JP2002042850A - Operation method for fuel cell generator - Google Patents

Operation method for fuel cell generator

Info

Publication number
JP2002042850A
JP2002042850A JP2000229809A JP2000229809A JP2002042850A JP 2002042850 A JP2002042850 A JP 2002042850A JP 2000229809 A JP2000229809 A JP 2000229809A JP 2000229809 A JP2000229809 A JP 2000229809A JP 2002042850 A JP2002042850 A JP 2002042850A
Authority
JP
Japan
Prior art keywords
fuel cell
power generation
hydrogen generator
fuel
hydrogen
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2000229809A
Other languages
Japanese (ja)
Inventor
Nobunori Hase
伸啓 長谷
Shinji Miyauchi
伸二 宮内
Tetsuya Ueda
哲也 上田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP2000229809A priority Critical patent/JP2002042850A/en
Publication of JP2002042850A publication Critical patent/JP2002042850A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Landscapes

  • Fuel Cell (AREA)

Abstract

PROBLEM TO BE SOLVED: To recover the power generation efficiency reduced by CO slightly contained in fuel gas in time course by providing a stopping method in abnormality for a fuel cell device eliminated from lowering the power generating efficiency after recovery by damage of CO. SOLUTION: When temperature abnormality of a hydrogen generator 2 is detected by a reforming part temperature measuring means 10, a CO degeneration part temperature measuring means 11, and a CO oxidation removal part temperature measuring means 12, when a raw material inputted in the hydrogen generator 2 is detected to become excessive by a raw material flow meter 5, or when the water volume inputted in the hydrogen generator 2 is detected to be reduced by the degeneration water flow meter 16, the power generating operation is made to stop and the air is inputted in a fuel electrode side of the fuel cell stack for a prescribed time.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は水素生成器と固体高
分子電解質型燃料電池を具備する発電装置の水素生成器
異常時の発電運転停止方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for stopping a power generation operation of a power generator including a hydrogen generator and a solid polymer electrolyte fuel cell when the hydrogen generator is abnormal.

【0002】[0002]

【従来の技術】通常、燃料電池には、都市ガスまたはメ
タノールなどの炭化水素系原料を改質して生成される水
素ガスを燃料ガスとして用いる。しかし、特に高分子電
解質型燃料電池(以下「PEFC」と略す。)の場合、
燃料極には通常白金触媒が用いられるため、燃料ガス中
に含まれる微量の一酸化炭素によって、白金触媒が被毒
され触媒活性が低下し、電池性能の大幅な劣化が生じて
しまう。そこで、燃料ガス中のCO濃度の低減方法とし
ては、いわゆるCO変成法が提案されている。これはメ
タノールまたは都市ガスを水蒸気改質し、そこで得た改
質ガスから、CO変成触媒を用いてCOの除去を行うも
のである。そして、CO変成後のガスにあらためて酸素
(空気)を導入し、200〜300℃で酸化触媒を用い
てさらにCOを酸化除去する。このような改質、CO変
性およびCO酸化除去の手順を経て、燃料電池の発電に
際して問題のないレベルにまで低減された微量のCOと
CO2を含んだ水素を生成する水素生成器が、固体高分
子型燃料電池発電装置に多く用いられている。
2. Description of the Related Art Normally, fuel cells use city gas or hydrogen gas generated by reforming a hydrocarbon-based material such as methanol as a fuel gas. However, particularly in the case of a polymer electrolyte fuel cell (hereinafter abbreviated as “PEFC”),
Since a platinum catalyst is usually used for the fuel electrode, the platinum catalyst is poisoned by a trace amount of carbon monoxide contained in the fuel gas, the catalytic activity is reduced, and the cell performance is greatly deteriorated. Therefore, as a method of reducing the CO concentration in the fuel gas, a so-called CO shift method has been proposed. In this method, methanol or city gas is steam reformed, and CO is removed from the reformed gas obtained using a CO shift catalyst. Then, oxygen (air) is introduced again into the gas after CO conversion, and CO is further oxidized and removed at 200 to 300 ° C. using an oxidation catalyst. Such modification, following the procedure of CO-modified and CO oxidation removal, hydrogen generator for generating hydrogen containing CO and CO 2 in the reduced trace to a level no problem when the power generation of the fuel cell, solid It is widely used in polymer fuel cell power generators.

【0003】上記CO除去が有効に機能するためには、
水蒸気改質反応、CO変性反応およびCO酸化反応の反
応温度、ならびに投入される水蒸気の量を適正にコント
ロールする必要がある。これらのパラメータが適正範囲
から逸脱したとき、充分に除去されなかったCOによっ
て燃料電池スタック内の燃料極の触媒が被毒し、電池性
能に大きな低下を引き起こす。また、水素生成器に投入
される炭化水素系原料の量が何らかの原因で増加した場
合にも、COが発生して、同様に電池性能の低下を引き
起こす。これに対し、通常燃料電池発電装置の運転に際
しては、偶発的な外乱の影響または部品の故障によって
水素生成器の温度、投入水量および投入原料量が正常範
囲を逸脱した場合には、発電装置が異常状態にあると判
断し、発電装置の発電運転を停止する処置が取られるこ
とが多い。
In order for the above-mentioned CO removal to function effectively,
It is necessary to appropriately control the reaction temperature of the steam reforming reaction, the CO reforming reaction and the CO oxidation reaction, and the amount of steam supplied. When these parameters deviate from the appropriate ranges, the catalyst at the anode in the fuel cell stack is poisoned by the CO that has not been sufficiently removed, causing a great decrease in the cell performance. Also, when the amount of the hydrocarbon-based raw material supplied to the hydrogen generator increases for some reason, CO is generated, and similarly, the battery performance is reduced. On the other hand, during operation of the fuel cell power generator, if the temperature of the hydrogen generator, the amount of input water and the amount of input raw material deviate from the normal range due to accidental disturbance or component failure, the power generator is turned off. In many cases, it is determined that the power generation device is in an abnormal state, and measures are taken to stop the power generation operation of the power generation device.

