JP2002040014A - Evaluation method of abrasion resistance, corrosion resistance and oxidation resistance of carbon-including refractory - Google Patents

Evaluation method of abrasion resistance, corrosion resistance and oxidation resistance of carbon-including refractory

Info

Publication number
JP2002040014A
JP2002040014A JP2000219606A JP2000219606A JP2002040014A JP 2002040014 A JP2002040014 A JP 2002040014A JP 2000219606 A JP2000219606 A JP 2000219606A JP 2000219606 A JP2000219606 A JP 2000219606A JP 2002040014 A JP2002040014 A JP 2002040014A
Authority
JP
Japan
Prior art keywords
refractory
carbon
protective plate
heating
resistance
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2000219606A
Other languages
Japanese (ja)
Inventor
Yoshitoshi Saito
吉俊 齋藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp filed Critical Nippon Steel Corp
Priority to JP2000219606A priority Critical patent/JP2002040014A/en
Publication of JP2002040014A publication Critical patent/JP2002040014A/en
Withdrawn legal-status Critical Current

Links

Abstract

PROBLEM TO BE SOLVED: To provide an evaluation method of corrosion resistance capable of preventing oxidation of carbon during the heating or temperature-rising time of a carbon-including refractory. SOLUTION: This evaluation method of abrasion resistance of the carbon- including refractory is characterized by heating the refractory 1 indirectly through a protection plate 2 placed on the carbon-including refractory, and, after continuing the heating until the protection plate 2 disappears or after removing the protection plate 2, blowing an abrasion medium into a burning flame, spraying the medium onto the protection plate 2 surface to thereby abrade the refractory, and measuring the remaining thickness and/or the attrition area of the refractory.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、炭素含有耐火物の
耐摩耗性、耐食性及び耐酸化性の評価方法に関するもの
である。
The present invention relates to a method for evaluating the wear resistance, corrosion resistance and oxidation resistance of a carbon-containing refractory.

【0002】[0002]

【従来の技術】炭素含有耐火物は、転炉や混銑車の内張
り、溶鋼鍋及び溶銑鍋のスラグライン等に広く使用さ
れ、窯炉の長寿命化に貢献している。この材質は炭素に
よる耐スラグ浸潤性と耐スポーリング性等の効果をあわ
せて、優れた耐用性を発揮しており、コスト削減を目的
として、さらに高耐用化が望まれている。これまで、実
験室における代表的な耐用性の評価方法としては、高周
波誘導炉内張り法や回転侵食法がある。いずれも、高温
下でスラグ及び鋼を溶融させ、耐火物に当該溶融物をあ
る一定時間接触させて、耐火物の損耗量を比較して耐用
性を評価する方法である。例えば、特開平06−185
20号公報では、高周波誘導炉に耐火物を内張りし、鋼
及びスラグを加えて、耐用性の評価を行っている。ま
た、特開平03−291550号公報では、鋼を封入し
たままで、炉を振動させ評価耐火物に摩耗損傷を生じさ
せたのちに、その損耗量で耐火物の耐用性を評価する方
法が開示されている。
2. Description of the Related Art Carbon-containing refractories are widely used in converters, lining of mixed iron wheels, molten steel pots and slag lines of hot metal pots, and contribute to prolonging the life of kilns. This material exhibits excellent durability in combination with the effects of slag infiltration resistance and spalling resistance by carbon, and further higher durability is desired for the purpose of cost reduction. To date, typical methods for evaluating durability in a laboratory include a high-frequency induction furnace lining method and a rotary erosion method. In each case, the slag and the steel are melted at a high temperature, the melt is brought into contact with the refractory for a certain period of time, and the wear resistance of the refractory is compared to evaluate the durability. For example, JP-A-06-185
In Japanese Patent No. 20, the refractory is lined with a high-frequency induction furnace, steel and slag are added, and the durability is evaluated. Japanese Patent Application Laid-Open No. 03-291550 discloses a method in which a furnace is vibrated while steel is sealed, wear is caused on an evaluation refractory, and then the durability of the refractory is evaluated based on the amount of wear. Have been.

