JP2002040088A - Deterioration diagnostic device for power cable - Google Patents

Deterioration diagnostic device for power cable

Info

Publication number
JP2002040088A
JP2002040088A JP2000228541A JP2000228541A JP2002040088A JP 2002040088 A JP2002040088 A JP 2002040088A JP 2000228541 A JP2000228541 A JP 2000228541A JP 2000228541 A JP2000228541 A JP 2000228541A JP 2002040088 A JP2002040088 A JP 2002040088A
Authority
JP
Japan
Prior art keywords
voltage
power cable
current
phase
detected
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2000228541A
Other languages
Japanese (ja)
Inventor
Seiji Azuma
誠二 東
Hiroyuki Uezono
洋之 上薗
Hiroaki Kanbara
弘昭 蒲原
Yoshinori Kudo
善則 工藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Daiden Co Inc
Kyushu Electric Power Co Inc
Original Assignee
Daiden Co Inc
Kyushu Electric Power Co Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Daiden Co Inc, Kyushu Electric Power Co Inc filed Critical Daiden Co Inc
Priority to JP2000228541A priority Critical patent/JP2002040088A/en
Publication of JP2002040088A publication Critical patent/JP2002040088A/en
Pending legal-status Critical Current

Links

Landscapes

  • Testing Relating To Insulation (AREA)

Abstract

PROBLEM TO BE SOLVED: To easily and surely diagnose the insulation deteriorated state of a power cable direct-coupled to an underground apparatus, for example, even a local deterioration by deterioration of water tree. SOLUTION: In this device, the voltage applied to the power cable direct- coupled to an underground apparatus direct-coupled terminal 2 is detected as a voltage signal by the voltage induced in a voltage detection part 11, and an earthing conductor current carried to the earthing conductor 12 of the power cable 1 is detected by a CT 13. A loss current arithmetic part 33 calculates the loss current of the same phase as the detected voltage signal from the voltage signal and current signal, and a deteriorated state diagnostic part 43 diagnoses the deterioration of the power cable 1. Accordingly, since the voltage and earthing conductor current of the power cable are detected without providing any detecting means or the like on the power cable 1 or imparting an external signal or the like, and the loss current is detected on the basis of the voltage and earthing conductor current of the power cable 1, the insulation deteriorated state of the power cable direct-coupled to the underground apparatus, for example, even the local deterioration by deterioration of water tree can be easily and surely diagnosed.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、地中配電系統にお
ける電力ケーブルの絶縁劣化状態の診断を行う電力ケー
ブルの劣化診断装置に関し、特に電力ケーブルの損失電
流を用いて電力ケーブルの絶縁劣化状態を診断する電力
ケーブルの劣化診断装置に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a power cable deterioration diagnosis device for diagnosing a power cable insulation deterioration state in an underground power distribution system, and more particularly to a power cable insulation current deterioration detection apparatus using a power cable loss current. The present invention relates to a device for diagnosing deterioration of a power cable to be diagnosed.

【0002】[0002]

【従来の技術】従来のこの種の電力ケーブルの劣化診断
装置として、図6に示すような活線状態の高圧電路に低
周波電圧を重畳する低周波重畳法があり、また電力ケー
ブルの誘電損失を測定し絶縁劣化診断を行う方法とし
て、誘電正接法が知られている。前記低周波重畳法の電
力ケーブルの劣化診断装置は、測定の対象となる電力ケ
ーブル1の芯線110に低周波数の交流電圧を印加する
低周波電源100と、この低周波電源100から印加さ
れる交流電圧により前記電力ケーブル1の遮蔽層120
に流れる損失電流を検出するブリッジ回路200と、こ
のブリッジ回路200から出力される損失電流及び低周
波電源100から印加される交流電圧により電圧電流特
性を演算する電圧電流特性演算部300と、前記低周波
電源100の印加電圧値を制御し、前記ブリッジ回路2
00の出力電流の周波数を切換え制御すると共に電圧電
流特性演算部300の演算動作を制御する制御部400
と、前記電圧電流特性演算部300で演算された電圧電
流特性に基づいて電力ケーブル1の劣化を判断する劣化
判断部500と、前記ブリッジ回路200から切換えら
れた出力される高調波電流に基づいて電力ケーブル1の
劣化を判断する高調波電流判断部600と、この劣化判
断部500及び高調波電流判断部600の各判断結果に
基づいて電力ケーブル1の劣化状態を診断する劣化状態
診断部700とを備える構成である。
2. Description of the Related Art As a conventional power cable deterioration diagnosis apparatus of this type, there is a low frequency superposition method in which a low frequency voltage is superimposed on a high piezoelectric path in a live state as shown in FIG. The dielectric loss tangent method has been known as a method for measuring insulation loss and diagnosing insulation deterioration. The low-frequency superposition power cable deterioration diagnosis apparatus includes a low-frequency power supply 100 that applies a low-frequency AC voltage to a core wire 110 of a power cable 1 to be measured, and an AC voltage applied from the low-frequency power supply 100. The shielding layer 120 of the power cable 1 according to the voltage
A bridge circuit 200 for detecting a loss current flowing through the bridge circuit 200; a voltage / current characteristic calculation unit 300 for calculating a voltage / current characteristic based on the loss current output from the bridge circuit 200 and the AC voltage applied from the low frequency power supply 100; Controlling the applied voltage value of the frequency power supply 100,
The control section 400 controls switching of the frequency of the output current of 00 and controls the calculation operation of the voltage-current characteristic calculation section 300.
A deterioration judging section 500 for judging the deterioration of the power cable 1 based on the voltage / current characteristics calculated by the voltage / current characteristic calculating section 300; and a harmonic current output from the bridge circuit 200. A harmonic current judging section 600 for judging the deterioration of the power cable 1; and a deterioration state diagnosing section 700 for diagnosing the deterioration state of the power cable 1 based on the judgment results of the deterioration judging section 500 and the harmonic current judging section 600. It is a structure provided with.

【0003】このように低周波数の交流電圧とこれを印
加して得られる損失電流とから電圧電流の関係式を求
め、この関係式から電力ケーブル1の劣化程度を判断し
ているので、電力ケーブル1の長さに拘わらず局部劣化
との緊密な相関が得られ、正確な劣化程度の診断ができ
る。一方、誘電正接法は特開平8−36005号公報及
び特開平9−26447号公報に開示されるように、印
加されている商用周波数の電圧位相を地中化機器に直結
されるケーブル端末の検電端子(検電部)あるいは補助
回路端末を介して検出し、被測定ケーブル接地線より電
流信号を検出して、両者の位相差から誘電正接を求めそ
の大きさにより劣化の程度を推定する方法がある。
As described above, the relational expression of the voltage and current is obtained from the low-frequency AC voltage and the loss current obtained by applying the AC voltage, and the degree of deterioration of the power cable 1 is determined from this relational expression. Regardless of the length, a close correlation with local deterioration is obtained, and an accurate diagnosis of the degree of deterioration can be made. On the other hand, the dielectric loss tangent method is disclosed in JP-A-8-36005 and JP-A-9-26447, in which a voltage phase of an applied commercial frequency is directly connected to an underground equipment. Detected through the power detection terminal (power detection unit) or the auxiliary circuit terminal, the current signal is detected from the measured cable ground wire, the dielectric loss tangent is obtained from the phase difference between the two, and the degree of deterioration is estimated based on the magnitude. There is a way.