【0004】[0004]

【発明が解決しようとする課題】また、CO被毒により
一旦電池性能が低下してしまうと、電池性能はそのまま
では復活しない。このため、水素生成器の温度、投入水
量および投入原料量などが適性範囲から逸脱したことを
検知して発電運転を停止した場合、燃料電池の燃料側触
媒はCO被毒している可能性が高い。そして、この場合
は、発電停止後にCO被毒した状態のまま留まっている
ため、必要な処置を行った後に再び発電装置を起動する
ときに、充分な性能を発揮することができないこととい
う問題がある。このような問題を解決すべく、例えば特
開平11−40178号公報および特開平11−345
624号公報においては、燃料電池発電装置の発電運転
を行いながらCO被毒の影響を除去する方法などが提案
されている。しかし、これらの方法においては、数十か
ら数百ppmオーダーのCO濃度を想定しているため、
水素生成器の異常動作によって瞬間的に数%レベルの多
量のCOが発生して燃料電池の燃料側触媒が被毒した場
合には適当ではない。
Further, once the battery performance is reduced due to CO poisoning, the battery performance does not recover as it is. Therefore, if it is detected that the temperature of the hydrogen generator, the input water amount, the input raw material amount, and the like deviate from the appropriate ranges, and the power generation operation is stopped, the fuel-side catalyst of the fuel cell may be poisoned by CO. high. In this case, since the CO poisoning state remains after the power generation is stopped, there is a problem that sufficient performance cannot be exhibited when the power generation device is restarted after performing necessary measures. is there. In order to solve such a problem, for example, JP-A-11-40178 and JP-A-11-345
No. 624 proposes a method of removing the influence of CO poisoning while performing a power generation operation of a fuel cell power generator. However, in these methods, CO concentrations in the order of tens to hundreds of ppm are assumed,
It is not suitable when a large amount of CO of several percent level is instantaneously generated due to abnormal operation of the hydrogen generator and the fuel-side catalyst of the fuel cell is poisoned.

【0005】また、現状では、低濃度のCOを検知する
有効な方法が存在しないため、燃料電池の燃料極側触媒
がCO被毒を起こしていることを把握する有効な手段が
なく、触媒上のCO酸化による回復処置を行えないこと
いう問題もある。これに対し、燃料電池のセル電圧の低
下をもってCO被毒を判断する方法も提案されている
が、セル電圧が、セル温度の変化、燃料ガス流量、酸化
剤ガス流量および結露水による燃料ガスまたは酸化剤ガ
スの部分的供給不足などの多くの要素に影響されること
から、その判定は困難である。さらに、現状では、燃料
ガス中にわずかに含まれるCOによって経時的に燃料電
池スタックの同電流密度における電圧が低下し、徐々に
発電効率が低下していくという問題があった。そこで、
本発明は、CO被毒によって復旧後の発電効率が低下す
ることのない、異常時の燃料電池発電装置の運転方法を
実現することを目的とする。また、本発明は、燃料ガス
中にわずかに含まれるCOによって経時的に低下する燃
料電池発電装置の発電効率を回復させることを目的とす
る。
At present, there is no effective method for detecting low-concentration CO. Therefore, there is no effective means for grasping that the catalyst on the fuel electrode side of the fuel cell is poisoning CO. There is also a problem that recovery treatment by CO oxidation cannot be performed. On the other hand, a method of judging CO poisoning by lowering the cell voltage of a fuel cell has also been proposed, but the cell voltage is determined by changing the cell temperature, the fuel gas flow rate, the oxidizing gas flow rate, and the fuel gas or dew condensation water. The determination is difficult because it is affected by many factors such as a partial supply shortage of the oxidizing gas. Furthermore, at present, there is a problem that the voltage at the same current density of the fuel cell stack decreases with time due to CO slightly contained in the fuel gas, and the power generation efficiency gradually decreases. Therefore,
An object of the present invention is to realize a method of operating a fuel cell power generation device at the time of an abnormality in which power generation efficiency after recovery is not reduced due to CO poisoning. Another object of the present invention is to restore the power generation efficiency of the fuel cell power generation device, which decreases with time due to CO slightly contained in the fuel gas.

【0006】[0006]

【課題を解決するための手段】上記問題点を解決するた
め、本発明は、炭化水素系原料および水から水素を主成
分とする燃料ガスを生成する水素生成器と、前記燃料ガ
スと酸化剤ガスを用いて発電する固体高分子電解質型燃
料電池スタックとを具備する燃料電池発電装置におい
て、(a)前記燃料電池発電装置の発電運転中に、前記
水素生成器の温度、前記水素生成器に投入される水の量
および前記水素生成器に投入される炭化水素系原料より
なる群から選択される少なくとも1つが所定の範囲を逸
脱したときに、前記発電を停止し、(b)前記固体高分
子電解質型燃料電池スタックの燃料ガス用流路内を不活
性ガスでパージし、ついで(c)前記燃料ガス用流路内
に空気または酸素を一定時間流す燃料電池発電装置の運
転方法を提供する。
In order to solve the above problems, the present invention provides a hydrogen generator for producing a fuel gas containing hydrogen as a main component from a hydrocarbon-based raw material and water; A solid polymer electrolyte fuel cell stack that generates electric power by using a gas, wherein (a) the temperature of the hydrogen generator and the hydrogen generator When at least one selected from the group consisting of the amount of water to be charged and the hydrocarbon-based raw material to be charged to the hydrogen generator deviates from a predetermined range, the power generation is stopped, and (b) the solid height is reduced. Provided is a method of operating a fuel cell power generator in which a fuel gas flow channel of a molecular electrolyte fuel cell stack is purged with an inert gas, and (c) air or oxygen flows through the fuel gas flow channel for a predetermined time. .