【0003】高周波誘導炉内張り法は、多くの試料を一
度に比較試験でき、かつ、雰囲気制御も可能で実炉に近
い溶損が再現できる場合が多い反面、設備が高価で準備
にも手間がかかり、実験操作も簡単でないため、普及度
では回転侵食法に劣る。回転侵食法は、鉄製のドラム内
部に耐火物を内張りし、その内部でスラグや鉄を溶解さ
せて耐火物と反応させる試験であり、適量の酸素及びプ
ロパンの混合ガスを供給しながら、その熱で耐火物表面
の温度を所定の試験温度とする。試料形状が比較的小さ
く、築炉と解体も容易で設備も簡単なことから広く行わ
れている試験である。しかしながら、高周波誘導炉内張
り法や回転侵食法では耐火物に対して強い力を加えるこ
とができず、転炉やRHのような攪拌力、流動の強い条
件を十分再現することができない。転炉やRHのような
攪拌力、流動の強い条件下での耐用性を評価する場合、
酸素−プロパン燃焼火炎中に粉末状スラグを吹き込ん
で、スラグを溶解させながら耐火物表面に吹き付けるこ
とによって耐火物を侵食させる溶射侵食試験もよく行わ
れる(耐火物技術協会編、耐火物手帳‘99,p.6
7)。この場合、評価対象の試料は空気中にセットされ
るため、火炎と共に大気を巻き込むことが避けられな
い。
[0003] The high frequency induction furnace lining method can perform a comparative test on many samples at one time, and can control the atmosphere and can often reproduce the melting loss close to that of an actual furnace. In addition, since the experimental operation is not easy, the degree of penetration is inferior to the rotary erosion method. The rotary erosion method is a test in which a refractory is lined inside an iron drum, and slag and iron are dissolved inside the drum and reacted with the refractory. The temperature of the surface of the refractory is set to a predetermined test temperature. This test is widely used because the sample shape is relatively small, the furnace is easy to dismantle and dismantle, and the equipment is simple. However, the high-frequency induction furnace lining method or the rotary erosion method cannot apply a strong force to the refractory, and cannot sufficiently reproduce conditions such as a converter and RH with strong stirring power and flow. When evaluating the durability under conditions of strong stirring power and flow such as converter and RH,
A thermal spray erosion test for eroding a refractory by blowing a powdery slag into an oxygen-propane combustion flame and dissolving the slag and spraying the slag on the surface of the refractory is often performed (Refractory Handbook '99 edited by Japan Refractory Technology Association). , P.
7). In this case, since the sample to be evaluated is set in the air, it is inevitable that the atmosphere is involved with the flame.

【0004】[0004]

【発明が解決しようとする課題】上記の溶射侵食試験で
は、炭素含有耐火物を対象とした場合、特に、所定の試
験温度までに昇温する過程で、炭素の酸化による脱炭層
が形成され、初期のスラグで脱炭層の部分が失われるこ
とが明らかになった。さらに、この昇温中に形成される
脱炭層が最終的な損耗量に対する割合が大きく、炭素含
有耐火物の高精度な評価を行うことは極めて困難である
ことがわかった。
In the above thermal spray erosion test, when a carbon-containing refractory is targeted, a decarburized layer is formed by oxidation of carbon, particularly in a process of raising the temperature to a predetermined test temperature, It became clear that the decarburized layer was lost in the early slag. Furthermore, the ratio of the decarburized layer formed during the temperature increase to the final wear amount was large, and it was found that it was extremely difficult to perform a highly accurate evaluation of the carbon-containing refractory.