【0004】[0004]

【発明が解決しようとする課題】従来の電力ケーブルの
劣化診断装置は以上のように構成されていたことから、
低周波重畳法では、活線状態で低周波電圧の重畳とブリ
ッジ回路200の標準コンデンサCSとを介して基準信
号を得る必要があるために、高圧電路の電力ケーブル1
への接続が必要不可欠であるが、地中配電系統における
地中埋設の電力ケーブルでは遮蔽層を必ず備える構造と
されることから、このような接続箇所がなく実施が困難
であるという課題を有する。
Since the conventional power cable deterioration diagnosis apparatus is configured as described above,
In the low frequency superposition method, since it is necessary to superimpose a low frequency voltage in a live state and obtain a reference signal via a standard capacitor CS of the bridge circuit 200, the power cable 1 of the high piezoelectric path is used.
Connection is essential, but the underground power cable in the underground distribution system has a structure that always has a shielding layer. .

【0005】また、前記誘電正接法については、運転中
の商用周波電圧を用いた測定を行うため、信号の重畳は
不要であるが、誘電正接が充電電流に対する損失電流の
割合により求められるために、部分的に見ると劣化の程
度が同じ電力ケーブルであっても、長尺の電力ケーブル
では、損失電流は同じでも、充電電流が大きくなるため
劣化状態を検出できない。即ち、水トリー(Water tre
e)等による局部劣化に対する検出性能が劣るという問
題を有する。
In the dielectric loss tangent method, since measurement is performed using a commercial frequency voltage during operation, superposition of a signal is unnecessary. However, since the dielectric loss tangent is determined by the ratio of a loss current to a charging current. In addition, even if the power cables have the same degree of deterioration when viewed partially, in a long power cable, the deterioration state cannot be detected because the charging current becomes large even if the loss current is the same. That is, Water tre
e) there is a problem in that the detection performance for local degradation due to e.

【0006】特開平8−36005号公報に開示されて
いる誘電正接測定法では、電圧信号を端末の検電端子
(検電部)より検出し、電圧位相を補正しているが、補
正精度が不十分であるため、測定誤差が無視できなくな
るという課題を有する。これに対して、特開平9−26
477号公報では、電圧位相の補正精度を向上させるた
めに、被測定ケーブルが接続されている開閉器塔の補助
回路端末から電圧信号を得て補正精度を向上させる方法
が開示されているが、実際には補助回路端末が存在しな
い開閉器塔が多く存在し、このような場合は適用できな
いという課題を有する。また、さらに商用周波数は、わ
ずかに変動しており、この変動により検電端子(検電
部)より得られる電圧信号の位相が変動し、測定誤差が
大きく現れたり値が変動するという課題を有する。な
お、この電圧位相誤差は、誘電正接のみならず誘電損や
損失電流を測定する場合にも測定精度を低下させる要因
となる。
In the dielectric loss tangent measurement method disclosed in Japanese Patent Application Laid-Open No. 8-36005, a voltage signal is detected from a power detection terminal (power detection unit) of a terminal, and a voltage phase is corrected. There is a problem that the measurement error cannot be ignored because of insufficient measurement. In contrast, Japanese Patent Laid-Open No. 9-26
No. 477 discloses a method for improving the correction accuracy by obtaining a voltage signal from an auxiliary circuit terminal of a switch tower to which a cable to be measured is connected, in order to improve the correction accuracy of the voltage phase. Actually, there are many switch towers without an auxiliary circuit terminal, and there is a problem that such a case cannot be applied in such a case. Further, the commercial frequency slightly fluctuates, and the fluctuation causes the phase of the voltage signal obtained from the power detection terminal (power detection unit) to fluctuate, causing a problem that a measurement error appears greatly or the value fluctuates. . Note that this voltage phase error causes a decrease in measurement accuracy when measuring not only the dielectric loss tangent but also dielectric loss and loss current.

【0007】本発明は、前記課題を解消するためになさ
れたもので、地中化機器に直結される電力ケーブルの絶
縁劣化状態、例えば水トリー(Water Tree)の劣化によ
る局部劣化であっても簡易且つ確実に診断することがで
きる電力ケーブルの劣化診断装置を提供することを目的
とする。
SUMMARY OF THE INVENTION The present invention has been made to solve the above-mentioned problems, and is intended to solve the problem of insulation deterioration of a power cable directly connected to underground equipment, for example, local deterioration due to deterioration of a water tree. It is an object of the present invention to provide a power cable deterioration diagnosis device capable of performing diagnosis easily and reliably.

【0008】[0008]

【課題を解決するための手段】本発明に係る電力ケーブ
ルの劣化診断装置は、測定対象の電力ケーブルが地中化
機器に直結されるケーブル端末の検電端子に活線状態で
誘起される電圧を検出して電圧信号として出力する電圧
検出部と、前記電力ケーブルの接地線に流れる電流信号
を検出する電流検出部と、前記検出された電流信号の接
地線電流及び前記検出された電圧信号から当該電圧信号
の位相と同位相の損失電流を演算する損失電流演算部
と、前記演算された損失電流から電力ケーブルの劣化を
診断する劣化診断部とを備えるものである。
A power cable deterioration diagnosis apparatus according to the present invention provides a voltage induced in a live state at a detection terminal of a cable terminal in which a power cable to be measured is directly connected to an underground equipment. A voltage detection unit that detects and outputs a voltage signal as a voltage signal, a current detection unit that detects a current signal flowing through the ground line of the power cable, and a ground line current of the detected current signal and the detected voltage signal. A loss current calculation unit that calculates a loss current having the same phase as the phase of the voltage signal; and a deterioration diagnosis unit that diagnoses deterioration of the power cable from the calculated loss current.