【0007】また、本発明は、炭化水素系原料および水
から水素を主成分とする燃料ガスを生成する水素生成器
と、前記燃料ガスと酸化剤ガスを用いて発電する固体高
分子電解質型燃料電池スタックとを具備する燃料電池発
電装置において、(a’)前記燃料電池発電装置の総発
電運転時間または発電回数が所定値を超えたときに、前
記発電を停止し、(b)前記固体高分子電解質型燃料電
池スタックの燃料ガス用流路内を不活性ガスでパージ
し、ついで(c)前記燃料ガス用流路内に空気または酸
素を一定時間流す燃料電池発電装置の運転方法をも提供
する。前記工程(c)においては、空気または酸素を3
分間以上、さらには5分間以上流すのが好ましい。
Further, the present invention provides a hydrogen generator for generating a fuel gas containing hydrogen as a main component from a hydrocarbon-based raw material and water, and a solid polymer electrolyte type fuel for generating electricity using the fuel gas and an oxidizing gas. (A ′) stopping the power generation when the total power generation operation time or the number of times of power generation of the fuel cell power generation device exceeds a predetermined value, and (b) the solid height. Also provided is a method of operating a fuel cell power generator in which a fuel gas flow channel of a molecular electrolyte fuel cell stack is purged with an inert gas, and (c) air or oxygen flows through the fuel gas flow channel for a predetermined time. I do. In the step (c), air or oxygen is
The flow is preferably performed for at least 5 minutes, more preferably for at least 5 minutes.

【0008】[0008]

【発明の実施の形態】以下に、図面を参照しながら本発
明について説明するが、本発明はこれらのみに限定され
るものではない。 《実施の形態1》図1は、本発明の第1の実施の形態に
係る高分子電解質型燃料電池発電装置の構成図を示す。
図1に示す高分子電解質型燃料電池発電装置の構成およ
び動作について以下に述べる。本実施の形態に係る高分
子電解質型燃料電池発電装置は、燃料ガスと酸化剤ガス
を用いて発電を行う高分子電解質型の燃料電池スタック
1と、天然ガスなどの原料を水蒸気改質し、水素に富ん
だガスを生成して燃料電池スタック1に供給する水素生
成器2と、酸化剤ガスである空気を燃料電池スタック1
に供給する酸化剤ガス供給装置としての遠心式のブロア
3を有している。原料供給手段4によって水素生成器2
に投入される原料量は原料流量計5によって計測され
る。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS Hereinafter, the present invention will be described with reference to the drawings, but the present invention is not limited thereto. << Embodiment 1 >> FIG. 1 is a configuration diagram of a polymer electrolyte fuel cell power generator according to Embodiment 1 of the present invention.
The configuration and operation of the polymer electrolyte fuel cell power generator shown in FIG. 1 will be described below. The polymer electrolyte fuel cell power generation device according to the present embodiment is a polymer electrolyte fuel cell stack 1 that generates power using a fuel gas and an oxidizing gas, and a steam reforming of raw materials such as natural gas. A hydrogen generator 2 for generating a hydrogen-rich gas and supplying it to the fuel cell stack 1;
A blower 3 of a centrifugal type as an oxidizing gas supply device for supplying the oxidizing gas. The hydrogen generator 2 by the raw material supply means 4
The amount of the raw material to be charged into the container is measured by the raw material flow meter 5.

【0009】水素生成器2は、水蒸気改質部6、CO変
性部7およびCO酸化除去部8から構成されている。水
蒸気改質部6は、改質部加熱手段9を備えている。さら
に各部の反応室内の温度を測定する手段として、それぞ
れ改質部温度測定手段10、CO変性部温度測定手段1
1およびCO酸化除去部温度測定手段12を備えてい
る。水蒸気改質部6およびCO変性部7には、それぞれ
改質水流量計15および変性水流量計16を経て、改質
部水供給ポンプ13およびCO変性部水供給ポンプ14
によって必要な量の水を供給する。また、CO酸化除去
部8にはCO酸化除去部空気ポンプ17によって空気が
必要な量だけ導入される。水蒸気改質部6、CO変性部
7およびCO酸化除去部8には、それぞれ冷却手段とし
て、改質部冷却ファン18、CO変性部冷却ファン19
およびCO酸化除去部冷却ファン20を備えている。
The hydrogen generator 2 comprises a steam reforming section 6, a CO modifying section 7, and a CO oxidation removing section 8. The steam reforming section 6 includes a reforming section heating means 9. Further, as means for measuring the temperature in the reaction chamber of each unit, a reforming unit temperature measuring unit 10 and a CO denaturing unit temperature measuring unit 1 are respectively provided.
1 and a CO oxidation removing section temperature measuring means 12. The steam reforming unit 6 and the CO denaturing unit 7 pass through a reforming water flow meter 15 and a denaturing water flow meter 16 respectively, and then a reforming unit water supply pump 13 and a CO denaturing unit water supply pump 14.
To supply the required amount of water. In addition, a necessary amount of air is introduced into the CO oxidation removing unit 8 by the CO oxidation removing unit air pump 17. The steam reforming unit 6, the CO denaturing unit 7, and the CO oxidation removing unit 8 each include a reforming unit cooling fan 18, a CO denaturing unit cooling fan 19 as cooling means.
And a cooling fan 20 for removing the CO oxidation.