【0005】[0005]

【課題を解決するための手段】本発明の目的は、炭素含
有耐火物の加熱昇温時の炭素の酸化を防止した高精度な
耐摩耗性、耐食性及び耐酸化性の評価方法を提供するこ
とにある。本発明は、上記のような点を鑑みて、昇温中
の炭素の酸化が耐火物の相対評価に及ぼす悪影響の問題
を解決するために、加熱源と耐火物との間に保護板を導
入することで空気と遮断し、昇温中に火炎や空気による
炭素の酸化損耗を抑制する、炭素含有耐火物の耐食性の
評価方法を提供するものである。
SUMMARY OF THE INVENTION It is an object of the present invention to provide a method for accurately evaluating abrasion resistance, corrosion resistance and oxidation resistance of a carbon-containing refractory which prevents oxidation of carbon during heating and heating. It is in. In view of the above, the present invention introduces a protective plate between a heating source and a refractory in order to solve the problem of the adverse effect of oxidation of carbon during heating on the relative evaluation of the refractory. Accordingly, the present invention provides a method for evaluating the corrosion resistance of a carbon-containing refractory, in which the carbon-containing refractory is cut off from the air and the oxidation loss of carbon due to a flame or air during the temperature rise is suppressed.

【0006】本発明の特徴とするところは、 (1)炭素含有耐火物に保護板を介して間接的に耐火物
を加熱し、前記保護板が消失するまで加熱を継続した後
又は前記保護板を除去した後、燃焼火炎中に摩耗媒体を
吹き込み、耐火物表面に吹き付けることによって耐火物
を摩耗させ、耐火物の残厚及び/又は損耗面積を測定す
ることを特徴とする炭素含有耐火物の耐摩耗性の評価方
法。 (2)前記摩耗媒体の粒径を1〜10mmとすることを
特徴とする前記(1)記載の炭素含有耐火物の耐摩耗性
の評価方法。 (3)炭素含有耐火物に保護板を介して間接的に耐火物
を加熱し、前記保護板が消失するまで加熱を継続した後
又は前記保護板を除去した後、燃焼火炎中にスラグ原料
粉体を吹き込み、スラグを溶解させながら耐火物表面に
吹き付けることによって耐火物を侵食させ、耐火物の残
厚及び/又は損耗面積を測定することを特徴とする炭素
含有耐火物の耐食性の評価方法。 (4)炭素含有耐火物に保護板を介して間接的に耐火物
を加熱し、前記保護板が消失するまで加熱を継続した後
又は前記保護板を除去した後、所定時間加熱後に生成し
た耐火物の脱炭層厚み及び/又は脱炭部分の面積を測定
することを特徴とする炭素含有耐火物の耐酸化性の評価
方法。 (5)耐火物及び/又は保護板の表面温度を連続的に測
定することを特徴とする前記(1)〜(4)のいずれか
1項に記載の炭素含有耐火物の耐摩耗性、耐食性又は耐
酸化性の評価方法。 ここで、保護板とは火炎などの熱源と耐火物の間に存在
して、火炎の直接的な耐火物表面への作用や火炎と共に
巻き込まれる大気による作用を遮断する役割を果たす板
と定義する。摩耗媒体とは評価対象とする耐火物に吹き
付けて耐火物を摩耗させる役割を果たす媒体と定義す
る。
The features of the present invention are as follows: (1) After heating the refractory indirectly to the carbon-containing refractory via the protective plate and continuing heating until the protective plate disappears, or After removing the refractory, a wear medium is blown into the combustion flame, and the refractory is worn by spraying on the refractory surface, and the residual thickness and / or worn area of the refractory is measured. Evaluation method for wear resistance. (2) The method for evaluating the wear resistance of a carbon-containing refractory according to the above (1), wherein the particle size of the wear medium is 1 to 10 mm. (3) After heating the refractory indirectly to the carbon-containing refractory via the protective plate and continuing heating until the protective plate disappears or after removing the protective plate, the slag raw material powder is burned into the combustion flame. A method for evaluating the corrosion resistance of a carbon-containing refractory, wherein the refractory is eroded by blowing a body and spraying the slag on the surface of the refractory while dissolving the slag, and measuring a residual thickness and / or a worn area of the refractory. (4) The refractory produced indirectly after heating the carbon-containing refractory for a predetermined time after heating the refractory indirectly via the protective plate and continuing heating until the protective plate disappears or after removing the protective plate. A method for evaluating the oxidation resistance of a carbon-containing refractory, comprising measuring a thickness of a decarburized layer and / or an area of a decarburized portion of the refractory. (5) The wear resistance and corrosion resistance of the carbon-containing refractory according to any one of the above (1) to (4), wherein the surface temperature of the refractory and / or the protective plate is continuously measured. Or a method for evaluating oxidation resistance. Here, the protection plate is defined as a plate that exists between a heat source such as a flame and the refractory and plays a role of blocking the action of the flame directly on the refractory surface and the action of the atmosphere entrained with the flame. . The wear medium is defined as a medium that plays a role of abrading the refractory by spraying the refractory to be evaluated.