【0009】このように本発明においては、地中化機器
に直結される電力ケーブルに印加される電圧を検電端子
に誘起される電圧で電圧検出部が電圧信号として検出
し、前記電力ケーブルの接地線に流れる接地線電流を電
流検出部が検出し、この検出された電圧信号と同相の損
失電流を電圧信号及び電流信号から損失電流演算部が演
算し、この損失電流から劣化診断部が電力ケーブルの劣
化を診断するようにしているので、電力ケーブルの電圧
及び接地線電流を電力ケーブルに検出手段等を何ら設け
ることなく、且つ外部からの信号等を付与することなく
検出し、この電力ケーブルの電圧及び接地線電流に基づ
いて損失電流を検出するようにしているので、地中化機
器に直結される電力ケーブルの絶縁劣化状態、例えば水
トリー(Water Tree)の劣化による局部劣化であっても
簡易且つ確実に診断することができる。
As described above, according to the present invention, the voltage applied to the power cable directly connected to the underground equipment is detected by the voltage detection unit as a voltage signal using the voltage induced at the power detection terminal. The current detector detects a ground line current flowing through the ground line, and a loss current calculator calculates a loss current having the same phase as the detected voltage signal from the voltage signal and the current signal. Since the deterioration of the cable is diagnosed, the voltage and the ground line current of the power cable are detected without providing any detection means or the like on the power cable and without giving an external signal or the like. The loss current is detected based on the voltage of the ground wire and the ground wire current. Therefore, the insulation deterioration state of the power cable directly connected to the underground equipment, for example, water tree (Water Tree) Even local deterioration due to deterioration can be easily and reliably diagnosed.

【0010】本発明に係る電力ケーブルの劣化診断装置
は必要に応じて、検電端子で検出される電圧信号と前記
電力ケーブルに印加される電圧との予め求められた位相
の相関を用いて電圧位相の補正を行う位相補正部を備
え、当該電圧位相が補正された電圧信号を損失電流演算
部へ出力するものである。このように本発明において
は、電力ケーブルの電圧信号の大きさと位相との相関を
予め求めておき、この求められた相関に基づいて検出さ
れた電圧位相を位相補正部で補正するようにしているの
で、より正確な損失電流を演算できることとなり、この
正確な損失電流により電力ケーブルの絶縁劣化状態をよ
り正確且つ確実に診断できる。
The power cable deterioration diagnosis apparatus according to the present invention uses a correlation between a voltage signal detected at a power detection terminal and a voltage applied to the power cable, as required, in advance. A phase correction unit for correcting the phase is provided, and the voltage signal whose voltage phase has been corrected is output to the loss current calculation unit. As described above, in the present invention, the correlation between the magnitude and the phase of the voltage signal of the power cable is obtained in advance, and the voltage phase detected based on the obtained correlation is corrected by the phase correction unit. Therefore, a more accurate loss current can be calculated, and the accurate loss current allows a more accurate and reliable diagnosis of the insulation deterioration state of the power cable.

【0011】本発明に係る電力ケーブルの劣化診断装置
は必要に応じて、検出部が、複数の電力回線を各々構成
する電力ケーブルの同相における複数の検電端子により
同時に複数の電圧信号を検出し、前記検出した複数の電
圧信号の総和から当該電圧信号の位相補正を行う位相補
正部を備え、当該電圧位相が補正された電圧信号を損失
電流演算部へ出力するものである。このように本発明に
おいては、複数の電力回線における同相分毎の複数の電
力ケーブルの端末の検電端子について電圧信号を同時に
検出し、この検出された複数の電圧信号に基づいて電圧
位相を位相補正部が補正するようにしているので、単独
の検電端子から電圧信号を検出する場合より正確な損失
電流を演算できることとなり、この正確な損失電流によ
り電力ケーブルの絶縁劣化状態をより正確且つ確実に診
断できる。
In the power cable deterioration diagnosis apparatus according to the present invention, if necessary, the detection unit detects a plurality of voltage signals simultaneously from a plurality of detection terminals in the same phase of the power cables constituting the plurality of power lines. A phase correction unit that corrects the phase of the voltage signal based on the sum of the plurality of detected voltage signals, and outputs the voltage signal whose voltage phase has been corrected to the loss current calculation unit. As described above, in the present invention, the voltage signals are simultaneously detected at the power detection terminals of the terminals of the plurality of power cables for each in-phase component in the plurality of power lines, and the voltage phase is phased based on the detected plurality of voltage signals. Since the correction unit corrects the loss, it is possible to calculate a more accurate loss current than when a voltage signal is detected from a single power detection terminal, and the accurate loss current allows the insulation deterioration state of the power cable to be more accurately and reliably determined. Can be diagnosed.

【0012】本発明に係る電力ケーブルの劣化診断装置
は必要に応じて、検出部が、前記電力ケーブルに印加さ
れる電圧に周波数の変動がある場合に、前記電圧信号を
予め設定された特定周波数のみで検出するものである。
このように本発明においては、電力ケーブルに印加され
て変動する周波数の電圧信号及び電流信号を、特定周波
数のみ検出するよにしているので、電力ケーブルに対し
て均一な条件で電圧信号及び電流信号を検出できること
となりより正確な損失電流を演算できることとなり、こ
の正確な損失電流により電力ケーブルの絶縁劣化状態を
より正確且つ確実に診断できる。
In the power cable deterioration diagnosis apparatus according to the present invention, if necessary, the detection unit may detect the voltage signal when the voltage applied to the power cable fluctuates. Only to detect.
As described above, according to the present invention, the voltage signal and the current signal of the frequency that fluctuates when applied to the power cable are detected only at a specific frequency. Can be detected, and a more accurate loss current can be calculated. With this accurate loss current, the insulation deterioration state of the power cable can be diagnosed more accurately and reliably.

【0013】[0013]

【発明の実施の形態】(本発明の第1の実施形態)以
下、本発明の第1の実施形態に係る電力ケーブルの劣化
診断装置を図1ないし図3に基づいて説明する。図1は
本実施形態に係る電力ケーブルの劣化診断装置の全体ブ
ロック構成図、図2は図1に記載の電力ケーブルの劣化
診断装置における地中化機器直結端末の詳細断面図、図
3は図1に記載の電力ケーブルの劣化診断装置における
損失電流演算動作説明図を示す。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS (First Embodiment of the Present Invention) An apparatus for diagnosing deterioration of a power cable according to a first embodiment of the present invention will be described below with reference to FIGS. FIG. 1 is an overall block configuration diagram of a power cable deterioration diagnosis device according to the present embodiment, FIG. 2 is a detailed sectional view of a terminal directly connected to an underground equipment in the power cable deterioration diagnosis device shown in FIG. 1, and FIG. FIG. 2 is an explanatory diagram of a loss current calculation operation in the power cable deterioration diagnosis device described in FIG.