【0010】燃料電池スタック1を構成する単電池の正
極には酸化剤ガスとしての空気が供給され、負極には水
素生成器2によって生成される水素に富んだ燃料ガスが
供給され、空気中の酸素と水素が化学的に結合すること
により発電を行う。水素生成器2では水素に富んだガス
が以下のとおり生成される。まず、水蒸気改質部6によ
って原料ガスから水素、CO2およびCOが作られる。
次にこれらのガスはCO変性部7に送られ、さらにCO
と水により水素とCO2が作られる。次にCO酸化除去
部8に送られ、さらに残ったCOが除去される。この方
法により、CO濃度を、固体高分子型燃料電池発電装置
の運転に際して問題のない濃度にまで低減することがで
きる。この際、水蒸気改質部6とCO変性部7とCO酸
化除去部8の反応室温度は適正な範囲にある必要がある
ので、改質部温度測定手段10、CO変性部温度測定手
段11、CO酸化除去部温度測定手段12および原料流
量計5の出力信号をもとに、改質部加熱手段9、改質部
冷却ファン18、CO変性部冷却ファン19およびCO
酸化除去部冷却ファン20の運転能力を制御すること
で、反応室温度を適正範囲内に保つことができる。ここ
で、もし適正範囲外に逸脱した場合、燃料電池発電装置
は発電緊急停止動作に移る。
Air serving as an oxidizing gas is supplied to the positive electrode of the unit cell constituting the fuel cell stack 1, and a fuel gas rich in hydrogen generated by the hydrogen generator 2 is supplied to the negative electrode. Electric power is generated by the chemical combination of oxygen and hydrogen. In the hydrogen generator 2, a gas rich in hydrogen is generated as follows. First, hydrogen, CO 2 and CO are produced from the raw material gas by the steam reforming section 6.
Next, these gases are sent to the CO modification unit 7 and further CO 2
And water produce hydrogen and CO 2 . Next, the CO is sent to the CO oxidation removing section 8, and the remaining CO is further removed. According to this method, the CO concentration can be reduced to a concentration that does not cause any problem in operating the polymer electrolyte fuel cell power generator. At this time, since the reaction chamber temperatures of the steam reforming section 6, the CO denaturing section 7, and the CO oxidation removing section 8 need to be within appropriate ranges, the reforming section temperature measuring means 10, the CO denaturing section temperature measuring means 11, On the basis of the output signals of the CO oxidation removal section temperature measuring means 12 and the raw material flow meter 5, the reforming section heating means 9, the reforming section cooling fan 18, the CO denaturing section cooling fan 19, and the CO
By controlling the operation capacity of the oxidation removing section cooling fan 20, the temperature of the reaction chamber can be maintained within an appropriate range. Here, if it deviates from the appropriate range, the fuel cell power generator shifts to a power generation emergency stop operation.

【0011】ここで、前記水素生成器の温度、前記水素
生成器に投入される水の量および前記水素生成器に投入
される炭化水素系燃料の量についての「所定の範囲」
は、用いる水素生成器の構成、炭化水素系原料および触
媒の種類、ならびに温度測定の位置などによって異な
る。しかし、当業者であれば、用いる水素生成器の構
成、炭化水素系原料および触媒の種類、ならびに温度測
定の位置などがわかれば、水素生成器の温度、水素生成
器に投入される水の量および前記水素生成器に投入され
る炭化水素系燃料の量を制御することにより、水素生成
器からCOが発生することを抑制することが可能であ
る。したがって、本発明における上記「所定の範囲」と
は、燃料電池の劣化を招くCOが水素生成器から発生し
ない、水素生成器の温度、水素生成器に投入される水の
量および水素生成器に投入される炭化水素系燃料の量の
範囲をいう。すなわち、水素生成器の温度、水素生成器
に投入される水の量および水素生成器に投入される炭化
水素系燃料の量が所定の範囲内であれば、COの生成を
抑制できるのである。
Here, a "predetermined range" for the temperature of the hydrogen generator, the amount of water supplied to the hydrogen generator, and the amount of hydrocarbon-based fuel supplied to the hydrogen generator.
Varies depending on the configuration of the hydrogen generator to be used, the type of the hydrocarbon-based raw material and the catalyst, the position of temperature measurement, and the like. However, if a person skilled in the art knows the configuration of the hydrogen generator to be used, the type of the hydrocarbon-based raw material and the catalyst, and the position of the temperature measurement, the temperature of the hydrogen generator, the amount of water supplied to the hydrogen generator By controlling the amount of the hydrocarbon-based fuel supplied to the hydrogen generator, it is possible to suppress the generation of CO from the hydrogen generator. Therefore, the “predetermined range” in the present invention refers to the temperature of the hydrogen generator, the amount of water supplied to the hydrogen generator, and the amount of water supplied to the hydrogen generator when CO that causes deterioration of the fuel cell is not generated from the hydrogen generator. It refers to the range of the amount of hydrocarbon-based fuel to be charged. That is, if the temperature of the hydrogen generator, the amount of water supplied to the hydrogen generator, and the amount of the hydrocarbon-based fuel supplied to the hydrogen generator are within predetermined ranges, the generation of CO can be suppressed.

【0012】炭化水素系原料および水の量について以下
に説明する。通常、原料に都市ガス(おもにメタンを含
む)を用いる場合、S/C(水と原料中の炭素の比)が
原理的に2以上になるように、水の量を制御しないとC
Oが発生してしまう。また、原料ガス量が多くなった場
合も、S/Cが2を下回ってCOが発生してしまう。さ
らに、原料ガス量が多くなり、それに追従するように水
量を増加した場合であっても、触媒の能力を超え、投入
されるガス量に対して反応が追いつかず、やはりCO発
生の原因となってしまう。ここでは、S/C=2を基準
としたが、実際にはより大きな値(例えば、3)でなけ
ればCO発生は避けられないと思われる。ただし、上述
のように、この値は装置に依存すると考えられる。な
お、原料にメタノールを用いた場合は、原理的にS/C
=1が理論値となる。
The amounts of the hydrocarbon-based raw material and water will be described below. Normally, when city gas (mainly containing methane) is used as a raw material, unless the amount of water is controlled so that the S / C (ratio of water and carbon in the raw material) becomes 2 or more in principle, C
O is generated. Also, when the amount of the source gas increases, the S / C falls below 2 and CO is generated. Furthermore, even when the amount of raw material gas is increased and the amount of water is increased so as to follow it, the reaction exceeds the capacity of the catalyst and the reaction cannot keep up with the amount of input gas, which also causes CO generation. Would. Here, S / C = 2 is used as a reference, but it is considered that CO generation cannot be avoided unless a larger value (for example, 3) is actually used. However, as described above, this value is considered to be device-dependent. When methanol is used as a raw material, in principle, S / C
= 1 is the theoretical value.