【0007】[0007]

【発明の実施の形態】本発明で使用する酸化防止用保護
板の材質は、鉄、アルミ、銅などから選ばれる一種ある
いは併用でもよい。鉄、アルミ、銅の化学成分は特に限
定するものではなく、合金系でも構わない。保護板に熱
伝導率の高い材料を用いれば、れんが表面もほぼ所定の
温度に達していると考えられる。本発明の効果を十分に
発揮するには、耐熱性を考慮すると、融点が試験温度に
近く、融点が試験温度±200℃以下が好ましい。融点
が試験温度−200℃未満の場合、れんがの表面が火炎
や空気と接触する時間が長くなり、表面に脱炭層が形成
されることになる。融点が試験温度+200℃の場合、
保護板を取り除くのに時間がかかるか、一度、保護板を
溶融するまで加熱したのちに、温度を降下させて所定の
試験温度にするまでの時間が長く、れんがの表面が火炎
や空気と接触する時間が長くなり、表面に脱炭層が形成
されることになる。本発明の対象とする耐火物は、C,
Al3−C,Al23−SiC−C,MgO−C,
Al23−MgO−C,MgO−SiC−C,MgO−
CaO−C等、炭素を含有する耐火物であれば、特に限
定するものではない。
BEST MODE FOR CARRYING OUT THE INVENTION The material of the protection plate for preventing oxidation used in the present invention may be one selected from iron, aluminum, copper and the like or a combination thereof. The chemical components of iron, aluminum, and copper are not particularly limited, and alloys may be used. If a material having a high thermal conductivity is used for the protective plate, it is considered that the surface of the brick has almost reached a predetermined temperature. In order to sufficiently exert the effects of the present invention, in consideration of heat resistance, the melting point is preferably close to the test temperature, and the melting point is preferably ± 200 ° C. or lower. If the melting point is lower than the test temperature of -200 ° C, the time for which the surface of the brick is in contact with the flame or air becomes longer, and a decarburized layer is formed on the surface. When the melting point is the test temperature + 200 ° C,
It takes time to remove the protection plate, or once the protection plate is heated until it melts, then it takes a long time to reduce the temperature to the specified test temperature, and the surface of the brick comes in contact with flame or air. The time required for the treatment is prolonged, and a decarburized layer is formed on the surface. The refractories targeted by the present invention are C,
Al 2 O 3 —C, Al 2 O 3 —SiC—C, MgO—C,
Al 2 O 3 -MgO-C, MgO-SiC-C, MgO-
There is no particular limitation as long as it is a refractory containing carbon, such as CaO-C.

【0008】本発明は、酸化性雰囲気、Ar、N2、H
e、H2、真空下などの非酸化性雰囲気での加熱に限定
することなく、空気、酸素の巻き込みも含めて耐火物が
酸素と接触する可能性のある全ての加熱条件下で適用可
能である。加熱に際し使用するガスは、プロパン−酸
素、メタン−酸素、コークス炉ガス等、いずれを用いて
も良い。
The present invention relates to an oxidizing atmosphere, Ar, N 2 , H
e, H 2, without limiting the heating in a non-oxidizing atmosphere such as vacuum, may be applied in any heating condition in air, refractories be included entrainment of oxygen may come into contact with oxygen is there. The gas used for heating may be any of propane-oxygen, methane-oxygen, coke oven gas, and the like.