【0014】前記各図において本実施形態に係る電力ケ
ーブルの劣化診断装置は、測定対象の電力ケーブル1が
地中化機器である開閉器塔14に直結される地中化機器
直結端末2の検電端子で電源10(3.8KV、60H
z)により印加される電圧を検出して電圧信号S10とし
て出力する電圧検出部11と、前記電力ケーブル1の接
地線12に流れる接地線電流を検出して電流信号S20を
出力する電流検出部(以下CT)13と、前記検出され
た電流信号S20の接地線電流及び前記検出された電圧信
号S10から位相補正された電圧信号S30の電圧位相と同
位相の損失電流を演算する損失電流演算手段3と、前記
演算された損失電流から電力ケーブル1の絶縁劣化状態
を診断する劣化診断制御手段4とを備える構成である。
In the figures, the power cable deterioration diagnosis apparatus according to the present embodiment detects the underground equipment directly connected terminal 2 where the power cable 1 to be measured is directly connected to the switchgear tower 14 which is the underground equipment. Power terminal 10 (3.8KV, 60H
z), a voltage detector 11 for detecting the voltage applied and outputting it as a voltage signal S10, and a current detector for detecting a ground line current flowing through the ground line 12 of the power cable 1 and outputting a current signal S20 ( CT) 13 and a loss current calculating means 3 for calculating a loss current having the same phase as the voltage phase of the voltage signal S30 whose phase has been corrected from the ground line current of the detected current signal S20 and the detected voltage signal S10. And a deterioration diagnosis control unit 4 for diagnosing the insulation deterioration state of the power cable 1 from the calculated loss current.

【0015】前記損失電流演算手段3は、前記入力され
る電圧信号S10の電圧及び周波数を測定する電圧・周波
数測定部31と、前記電圧信号S10を劣化診断制御手段
4から出力される補正値に基づいて位相を補正して補正
後の電圧信号S30を出力する位相補正部32と、前記位
相補正された電圧信号S30と前記CT13から出力され
る電流信号S20と劣化診断制御手段4から出力される一
致信号S42とに基づいて電圧信号S30と同位相の損失電
流を演算する損失電流演算部33とを備える構成であ
る。前記電圧・周波数測定部31は電圧信号S10を所定
帯域のみ出力するバンドパスフィルタでフィルタリング
処理して商用周波数60Hzに重畳された高周波成分等
のノイズ成分を除去し、この電圧信号S10についての電
圧及び周波数の測定を行う構成である。
The loss current calculating means 3 includes a voltage / frequency measuring unit 31 for measuring the voltage and frequency of the input voltage signal S 10, and converts the voltage signal S 10 into a correction value output from the deterioration diagnosis control means 4. A phase correction unit 32 that corrects the phase based on the corrected voltage signal S30, outputs the corrected voltage signal S30, the current signal S20 output from the CT 13, and the deterioration diagnosis control unit 4. The configuration includes a loss current calculation unit 33 that calculates a loss current in phase with the voltage signal S30 based on the coincidence signal S42. The voltage / frequency measurement unit 31 filters the voltage signal S10 with a band-pass filter that outputs only a predetermined band to remove noise components such as high-frequency components superimposed on the commercial frequency of 60 Hz. This is a configuration for measuring the frequency.

【0016】前記劣化診断制御手段4は、前記電圧・周
波数測定部31で測定された電圧の電圧値を、予め求め
られた位相相関式に基づいて電圧位相について補正して
補正値を前記位相補正部32へ出力する補正値演算部4
1と、前記電圧・周波数測定部31で測定された周波数
の周波数値が予め設定された特定周波数値(例えば、6
0Hz)に一致したか否かを監視して一致信号S42を損
失電流演算部33へ出力する周波数監視部42と、前記
損失電流演算部33で演算された損失電流に基づいて電
力ケーブル1の絶縁劣化状態を診断して診断結果を出力
する劣化状態診断部43とを備える構成である。前記補
正値演算部41における位相相関式は、予め撤去品や新
品の地中化機器直結端末2の検電端子からなる電圧検出
部11より得られる電圧信号の大きさと位相のデータベ
ースを作成し、電圧の大きさと位相の関係式を求めてお
く。
The deterioration diagnosis control means 4 corrects the voltage value of the voltage measured by the voltage / frequency measuring section 31 with respect to the voltage phase based on a previously obtained phase correlation equation, and corrects the correction value by the phase correction. Correction value calculation unit 4 to be output to the unit 32
1 and a frequency value of the frequency measured by the voltage / frequency measurement unit 31 is a predetermined specific frequency value (for example, 6
0 Hz), and a frequency monitoring unit 42 that outputs a coincidence signal S42 to the loss current calculation unit 33 by monitoring whether or not the power cable 1 matches with the power supply 1 based on the loss current calculated by the loss current calculation unit 33. And a deterioration state diagnosis unit 43 for diagnosing the deterioration state and outputting a diagnosis result. The phase correlation equation in the correction value calculation unit 41 creates a database of the magnitude and phase of the voltage signal obtained from the voltage detection unit 11 including the power detection terminal of the removed product or a new underground equipment directly connected terminal 2 in advance, A relational expression between voltage magnitude and phase is obtained in advance.

【0017】地中化機器直結端末2は、図2に示す構造
を有しており図1に示す開閉器塔14に電力ケーブル1
の終端端末として接続されている。また、この地中化機
器直結端末2は、芯線110に接続された圧縮端子11
1の一部に接する内部半導電層112と、この内部半導
電層112の外側の絶縁層113と、この絶縁層113
の外側に外部半導電層114とを備える構成である。地
中化機器直結端末2の電圧検出部11は、周囲の外部半
導電層114から電気的に絶縁された電極を地中化機器
直結端末2の絶縁層113内に埋め込まれた構造であ
り、内部半導電層112と埋め込まれた電極間の絶縁層
113が作る静電容量により、交流電圧が誘起されて電
圧信号S10として出力する構成である。また、1台の開
閉器塔14は図示を省略するに3〜4の電力回線の地中
化機器直結端末2が施された電力ケーブル1が接続され
ており、地中化機器直結端末2及び電力ケーブル1の全
ての充電部が露出しないよう遮蔽された構造となってい
る。このCT13には、温度・電流・外部磁界に対する
特性の変化が極力少ないものが望ましい。
The terminal 2 directly connected to the underground equipment has the structure shown in FIG. 2, and the power cable 1 is connected to the switch tower 14 shown in FIG.
Are connected as terminal terminals. The terminal 2 directly connected to the underground equipment includes a compression terminal 11 connected to the core wire 110.
1, an insulating layer 113 outside the inner semiconductive layer 112,
And an external semiconductive layer 114 on the outside. The voltage detection unit 11 of the underground equipment directly connected terminal 2 has a structure in which an electrode electrically insulated from the surrounding external semiconductive layer 114 is embedded in the insulating layer 113 of the underground equipment directly connected terminal 2, In this configuration, an AC voltage is induced by the capacitance generated by the insulating layer 113 between the inner semiconductive layer 112 and the embedded electrode, and the voltage is output as a voltage signal S10. In addition, one switch tower 14 is connected to the power cable 1 to which the underground equipment direct connection terminal 2 of the 3 to 4 power lines is omitted (not shown), and the underground equipment direct connection terminal 2 and The power cable 1 has a structure in which all charged portions are shielded so as not to be exposed. It is desirable that the CT 13 change in characteristics with respect to temperature, current, and external magnetic field as little as possible.