【0013】つぎに温度について説明する。変性部にお
いて用いられる触媒の耐熱温度は、通常500℃程度で
あるため、これを超えると触媒がダメージを受け、同時
にCOが発生してしまう。また、温度が200℃程度を
下回ると反応が進行しなくなり、COが発生しまう。浄
化部においては、250℃程度以上で反応平衡がCO発
生側にシフトし、COが発生してしまい、100℃程度
以下では、反応が起こらないためCOが発生してしま
う。また、水素生成部の温度は、触媒の種類や測定部位
によってかなり異なってしまうため、測定部分などの装
置の構成の違いに応じて、その所定の範囲を適宜決定す
ればよい。
Next, the temperature will be described. Since the heat resistance temperature of the catalyst used in the denaturing section is usually about 500 ° C., if it exceeds this, the catalyst will be damaged and CO will be generated at the same time. When the temperature is lower than about 200 ° C., the reaction does not proceed, and CO is generated. In the purification section, the reaction equilibrium shifts to the CO generation side at about 250 ° C. or more, and CO is generated. At about 100 ° C. or less, the reaction does not take place, so CO is generated. Further, since the temperature of the hydrogen generation unit varies considerably depending on the type of catalyst and the measurement site, the predetermined range may be appropriately determined according to the difference in the configuration of the apparatus such as the measurement unit.

【0014】発電緊急停止動作は発電の停止の後、燃料
電池スタックの燃料ガス用流路には水素が残っている
が、窒素パージ手段(図示せず。)によって窒素ガスで
水素をパージした後、CO酸化除去部空気ポンプ17か
ら取り入れられた空気を所定時間流して完了する。ここ
で、改質部水供給ポンプ13もしくはCO変性部水供給
ポンプ14のいずれか、または両方に異常が発生した場
合を考える。この場合、水蒸気改質部6もしくはCO変
性部7またはその両方に充分な水蒸気を供給できず、多
量のCOが発生してしまう。このときには、同時に水蒸
気改質部6、CO変性部7およびCO酸化除去部8のい
ずれか1種または2種以上の温度が上昇し、それぞれ改
質部温度測定手段10、CO変性部温度測定手段11お
よびCO酸化除去部温度測定手段12によって温度の上
昇を検知し、上記発電緊急停止動作を開始する。かくし
て発生したCOによって生ずる燃料電池の燃料極触媒被
毒は、上記発電緊急停止動作における空気の導入によっ
て回復することができる。また、改質水流量計15およ
び変性水流量計16はこの発明の必須の要件でないが、
これらが備わっている場合には、改質部水供給ポンプ1
3もしくはCO変性部水供給ポンプ14のいずれか、ま
たは両方に発生する異常を検知して上記発電緊急停止動
作を開始することができる。
In the power generation emergency stop operation, after the power generation is stopped, hydrogen remains in the fuel gas flow path of the fuel cell stack, but after hydrogen is purged with nitrogen gas by nitrogen purging means (not shown). The air taken in from the CO oxidation removing unit air pump 17 is flowed for a predetermined time to complete the process. Here, a case where an abnormality occurs in one or both of the reforming unit water supply pump 13 and the CO denaturation unit water supply pump 14 will be considered. In this case, sufficient steam cannot be supplied to the steam reforming section 6 and / or the CO reforming section 7, and a large amount of CO is generated. At this time, the temperature of at least one of the steam reforming unit 6, the CO denaturing unit 7, and the CO oxidation removing unit 8 simultaneously rises, and the reforming unit temperature measuring unit 10, the CO denaturing unit temperature measuring unit, respectively. The temperature rise is detected by the temperature measurement means 11 and the CO oxidation removal unit temperature measurement means 12, and the power generation emergency stop operation is started. The fuel electrode catalyst poisoning of the fuel cell caused by the CO thus generated can be recovered by introducing air in the power generation emergency stop operation. Also, the reformed water flow meter 15 and the modified water flow meter 16 are not essential requirements of the present invention,
If these are provided, the reforming section water supply pump 1
Abnormality occurring in one or both of the water supply pump 14 and the CO-modified unit water supply pump 14 can be detected to start the power generation emergency stop operation.

【0015】次に、改質部加熱手段9に異常が発生し、
水蒸気改質部6とCO変性部7とCO酸化除去部8のい
ずれか、あるいは複数の反応室温度が低下した場合を考
える。 この場合、反応の平衡がCO発生側に傾き、多
量のCOが発生してしまう。そして、改質部温度測定手
段10、CO変性部温度測定手段11およびCO酸化除
去部温度測定手段12によって温度の低下を検知する。
そこで、これらの温度がある下限値を下回ったとき、上
記発電緊急停止動作を開始する。かくして、発生したC
Oによって発生する燃料電池の燃料極触媒被毒は、上記
発電緊急停止動作における空気の導入によって回復す
る。
Next, when an abnormality occurs in the reforming section heating means 9,
Consider a case in which the temperature of one of the steam reforming section 6, the CO modifying section 7, and the CO oxidation removing section 8 or a plurality of reaction chambers is lowered. In this case, the equilibrium of the reaction is inclined toward the CO generation side, and a large amount of CO is generated. Then, a temperature decrease is detected by the reforming unit temperature measuring unit 10, the CO denaturing unit temperature measuring unit 11, and the CO oxidation removing unit temperature measuring unit 12.
Therefore, when these temperatures fall below a certain lower limit, the above-mentioned power generation emergency stop operation is started. Thus, the generated C
The fuel-electrode catalyst poisoning of the fuel cell caused by O is recovered by the introduction of air in the power generation emergency stop operation.

