seiko Epson Corp Liquid ejecting head and liquid ejecting apparatus
WO2012144185A1 (en) * 2011-04-21 2012-10-26 パナソニック株式会社 Dielectric element base material, method for producing same, and piezoelectric element using said dielectric element base material
JP2014177124A (en) * 2014-04-08 2014-09-25 Seiko Epson Corp Piezoelectric element and ultrasonic device
JP2015153850A (en) * 2014-02-13 2015-08-24 株式会社サイオクス Piezoelectric material thin film element, manufacturing method thereof, and electronic device with piezoelectric material thin film element
US9186898B2 (en) 2007-03-28 2015-11-17 Brother Kogyo Kabushiki Kaisha Method for producing piezoelectric actuator
JP5845424B2 (en) * 2011-02-18 2016-01-20 パナソニックIpマネジメント株式会社 Piezoelectric element

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09280947A (en) * 1996-04-11 1997-10-31 Matsushita Electric Ind Co Ltd Ferroelectric element
JPH11348285A (en) * 1998-06-10 1999-12-21 Matsushita Electric Ind Co Ltd Ink jet recorder and manufacture thereof

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09280947A (en) * 1996-04-11 1997-10-31 Matsushita Electric Ind Co Ltd Ferroelectric element
JPH11348285A (en) * 1998-06-10 1999-12-21 Matsushita Electric Ind Co Ltd Ink jet recorder and manufacture thereof

Cited By (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005135993A (en) * 2003-10-28 2005-05-26 National Institute Of Advanced Industrial & Technology Photosensor
JP2006054442A (en) * 2004-07-13 2006-02-23 Brother Ind Ltd Manufacturing method of piezoelectric actuator and ink jet head, piezoelectric actuator and ink jet head
US7644479B2 (en) 2005-02-21 2010-01-12 Brother Kogyo Kabushiki Kaisha Method of producing a piezoelectric actuator
EP1693907A1 (en) * 2005-02-21 2006-08-23 Brother Kogyo Kabushiki Kaisha Piezoelectric actuator and method of producing the same
JP2007098727A (en) * 2005-10-03 2007-04-19 Fujifilm Corp Manufacturing method for liquid discharging head, liquid discharging head, and image forming device
JP2007165385A (en) * 2005-12-09 2007-06-28 Nec Tokin Corp Piezoelectric film lamination structure, and its manufacturing method
JP2007227408A (en) * 2005-12-13 2007-09-06 Fujifilm Corp Piezoelectric actuator, liquid ejection head, method for manufacturing the same, and image forming apparatus
JP2007173400A (en) * 2005-12-20 2007-07-05 Fujifilm Corp Method of manufacturing piezoelectric actuator, method of manufacturing liquid discharge head, piezoelectric actuator, liquid discharge head, and image forming apparatus
JP2007229961A (en) * 2006-02-27 2007-09-13 Fujifilm Corp Method for manufacturing liquid discharge head
US9186898B2 (en) 2007-03-28 2015-11-17 Brother Kogyo Kabushiki Kaisha Method for producing piezoelectric actuator
JP2011189586A (en) * 2010-03-12 2011-09-29 Seiko Epson Corp Liquid ejecting head and liquid ejecting apparatus
JP5845424B2 (en) * 2011-02-18 2016-01-20 パナソニックIpマネジメント株式会社 Piezoelectric element
US9391258B2 (en) 2011-02-18 2016-07-12 Panasonic Intellectual Property Management Co., Ltd. Piezoelectric element
WO2012144185A1 (en) * 2011-04-21 2012-10-26 パナソニック株式会社 Dielectric element base material, method for producing same, and piezoelectric element using said dielectric element base material
JP5909656B2 (en) * 2011-04-21 2016-04-27 パナソニックIpマネジメント株式会社 Dielectric element base material, manufacturing method thereof, and piezoelectric element using the dielectric element base material
JP2015153850A (en) * 2014-02-13 2015-08-24 株式会社サイオクス Piezoelectric material thin film element, manufacturing method thereof, and electronic device with piezoelectric material thin film element
JP2014177124A (en) * 2014-04-08 2014-09-25 Seiko Epson Corp Piezoelectric element and ultrasonic device

Similar Documents

Publication Publication Date Title
JP3275335B2 (en) Ferroelectric capacitor in IC and method of manufacturing the same
US5191510A (en) Use of palladium as an adhesion layer and as an electrode in ferroelectric memory devices
KR101312485B1 (en) Sputtered piezoelectric material
JP2002043644A (en) Thin film piezoelectric element
US11805700B2 (en) Laminated substrate having piezoelectric film, element having piezoelectric film and method for manufacturing this laminated substrate
JP2006310744A (en) Thin film capacitor and semiconductor device
US20130200748A1 (en) PIEZOELECTRIC ACTUATOR INCLUDING Ti/TiOx ADHESIVE LAYER AND ITS MANUFACTURING METHOD
CN112928200B (en) Lead zirconate titanate piezoelectric film and preparation method and application thereof
JPH11126930A (en) Piezoelectric element and its manufacture
CN112864304A (en) Fabrication of piezoelectric devices with PMNPT layers
CN103547700A (en) Method for producing a thin film made of lead zirconate titanate
JP6992239B2 (en) Method for manufacturing PZT thin film laminate for automobiles
US6900579B2 (en) Thin film piezoelectric element
JP3705089B2 (en) Thin film piezoelectric element
JP2006295142A (en) Piezoelectric element
US8659214B2 (en) Piezoelectric actuator including double PZT piezoelectric layers with different permitivities and its manufacturing method
CN111315916B (en) Micromechanical structure and method for producing a micromechanical structure
JP6973745B2 (en) Method for manufacturing PZT thin film laminate
US8692443B2 (en) Electrical component comprising a material with a perovskite structure and optimized electrodes and fabrication process
US20170317267A1 (en) Thin film piezoelectric element and manufacturing method thereof
JP6282735B2 (en) Manufacturing method of PZT thin film laminate
JPH0670258U (en) Piezoelectric element
JP7464360B2 (en) Piezoelectric laminate, piezoelectric element, and method for manufacturing piezoelectric laminate
TWI395825B (en) Method and apparatus for forming multilayer film
JP2024034606A (en) Method of depositing pzt thin film laminate and pzt thin film laminate

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20040824

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20041020

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20050315

RD01 Notification of change of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7421

Effective date: 20050630

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20050719