【0018】次に、前記構成に基づく本実施形態に係る
電力ケーブルの劣化診断装置の劣化診断動作について説
明する。まず、被測定の電力ケーブル1が接続されてい
る開閉器塔14において、例えば、この電力ケーブル1
を需要者側に接続される分岐高圧ケーブルとする場合
は、この電力ケーブル1に施されている地中化機器直結
端末2に形成される検電端子からなる電圧検出部11に
より電源10から印加される電圧を電圧信号S10として
検出し、この電圧信号S10を損失電流演算手段3の電圧
入力端子3aに入力する。
Next, a description will be given of a deterioration diagnosis operation of the power cable deterioration diagnosis apparatus according to the present embodiment based on the above configuration. First, in the switch tower 14 to which the power cable 1 to be measured is connected, for example, the power cable 1
Is a branch high-voltage cable connected to the consumer side, the voltage is applied from the power supply 10 by the voltage detection unit 11 composed of the power detection terminal formed on the terminal 2 directly connected to the underground equipment applied to the power cable 1. The detected voltage is detected as a voltage signal S10, and this voltage signal S10 is input to the voltage input terminal 3a of the loss current calculation means 3.

【0019】この入力された電圧信号S10は、電圧・周
波数測定部31で必要に応じて増幅され、さらにバンド
パスフィルタ等を介して商用電波電圧に含まれる高調波
成分等のノイズ成分を除去し、印加される電圧の大きさ
及び周波数が測定されて補正値演算部41及び周波数監
視部42へ出力される。この補正値演算部41は、予め
求められた位相相関式に基づいて前記測定された電圧信
号S10の電圧値に対する補正値を演算して位相補正部3
2へ出力する。また、前記周波数監視部42は、予め設
定された特定周波数(例えば、60Hz)に前記測定さ
れた電圧信号S10の周波数値が一致するか否かを監視
し、一致すると判断された場合に損失電流演算部33に
一致信号S42を出力する。即ち、前記電源10から供給
される3.8KV(60Hz)の電力における周波数の
微弱変動が生じたとしても、常に同一条件で検出動作が
実行できることとなる。
The input voltage signal S10 is amplified as necessary by the voltage / frequency measuring unit 31, and further removes noise components such as harmonic components contained in the commercial radio wave voltage via a band-pass filter or the like. The magnitude and frequency of the applied voltage are measured and output to the correction value calculation unit 41 and the frequency monitoring unit 42. The correction value calculator 41 calculates a correction value for the voltage value of the measured voltage signal S10 based on a phase correlation equation obtained in advance, and
Output to 2. Further, the frequency monitoring unit 42 monitors whether or not the frequency value of the measured voltage signal S10 matches a preset specific frequency (for example, 60 Hz). The coincidence signal S42 is output to the calculation unit 33. That is, even if a slight fluctuation of the frequency occurs at the power of 3.8 KV (60 Hz) supplied from the power supply 10, the detection operation can always be performed under the same condition.

【0020】前記位相補正部32は、入力された補正値
に基づいて電圧検出部11で検出される電圧信号S10の
位相を補正して位相補正後の電圧信号S30を生成する。
例えば、電圧信号S10の電圧位相を図3に示すように位
相0度の電圧信号S30に正確に補正できることとなる。
この補正された電圧信号S30と共に、CT13で検出さ
れた接地線電流の電流信号S20が電流入力端子3bを介
して損失電流演算部33へ入力され、この損失電流演算
部33は電圧信号S30及び電流信号S20に基づいて、電
圧信号S30の電圧位相と同位相(例えば、位相0度)の
損失電流を前記一致信号S42が入力されたときに演算す
る。
The phase corrector 32 corrects the phase of the voltage signal S10 detected by the voltage detector 11 based on the input correction value to generate a phase-corrected voltage signal S30.
For example, the voltage phase of the voltage signal S10 can be accurately corrected to a voltage signal S30 having a phase of 0 degrees as shown in FIG.
Along with the corrected voltage signal S30, a current signal S20 of the ground line current detected at CT13 is input to the loss current calculation unit 33 via the current input terminal 3b, and the loss current calculation unit 33 outputs the voltage signal S30 and the current Based on the signal S20, a loss current having the same phase (for example, 0 degree) as the voltage phase of the voltage signal S30 is calculated when the coincidence signal S42 is input.

【0021】このように入力された電流信号S20は、電
圧検出部11より得られる電圧信号S10の周波数が予め
設定された特定周波数と一致した時に、損失電流演算部
33において電圧位相と同位相の成分が算出されること
となる。この損失電流の測定結果が劣化状態診断部43
に入力され、この劣化状態診断部43が損失電流の大き
さから絶縁劣化状態の診断を行い、測定結果と診断内容
とが表示部5に表示される。
When the frequency of the voltage signal S10 obtained from the voltage detector 11 matches a predetermined specific frequency, the current signal S20 input in this manner has the same phase as the voltage phase in the loss current calculator 33. The components will be calculated. The measurement result of the loss current is stored in the deterioration state diagnostic section 43.
The deterioration state diagnosing unit 43 diagnoses the insulation deterioration state based on the magnitude of the loss current, and the measurement result and the contents of the diagnosis are displayed on the display unit 5.

【0022】このように地中化機器直結端末2の検電端
子からなる電圧検出部11より電圧信号S10を検出し、
予め求められた検電端子の電圧検出部11に関するの電
圧の大きさと位相の関係を示す位相相関式を用いて電圧
位相の補正を行い、さらに、電圧信号の周波数が特定周
波数に一致した時に、被測定電力ケーブル1に流れる損
失電流を測定するようにしいているため、電圧位相のズ
レや周波数変動の影響を受けにくく、電力ケーブル1の
絶縁劣化状態をその程度に応じた損失電流が得られ絶縁
劣化判定の精度を高めることができる。
As described above, the voltage signal S10 is detected by the voltage detection unit 11 including the power detection terminal of the terminal 2 directly connected to the underground equipment.
The voltage phase is corrected using a phase correlation equation indicating the relationship between the magnitude and phase of the voltage relating to the voltage detection unit 11 of the voltage detection terminal obtained in advance, and further, when the frequency of the voltage signal matches the specific frequency, Since the loss current flowing through the power cable 1 to be measured is measured, it is hardly affected by the voltage phase shift and the frequency fluctuation, and the insulation deterioration state of the power cable 1 can be obtained by the loss current according to the degree. The accuracy of the deterioration determination can be improved.