【0016】次に、原料供給手段4に異常が発生した場
合を考える。水素生成器2で処理できる限界を超えた原
料が投入された場合、CO除去が充分に行えず、多量の
COが発生してしまう。この場合には、原料流量計5に
より原料の過大な投入を検知し、上記発電緊急停止動作
を開始する。かくして、発生したCOによって発生する
燃料電池の燃料極触媒被毒は、上記発電緊急停止動作に
おける空気の導入によって回復する。
Next, a case where an abnormality occurs in the raw material supply means 4 will be considered. When a raw material exceeding the limit that can be processed by the hydrogen generator 2 is supplied, CO cannot be sufficiently removed, and a large amount of CO is generated. In this case, the excessive flow of the raw material is detected by the raw material flow meter 5, and the power generation emergency stop operation is started. Thus, the poisoning of the fuel electrode catalyst of the fuel cell caused by the generated CO is recovered by the introduction of air in the power generation emergency stop operation.

【0017】次に、改質部冷却ファン18、CO変性部
冷却ファン19およびCO酸化除去部冷却ファン20の
いずれか、またはその複数に異常が発生した場合につい
て考える。この場合、水蒸気改質部6、CO変性部7お
よびCO酸化除去部8のいずれか、または複数の反応室
温度は上昇し、改質部温度測定手段10、CO変性部温
度測定手段11およびCO酸化除去部温度測定手段12
によって温度の上昇を検知し、上記発電緊急停止動作を
開始する。投入されている水量が適正以上であれば多量
のCO発生は起こらないが、装置の破損を防ぐ観点か
ら、発電は停止する必要がある。このときには空気パー
ジによる燃料電池の燃料極のCO酸化除去動作は必要で
はないが、この動作を行うことにさしたる害はない。
Next, a case where an abnormality occurs in one or more of the reforming unit cooling fan 18, the CO denaturing unit cooling fan 19, and the CO oxidation removing unit cooling fan 20 will be considered. In this case, the temperature of one or more of the steam reforming unit 6, the CO denaturing unit 7, and the CO oxidation removing unit 8 or a plurality of reaction chambers rises, and the reforming unit temperature measuring unit 10, the CO denaturing unit temperature measuring unit 11, and the CO Oxidation removal section temperature measuring means 12
To detect the rise in temperature, and starts the power generation emergency stop operation. If the amount of supplied water is more than an appropriate amount, a large amount of CO does not occur, but from the viewpoint of preventing damage to the device, it is necessary to stop power generation. At this time, the operation of removing CO oxidation from the fuel electrode of the fuel cell by air purging is not necessary, but there is no harm to performing this operation.

【0018】なお、ここでは発電緊急停止動作におい
て、空気供給方法としてCO酸化除去部空気ポンプ17
を使用するとして説明したが、ブロア3を用いてバイパ
ス配管21を通して空気を供給しても良い。またその他
の手段を用いても本発明の効果は同様に得られる(図2
参照)。また、ここでは水蒸気改質部6、CO変性部7
およびCO酸化除去部8のそれぞれに対して改質部温度
測定手段10、CO変性部温度測定手段11およびCO
酸化除去部温度測定手段12を用いて反応室温度の計測
を行う構成について説明したが、これら温度測定手段の
うちの1つもしくは複数を省略し、他の部位の温度から
該当部位の温度を推測する方法を用いても、同様の効果
を得ることができる。さらに、ここでは、水蒸気改質部
6、CO変性部7およびCO酸化除去部8の冷却手段と
して、改質部冷却ファン18、CO変性部冷却ファン1
9およびCO酸化除去部冷却ファン20を用いる構成に
ついて説明したが、その他の冷却手段、たとえば水など
の冷媒を循環させるなどの方法を用いても、本発明の効
果は同様に得られる。また、ここでは空気の供給手段と
してブロアを用いた構成により説明したが、同様の働き
の他の手段を用いても、同様に本発明の効果は得られ
る。
In this case, in the power generation emergency stop operation, the air pump 17 is used as an air supply method.
However, air may be supplied through the bypass pipe 21 using the blower 3. The effect of the present invention can be similarly obtained by using other means (FIG. 2).
reference). Also, here, the steam reforming section 6, the CO reforming section 7
The reforming section temperature measuring means 10, the CO denaturing section temperature measuring means 11 and the CO
The configuration in which the temperature of the reaction chamber is measured by using the oxidation removal unit temperature measuring means 12 has been described. However, one or more of these temperature measuring means is omitted, and the temperature of the corresponding part is estimated from the temperature of the other part. The same effect can be obtained by using the method described above. Further, here, as cooling means for the steam reforming unit 6, the CO denaturing unit 7, and the CO oxidation removing unit 8, the reforming unit cooling fan 18, the CO denaturing unit cooling fan 1
Although the configuration using the cooling fan 9 and the CO oxidation removing unit cooling fan 20 has been described, the effects of the present invention can be similarly obtained by using other cooling means, for example, a method of circulating a coolant such as water. In addition, here, the configuration using the blower as the air supply means has been described, but the effects of the present invention can be similarly obtained by using other means having the same function.

【0019】《実施の形態2》本実施の形態における固
体高分子電解質型燃料電池発電装置は、累積発電運転時
間測定手段(図示せず。)が加わっていること以外は、
上述した実施の形態1における固体高分子電解質型燃料
電池発電装置と同様である。したがって、本実施の形態
において、第1の実施の形態と同様のものについては同
一符号を付与し、説明を省略する。本実施の形態におけ
る固体高分子電解質型燃料電池発電装置は、累積発電運
転時間測定手段を具備し、これによって発電運転時間が
測定される。この累積発電運転時間が所定の値を超えた
場合、上記実施の形態1の場合とは異なって、高分子電
解質型燃料電池発電装置の発電運転が停止されるまでそ
の運転を継続し、発電運転停止後に燃料電池スタックの
燃料ガス用流路には窒素パージ手段(図示せず。)によ
って窒素ガスで水素をパージした後に、CO酸化除去部
空気ポンプ17から取り入れられた空気を所定時間流
す。また、同時に累積発電運転時間測定手段の保持して
いる累積発電運転時間は0に戻される。この動作によ
り、長時間にわたる微量のCOによって発生する燃料電
池の燃料極触媒被毒は、上記発電緊急停止動作における
空気の導入によって回復し、発電効率が回復する。
<< Embodiment 2 >> The solid polymer electrolyte fuel cell power generator according to the present embodiment is different from that of the first embodiment in that a cumulative power generation operation time measuring means (not shown) is added.
This is the same as the solid polymer electrolyte fuel cell power generator according to Embodiment 1 described above. Therefore, in the present embodiment, the same components as those in the first embodiment are denoted by the same reference numerals, and description thereof will be omitted. The solid polymer electrolyte fuel cell power generation device according to the present embodiment includes a cumulative power generation operation time measuring unit, which measures the power generation operation time. When the cumulative power generation operation time exceeds a predetermined value, unlike the first embodiment, the operation is continued until the power generation operation of the polymer electrolyte fuel cell power generation device is stopped, and the power generation operation is performed. After the shutdown, the nitrogen gas is purged with nitrogen gas by a nitrogen purge unit (not shown) into the fuel gas flow channel of the fuel cell stack, and then the air taken in from the CO oxidation removing unit air pump 17 flows for a predetermined time. At the same time, the accumulated power generation operation time held by the accumulated power generation operation time measuring means is returned to zero. By this operation, the fuel electrode catalyst poisoning of the fuel cell, which is generated by a minute amount of CO for a long time, is recovered by the introduction of air in the power generation emergency stop operation, and the power generation efficiency is recovered.

【0020】[0020]

【発明の効果】以上のように、本発明によれば、水素生
成器の異常によるCO被毒によって復旧後の発電効率が
低下することのない、異常時の燃料電池装置の停止方法
を実現できる。また燃料ガス中にわずかに含まれるCO
によって経時的に低下する発電効率を回復させることが
できる。
As described above, according to the present invention, it is possible to realize a method of stopping the fuel cell device in the event of an abnormality without reducing the power generation efficiency after restoration due to CO poisoning due to an abnormality in the hydrogen generator. . Also, the CO contained in the fuel gas slightly
As a result, the power generation efficiency that decreases over time can be recovered.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の実施の形態に係る高分子電解質型燃料
電池発電装置の構成図である。
FIG. 1 is a configuration diagram of a polymer electrolyte fuel cell power generator according to an embodiment of the present invention.

【図2】本発明の別の実施の形態に係る高分子電解質型
燃料電池発電装置の構成図である。
FIG. 2 is a configuration diagram of a polymer electrolyte fuel cell power generator according to another embodiment of the present invention.

【符号の説明】[Explanation of symbols]

1 燃料電池スタック 2 水素生成器 3 ブロア 4 原料供給手段 5 原料流量計 6 水蒸気改質部 7 CO変性部 8 CO酸化除去部 9 改質部加熱手段 10 改質部温度測定手段 11 CO変性部温度測定手段 12 CO酸化除去部温度測定手段 13 改質部水供給ポンプ 14 CO変性部水供給ポンプ 15 改質水流量計 16 変性水流量計 17 CO酸化除去部空気ポンプ 18 改質部冷却ファン 19 CO変性部冷却ファン 20 CO酸化除去部冷却ファン 21 バイパス配管 REFERENCE SIGNS LIST 1 fuel cell stack 2 hydrogen generator 3 blower 4 raw material supply means 5 raw material flow meter 6 steam reforming section 7 CO reforming section 8 CO oxidation removing section 9 reforming section heating means 10 reforming section temperature measuring means 11 CO reforming section temperature Measuring means 12 CO oxidation removing section temperature measuring means 13 Reforming section water supply pump 14 CO modifying section water supply pump 15 Reforming water flow meter 16 Denaturing water flow meter 17 CO oxidation removing section air pump 18 Reforming section cooling fan 19 CO Denaturing section cooling fan 20 CO oxidation removal section cooling fan 21 Bypass piping

フロントページの続き (72)発明者 上田 哲也 大阪府門真市大字門真1006番地 松下電器 産業株式会社内 Fターム(参考) 5H026 AA06 5H027 AA06 BA01 BA16 BA17 BA20 KK00 KK21 KK42 MM08 Continuation of the front page (72) Inventor Tetsuya Ueda 1006 Kadoma Kadoma, Osaka Prefecture Matsushita Electric Industrial Co., Ltd. F term (reference) 5H026 AA06 5H027 AA06 BA01 BA16 BA17 BA20 KK00 KK21 KK42 MM08