【0023】(本発明の第2の実施形態)以下、本発明
の第2の実施形態に係る電力ケーブルの劣化診断装置を
図4に基づいて説明する。この図4は第2の実施形態に
係る電力ケーブルの劣化診断装置の全体ブロック構成図
を示す。同図において本実施形態に係る電力ケーブルの
劣化診断装置は、前記図1に記載の電力ケーブルの劣化
診断装置と同様に損失電流演算手段3と劣化診断制御手
段4とを備えて構成され、この構成に加え、電源側高圧
ケーブル1Aから供給される高圧電力を開閉器塔14で
分岐して複数の分岐ケーブル1Bから各需要家等へ複数
の電力回線として供給され、この複数の電力回線のうち
の各同相に関する分岐ケーブル1Bの地中化機器直結端
末2に各々形成される検電端子からなる電圧検出部11
で各々に印加される電圧を電圧信号S11、S12、〜、S
1nとして検出し、この各電圧信号S11、S12、〜、S1n
の総和を損失電流演算手段3へ出力すると共に、前記複
数の分岐ケーブル1Bのうち1つの分岐ケーブル1Bに
おける接地線12にCT13がクランプされ、このCT
13から接地線電流を電流信号S20として損失電流演算
手段3へ出力する構成である。
(Second Embodiment of the Present Invention) An apparatus for diagnosing deterioration of a power cable according to a second embodiment of the present invention will be described below with reference to FIG. FIG. 4 is an overall block configuration diagram of the power cable deterioration diagnosis device according to the second embodiment. In the figure, the power cable deterioration diagnosis apparatus according to the present embodiment includes a loss current calculating means 3 and a deterioration diagnosis control means 4 similarly to the power cable deterioration diagnosis apparatus shown in FIG. In addition to the configuration, the high-voltage power supplied from the power-supply-side high-voltage cable 1A is branched at the switch tower 14 and supplied from the plurality of branch cables 1B to each customer and the like as a plurality of power lines. Voltage detection unit 11 composed of a voltage detection terminal formed on the underground equipment directly connected terminal 2 of the branch cable 1B for each in-phase.
Are applied to the respective voltage signals S11, S12,.
1n, and the respective voltage signals S11, S12,.
Is output to the loss current calculating means 3, and the CT 13 is clamped to the ground wire 12 of one of the plurality of branch cables 1B.
13 outputs the ground line current to the loss current calculating means 3 as a current signal S20.

【0024】即ち、電圧検出部11を形成する検電端子
は、分岐ケーブル1B(又は電源側高圧ケーブル1A)
の絶縁層113を介して静電分圧により芯線110に印
加される高圧電圧を検出することから、複数の分岐ケー
ブル1Bから並列入力される各電圧信号S11、S12、
〜、S1nを加算することにより大きな値の電圧値とする
ことができる。
That is, the voltage detecting terminal forming the voltage detecting section 11 is the branch cable 1B (or the power supply side high voltage cable 1A).
Since the high voltage applied to the core wire 110 is detected by the electrostatic partial pressure via the insulating layer 113, the voltage signals S11, S12,.
, S1n can be added to obtain a large voltage value.

【0025】このように地中化機器直結端末2の種類に
よっては検電端子である電圧検出部11より得られる電
圧信号S11(又はS12、〜、S1n)が小さく、十分な位
相補正が行えない場合は、同一の開閉器塔14内で他の
複数の電力回線の同相の地中化機器直結端末2に形成さ
れる検電端子の電圧検出部11で得られる各電圧信号S
11、S12、〜、S1nを並列に入力し、また、大きな電圧
信号が得られる同一開閉器塔14内で他の電力回線であ
って同相の地中化機器直結端末2の検電端子より電圧信
号S11、〜、S1nを得ることにより、電圧位相の補正精
度がより高い状態で測定できるようになる。
As described above, depending on the type of the terminal 2 directly connected to the underground equipment, the voltage signal S11 (or S12,..., S1n) obtained from the voltage detection unit 11, which is a power detection terminal, is small, and sufficient phase correction cannot be performed. In the case, each voltage signal S obtained by the voltage detection unit 11 of the power detection terminal formed on the in-phase underground equipment directly connected terminal 2 of the same plurality of other power lines in the same switch tower 14.
11, S12,..., S1n are input in parallel, and a voltage is applied from the power detection terminal of the other power line and in-phase underground equipment directly connected terminal 2 in the same switch tower 14 where a large voltage signal is obtained. By obtaining the signals S11,..., S1n, measurement can be performed with a higher correction accuracy of the voltage phase.

【0026】このように高精度に求められた電圧信号S
11、〜、S1nに基づいて前記実施形態と同様に電力ケー
ブル1、損失電流演算手段3、劣化診断制御手段4によ
り分岐ケーブル1Bの絶縁劣化の診断をより高精度に実
行できることとなる。なお、前記各実施形態において
は、地中化機器直結端末2を図2に示す構成のものを採
用したが、図5に示す地中化機器直結端末2であっても
同様に電力ケーブル1の絶縁劣化診断を実行することが
できる。
The voltage signal S thus determined with high precision
Based on 11,..., S1n, the diagnosis of insulation deterioration of the branch cable 1B can be performed with higher accuracy by the power cable 1, the loss current calculation means 3, and the deterioration diagnosis control means 4 as in the above embodiment. In the above embodiments, the terminal 2 directly connected to the underground equipment has the configuration shown in FIG. 2, but the terminal 2 directly connected to the underground equipment shown in FIG. An insulation deterioration diagnosis can be performed.

【0027】[0027]

【発明の効果】本発明においては、地中化機器に直結さ
れる電力ケーブルに印加される電圧を検電端子に誘起さ
れる電圧で電圧検出部が電圧信号として検出し、前記電
力ケーブルの接地線に流れる接地線電流を電流検出部が
検出し、この検出された電圧信号と同相の損失電流を電
圧信号及び電流信号から損失電流演算部が演算し、この
損失電流から劣化診断部が電力ケーブルの劣化を診断す
るようにしているので、電力ケーブルの電圧及び接地線
電流を電力ケーブルに検出手段等を何ら設けることな
く、且つ外部からの信号等を付与することなく検出し、
この電力ケーブルの電圧及び接地線電流に基づいて損失
電流を検出するようにしているので、地中化機器に直結
される電力ケーブルの絶縁劣化状態、例えば水トリー
(Water Tree)の劣化による局部劣化であっても簡易且
つ確実に診断することができるという効果を有する。
According to the present invention, a voltage detector detects a voltage applied to a power cable directly connected to an underground equipment as a voltage signal by a voltage induced at a detection terminal, and grounds the power cable. The current detector detects the ground line current flowing through the line, and the loss current calculator calculates the loss current in phase with the detected voltage signal from the voltage signal and the current signal. , So that the power cable voltage and the ground line current are detected without providing any detection means or the like in the power cable, and without giving an external signal or the like,
Since the loss current is detected based on the voltage of the power cable and the ground wire current, the insulation deterioration state of the power cable directly connected to the underground equipment, for example, local deterioration due to deterioration of a water tree (Water Tree). However, there is an effect that diagnosis can be easily and reliably performed.