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 炭化水素系原料および水から水素を主成
分とする燃料ガスを生成する水素生成器と、前記燃料ガ
スと酸化剤ガスを用いて発電する固体高分子電解質型燃
料電池スタックとを具備する燃料電池発電装置におい
て、(a)前記燃料電池発電装置の発電運転中に、前記
水素生成器の温度、前記水素生成器に投入される水の量
および前記水素生成器に投入される炭化水素系原料より
なる群から選択される少なくとも1つが所定の範囲を逸
脱したときに、前記発電を停止する工程、(b)前記固
体高分子電解質型燃料電池スタックの燃料ガス用流路内
を不活性ガスでパージする工程、および(c)前記燃料
ガス用流路内に空気または酸素を一定時間流す工程を含
む燃料電池発電装置の運転方法。
1. A hydrogen generator for generating a fuel gas containing hydrogen as a main component from a hydrocarbon-based raw material and water, and a solid polymer electrolyte fuel cell stack for generating power using the fuel gas and an oxidizing gas. (A) The temperature of the hydrogen generator, the amount of water supplied to the hydrogen generator, and the carbonization supplied to the hydrogen generator during the power generation operation of the fuel cell power generator. A step of stopping the power generation when at least one selected from the group consisting of hydrogen-based raw materials deviates from a predetermined range; and (b) a failure in the fuel gas flow path of the solid polymer electrolyte fuel cell stack. A method for operating a fuel cell power generator, comprising: a step of purging with an active gas; and (c) a step of flowing air or oxygen into the fuel gas flow path for a predetermined time.
【請求項2】 炭化水素系原料および水から水素を主成
分とする燃料ガスを生成する水素生成器と、前記燃料ガ
スと酸化剤ガスを用いて発電する固体高分子電解質型燃
料電池スタックとを具備する燃料電池発電装置におい
て、(a’)前記燃料電池発電装置の総発電運転時間ま
たは発電回数が所定値を超えたときに、前記発電を停止
する工程、(b)前記固体高分子電解質型燃料電池スタ
ックの燃料ガス用流路内を不活性ガスでパージする工
程、および(c)前記燃料ガス用流路内に空気または酸
素を一定時間流す工程を含む燃料電池発電装置の運転方
法。
2. A hydrogen generator for generating a fuel gas containing hydrogen as a main component from a hydrocarbon-based raw material and water, and a solid polymer electrolyte fuel cell stack for generating electricity using the fuel gas and an oxidizing gas. (A ′) a step of stopping the power generation when the total power generation operation time or the number of times of power generation of the fuel cell power generation device exceeds a predetermined value, (b) the solid polymer electrolyte type A method of operating a fuel cell power generator, comprising: purging a fuel gas flow path of a fuel cell stack with an inert gas; and (c) flowing air or oxygen through the fuel gas flow path for a predetermined time.
JP2000229809A 2000-07-28 2000-07-28 Operation method for fuel cell generator Pending JP2002042850A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2000229809A JP2002042850A (en) 2000-07-28 2000-07-28 Operation method for fuel cell generator

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2000229809A JP2002042850A (en) 2000-07-28 2000-07-28 Operation method for fuel cell generator

Publications (1)

Publication Number Publication Date
JP2002042850A true JP2002042850A (en) 2002-02-08

Family

ID=18722865

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000229809A Pending JP2002042850A (en) 2000-07-28 2000-07-28 Operation method for fuel cell generator

Country Status (1)

Country Link
JP (1) JP2002042850A (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005259663A (en) * 2004-03-15 2005-09-22 Ebara Ballard Corp Fuel cell power generation method and fuel cell power generation system
JP2007095561A (en) * 2005-09-29 2007-04-12 Sanyo Electric Co Ltd Operation method of fuel cell system
JP2008124047A (en) * 2008-02-14 2008-05-29 Sanyo Electric Co Ltd Method of operating fuel cell system
JP2008159464A (en) * 2006-12-25 2008-07-10 Kyocera Corp Fuel cell device and its operation method
JP2008159463A (en) * 2006-12-25 2008-07-10 Kyocera Corp Fuel cell device and its operation method
CN112864415A (en) * 2020-12-24 2021-05-28 上海神力科技有限公司 Method for eliminating pollution of fuel cell cooling liquid

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005259663A (en) * 2004-03-15 2005-09-22 Ebara Ballard Corp Fuel cell power generation method and fuel cell power generation system
JP2007095561A (en) * 2005-09-29 2007-04-12 Sanyo Electric Co Ltd Operation method of fuel cell system
JP2008159464A (en) * 2006-12-25 2008-07-10 Kyocera Corp Fuel cell device and its operation method
JP2008159463A (en) * 2006-12-25 2008-07-10 Kyocera Corp Fuel cell device and its operation method
JP2008124047A (en) * 2008-02-14 2008-05-29 Sanyo Electric Co Ltd Method of operating fuel cell system
CN112864415A (en) * 2020-12-24 2021-05-28 上海神力科技有限公司 Method for eliminating pollution of fuel cell cooling liquid
CN112864415B (en) * 2020-12-24 2022-06-21 上海神力科技有限公司 Method for eliminating pollution of fuel cell cooling liquid

Similar Documents

Publication Publication Date Title
JP4879461B2 (en) Apparatus and method for regenerating a fuel cell, apparatus and method for bypassing a fuel cell, and apparatus for diagnosing a fuel cell
JP3357299B2 (en) Fuel cell CO sensor
US8039154B2 (en) Fuel cell system, method of starting fuel cell system
JP2006310109A (en) Fuel cell power generating system
JP2003243020A (en) Fuel cell system
JP2007141787A (en) Operation method of fuel cell power generation device
EP2555298A1 (en) Fuel cell system and method for driving same
KR20190026026A (en) Catalytic degradation recovery apparatus and catalyst deterioration recovery method
EP1383192A2 (en) Chemical sensing in fuel cell systems
KR20030044062A (en) Method for regenerating co contamination in ht-pem fuel cells and a corresponding fuel-cell system
JP4870909B2 (en) Fuel cell power generator
JP2002042850A (en) Operation method for fuel cell generator
EP2639869B1 (en) Operation method of polymer electrolyte fuel cell system and polymer electrolyte fuel cell system
EP1659653B1 (en) Fuel cell system and method for starting operation of fuel cell system
JPH05251102A (en) Phospholic acid type fuel cell power generating plant
JP2007137719A (en) Fuel reforming apparatus, and fuel cell power generation apparatus using it and its operation method
JPH0955219A (en) Fuel cell power generating device and operation method
JP5077614B2 (en) Power supply system and control method of power supply system
JP2005044621A (en) Fuel cell power generation device and its operation method
JP2007323863A (en) Fuel cell system and shutdown method of fuel cell
JP4381508B2 (en) Fuel cell system
WO2001036322A1 (en) Apparatus for removing carbon monoxide and method for operation thereof
JP3515789B2 (en) Fuel cell power plant
JP5605106B2 (en) Fuel cell power generator
JP2013506241A (en) Method and power supply apparatus for supplying power from a fuel cell in consideration of sulfur oxide contamination