【0028】また、本発明においては、電力ケーブルの
電圧信号の大きさと位相との相関を予め求めておき、こ
の求められた相関に基づいて検出された電圧位相を位相
補正部で補正するようにしているので、より正確な損失
電流を演算できることとなり、この正確な損失電流によ
り電力ケーブルの絶縁劣化状態をより正確且つ確実に診
断できるという効果を有する。
In the present invention, the correlation between the magnitude and the phase of the voltage signal of the power cable is obtained in advance, and the detected voltage phase is corrected by the phase correction unit based on the obtained correlation. As a result, a more accurate loss current can be calculated, and the accurate loss current has the effect that the insulation deterioration state of the power cable can be more accurately and reliably diagnosed.

【0029】また、本発明においては、複数の電力回線
における同相分毎の複数の電力ケーブルの端末の検電端
子について電圧信号を同時に検出し、この検出された複
数の電圧信号に基づいて電圧位相を位相補正部が補正す
るようにしているので、単独の検電端子から電圧信号を
検出する場合より正確な損失電流を演算できることとな
り、この正確な損失電流により電力ケーブルの絶縁劣化
状態をより正確且つ確実に診断できるという効果を有す
る。
Further, in the present invention, voltage signals are simultaneously detected at power detection terminals of terminals of a plurality of power cables for each in-phase component in a plurality of power lines, and a voltage phase is detected based on the detected plurality of voltage signals. Is corrected by the phase correction unit, so that a more accurate loss current can be calculated when a voltage signal is detected from a single power detection terminal, and the accurate loss current makes it possible to more accurately determine the insulation deterioration state of the power cable. In addition, there is an effect that the diagnosis can be made reliably.

【0030】さらに、電力ケーブルに印加されて変動す
る周波数の電圧信号及び電流信号を、特定周波数のみ検
出するよにしているので、電力ケーブルに対して均一な
条件で電圧信号及び電流信号を検出できることとなりよ
り正確な損失電流を演算できることとなり、この正確な
損失電流により電力ケーブルの絶縁劣化状態をより正確
且つ確実に診断できるという効果を有する。
Further, since the voltage signal and the current signal of the fluctuating frequency applied to the power cable are detected only at a specific frequency, the voltage signal and the current signal can be detected under uniform conditions for the power cable. Thus, a more accurate loss current can be calculated, and the accurate loss current has an effect that the insulation deterioration state of the power cable can be more accurately and reliably diagnosed.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の第1の実施形態に係る電力ケーブルの
劣化診断装置の全体ブロック構成図である。
FIG. 1 is an overall block configuration diagram of a power cable deterioration diagnosis apparatus according to a first embodiment of the present invention.

【図2】図1に記載の電力ケーブルの劣化診断装置にお
ける地中化機器直結端末の詳細断面図である。
FIG. 2 is a detailed cross-sectional view of a terminal directly connected to an underground equipment in the power cable deterioration diagnosis device shown in FIG.

【図3】図1に記載の電力ケーブルの劣化診断装置にお
ける損失電流演算動作説明図である。
FIG. 3 is an explanatory diagram of a loss current calculation operation in the power cable deterioration diagnosis device shown in FIG. 1;

【図4】本発明の第2の実施形態に係る電力ケーブルの
劣化診断装置の全体ブロック構成図である。
FIG. 4 is an overall block configuration diagram of a power cable deterioration diagnosis device according to a second embodiment of the present invention.

【図5】本発明の第2の他の実施形態に係る電力ケーブ
ルの劣化診断装置の全体ブロック構成図である。
FIG. 5 is an overall block configuration diagram of a power cable deterioration diagnosis device according to a second other embodiment of the present invention.

【図6】従来の電力ケーブルの劣化診断装置の低周波重
畳法における全体ブロック構成図である。
FIG. 6 is an overall block diagram of a conventional power cable deterioration diagnosis apparatus in a low frequency superposition method.

【符号の説明】[Explanation of symbols]

1 電力ケーブル 1A 電源側高圧ケーブル 1B 分岐ケーブル 2 地中化機器直結端末 3 損失電流演算手段 4 劣化診断制御手段 5 表示部 3a 電圧入力端子 3b 電流入力端子 11 電圧検出部 12 接地線 13 CT 14 開閉器塔 31 電圧・周波数測定部 32 位相補正部 33 損失電流演算部 41 補正値演算部 42 周波数監視部 43 劣化状態診断部 100 低周波電源 110 芯線 111 圧縮端子 112 内部半導電層 113 絶縁層 114 外部半導電層 120 遮蔽層 200 ブリッジ回路 210 差動アンプ 300 電圧電流特性演算部 400 制御部 500 劣化判断部 510 電圧次数判断部 520 絶縁抵抗判断部 600 高調波電流判断部 700 劣化診断部 DESCRIPTION OF SYMBOLS 1 Power cable 1A Power supply side high voltage cable 1B Branch cable 2 Underground equipment direct connection terminal 3 Loss current calculation means 4 Deterioration diagnosis control means 5 Display unit 3a Voltage input terminal 3b Current input terminal 11 Voltage detection unit 12 Ground line 13 CT 14 Opening / closing Instrument 31 Voltage / frequency measurement unit 32 Phase correction unit 33 Loss current calculation unit 41 Correction value calculation unit 42 Frequency monitoring unit 43 Deterioration state diagnosis unit 100 Low frequency power supply 110 Core wire 111 Compression terminal 112 Internal semiconductive layer 113 Insulation layer 114 External Semiconductive layer 120 Shielding layer 200 Bridge circuit 210 Differential amplifier 300 Voltage-current characteristic calculation unit 400 Control unit 500 Deterioration determination unit 510 Voltage order determination unit 520 Insulation resistance determination unit 600 Harmonic current determination unit 700 Degradation diagnosis unit

───────────────────────────────────────────────────── フロントページの続き (72)発明者 上薗 洋之 福岡県福岡市中央区渡辺通2丁目1番82号 九州電力株式会社内 (72)発明者 蒲原 弘昭 福岡県久留米市南町660 大電株式会社内 (72)発明者 工藤 善則 福岡県久留米市南町660 大電株式会社内 Fターム(参考) 2G015 AA28 BA04 BA06 CA05 CA20 ──────────────────────────────────────────────────続 き Continued on the front page (72) Inventor Hiroyuki Uesono 2-182 Watanabe-dori, Chuo-ku, Fukuoka City, Fukuoka Prefecture Inside Kyushu Electric Power Company (72) Inventor Hiroaki Kambara 660 Minamicho, Kurume-shi, Fukuoka Prefecture Daiden Stock In-house (72) Inventor Yoshinori Kudo 660 Minamicho, Kurume-shi, Fukuoka F-term (reference) 2D015 AA28 BA04 BA06 CA05 CA20

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】 測定対象の電力ケーブルが地中化機器に
直結されるケーブル端末の検電端子に活線状態で誘起さ
れる電圧を検出して電圧信号として出力する電圧検出部
と、 前記電力ケーブルの接地線に流れる電流信号を検出する
電流検出部と、 前記検出された電流信号の接地線電流及び前記検出され
た電圧信号から当該電圧信号の電圧位相と同位相の損失
電流を演算する損失電流演算部と、 前記演算された損失電流から電力ケーブルの劣化を診断
する劣化診断部とを備えることを特徴とする電力ケーブ
ルの劣化診断装置。
A voltage detection unit for detecting a voltage induced in a live state at a power detection terminal of a cable terminal to which a power cable to be measured is directly connected to an underground equipment and outputting the voltage as a voltage signal; A current detection unit that detects a current signal flowing through a ground line of the cable; and a loss that calculates a loss current having the same phase as the voltage phase of the voltage signal from the ground line current of the detected current signal and the detected voltage signal. A power cable deterioration diagnosis device, comprising: a current calculation unit; and a deterioration diagnosis unit that diagnoses deterioration of the power cable from the calculated loss current.
【請求項2】 前記請求項1に記載の電力ケーブルの劣
化診断装置において、 前記検電端子で検出される電圧信号と前記電力ケーブル
に印加される電圧との予め求められた位相の相関を用い
て電圧位相の補正を行う位相補正部を備え、 当該電圧位相が補正された電圧信号を損失電流演算部へ
出力することを特徴とする電力ケーブルの劣化診断装
置。
2. The deterioration diagnosis apparatus for a power cable according to claim 1, wherein a correlation between a voltage signal detected at the power detection terminal and a voltage applied to the power cable is obtained in advance. A power cable deterioration diagnosis apparatus, comprising: a phase correction unit that corrects a voltage phase by using the phase correction unit, and outputs a voltage signal whose voltage phase has been corrected to a loss current calculation unit.
【請求項3】 前記請求項1に記載の電力ケーブルの劣
化診断装置において、 前記検出部が、複数の電力回線を各々構成する電力ケー
ブルの同相における複数の検電端子により同時に複数の
電圧信号を検出し、 前記検出した複数の電圧信号の総和から当該電圧信号の
電圧位相の補正を行う位相補正部を備え、 当該電圧位相が補正された電圧信号を損失電流演算部へ
出力することを特徴とする電力ケーブルの劣化診断装
置。
3. The power cable deterioration diagnosis apparatus according to claim 1, wherein the detection unit simultaneously outputs a plurality of voltage signals by a plurality of power detection terminals in the same phase of the power cables constituting the plurality of power lines. Detecting a voltage phase of the voltage signal from the sum of the detected plurality of voltage signals, and outputting the voltage signal with the corrected voltage phase to the loss current calculation unit. Power cable degradation diagnostic device.
【請求項4】 前記請求項1ないし3のいずれかに記載
の電力ケーブルの劣化診断装置において、 前記検出部が、前記電力ケーブルに印加される電圧に周
波数の変動がある場合に、前記電圧信号を予め設定され
た特定周波数のみで検出することを特徴とする電力ケー
ブルの劣化診断装置。
4. The deterioration diagnosis device for a power cable according to claim 1, wherein the detection unit detects the voltage signal when a voltage applied to the power cable has a frequency change. Is detected only at a specific frequency set in advance.
JP2000228541A 2000-07-28 2000-07-28 Deterioration diagnostic device for power cable Pending JP2002040088A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2000228541A JP2002040088A (en) 2000-07-28 2000-07-28 Deterioration diagnostic device for power cable

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2000228541A JP2002040088A (en) 2000-07-28 2000-07-28 Deterioration diagnostic device for power cable

Publications (1)

Publication Number Publication Date
JP2002040088A true JP2002040088A (en) 2002-02-06

Family

ID=18721804

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000228541A Pending JP2002040088A (en) 2000-07-28 2000-07-28 Deterioration diagnostic device for power cable

Country Status (1)

Country Link
JP (1) JP2002040088A (en)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01257279A (en) * 1988-04-06 1989-10-13 Tohoku Electric Power Co Inc Cable diagnosing apparatus
JPH0836005A (en) * 1994-07-22 1996-02-06 Chubu Electric Power Co Inc Method for measuring dielectric loss tangent of power cable

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01257279A (en) * 1988-04-06 1989-10-13 Tohoku Electric Power Co Inc Cable diagnosing apparatus
JPH0836005A (en) * 1994-07-22 1996-02-06 Chubu Electric Power Co Inc Method for measuring dielectric loss tangent of power cable

Similar Documents

Publication Publication Date Title
EP0736776B1 (en) Non-contact voltage probe apparatus
US7459914B2 (en) Systems and methods for electrical leakage detection
EP2588871B1 (en) Apparatus and method for measuring the dissipation factor of an insulator
JPWO2007063647A1 (en) Method and apparatus for measuring partial discharge charge
JPH10170596A (en) System for diagnosing insulated apparatus and method for detecting partial discharge
JPH09184866A (en) Diagnostic method for degradation of cable under electrification
JPH07311230A (en) Method and device for monitoring insulation, which monitor insulating state of power cable in hot-line state
KR20000037145A (en) A new diagnostic technique and equipment for lightning arrester by leakage current harmonic analysis on power service
JP2002040088A (en) Deterioration diagnostic device for power cable
JPH0670665B2 (en) Non-contact electric field magnetic field sensor
JPH07311231A (en) Insulation monitoring system by superimposing high frequency in high-voltage distribution equipment
EP2588872B1 (en) Apparatus and method for measuring the dissipation factor of an insulator
JP2876322B2 (en) Diagnosis method for insulation deterioration of CV cable
JP2020106407A (en) Device and method for diagnosing deterioration of insulator of connection body for high voltage overhead cable
JPH04212076A (en) Method and device for abnormal diagnostic method of electrical equipment
JP2000009788A (en) Deterioration diagnosis method of cables
JPH0875689A (en) Deterioration detector
WO2024062653A1 (en) Live wire diagnostic system and live wire diagnostic method
JPH07253444A (en) Insulation diagnostic apparatus for power cable
JP2001183412A (en) Insulation degradation diagnosing method for power cable
JPH10160778A (en) Method and device for diagnosing insulation deferioration of live, power cable
JP2011252779A (en) Detection method of partial discharge of electrical device using magnetic field probe
JP3034651B2 (en) Diagnosis method for insulation of CV cable
JPH06331665A (en) Diagnostic monitoring system for insulation of power cable
JPH0331776A (en) Diagnostic device for insulation deterioration of cv cable

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070710

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20091111

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20091124

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20100323