【0009】前記(1)又は(3)の発明においては、
試験条件に応じ、1300〜1700℃に加熱し、保護
板が消失するまで加熱を継続したのち又は前記保護板を
除去した後、従来法により摩耗媒体又はスラグ原料粉体
を装入し、耐火物の損耗状態を測定することにより、耐
火物の正確な耐摩耗性や耐食性の評価ができる。摩耗媒
体としては、その成分は、特に限定するものではない
が、評価対象とする耐火物を構成する主要な原材料より
も硬度が高い材料を使用することが好ましい。また、試
験温度よりも融点が400℃以上高く、試験温度付近で
安定な材料を用いることが好ましい。例えば、ジルコニ
アブロックやマグネシアの粗粒子などを使用すればよ
い。摩耗媒体の粒径は特に限定するものではないが、粒
径が1mm未満では、耐火物に十分な力を加えることが
できず、また、周囲への飛散量も多くなるために、試験
時間を長くすることが必要となる。10mmを超える
と、評価対象の耐火物の種類に関わらず、摩耗量が大き
くなるために、評価対象の試料間の相対的な比較が困難
になるので、前記(2)の発明においては粒径1〜10
mmとする。保護板の厚さについては、特に規定しない
が、組み込むれんがの大きさに相当し、れんがとの隙間
ができるだけ小さいことが好ましい。れんがとの接着
は、モルタルを薄く塗る方法やアロンセラミックなどの
接着剤を用いる方法などいずれでも構わない。
In the above invention (1) or (3),
After heating to 1300 to 1700 ° C. depending on the test conditions and continuing heating until the protective plate disappears or after removing the protective plate, a wear medium or slag raw material powder is charged by a conventional method, and the refractory By measuring the wear state of the refractory, it is possible to accurately evaluate the wear resistance and corrosion resistance of the refractory. The components of the wear medium are not particularly limited, but it is preferable to use a material having a higher hardness than the main raw materials constituting the refractory to be evaluated. Further, it is preferable to use a material whose melting point is higher than the test temperature by 400 ° C. or more and which is stable around the test temperature. For example, zirconia blocks or coarse particles of magnesia may be used. Although the particle size of the wear medium is not particularly limited, if the particle size is less than 1 mm, a sufficient force cannot be applied to the refractory, and the amount of scattering to the surroundings increases. It is necessary to make it longer. If it exceeds 10 mm, regardless of the type of the refractory to be evaluated, the amount of abrasion increases, and it becomes difficult to make a relative comparison between the samples to be evaluated. 1 to 10
mm. Although the thickness of the protective plate is not particularly limited, it corresponds to the size of the brick to be incorporated, and it is preferable that the gap between the protective plate and the brick is as small as possible. Adhesion to the brick may be performed by any method such as applying a thin mortar or using an adhesive such as Aron ceramic.

【0010】前記(4)の発明においては、上記に説明
した間接的な加熱後、保護板が消失するまで加熱を継続
し、又は保護板を除去した後、さらに所定時間加熱を行
うことにより、昇温中の炭素の酸化による脱炭層の生成
を防止できるので、耐火物の耐酸化性を高精度に評価す
ることができる。
[0010] In the invention of the above (4), after the indirect heating described above, heating is continued until the protective plate disappears, or after the protective plate is removed, heating is further performed for a predetermined time. Since the formation of a decarburized layer due to the oxidation of carbon during the heating can be prevented, the oxidation resistance of the refractory can be evaluated with high accuracy.

【0011】前記(5)の発明においては、評価条件の
定量化をはかるために、放射温度計で保護板及び/又は
耐火物の表面温度を測定することによって、安定した評
価を行うことができる。耐摩耗性、耐食性及び耐酸化性
の評価については、試験後に炉を解体し取り出した耐火
物試料の残寸(耐酸化性の場合は非酸化層厚み)を元寸
から差し引いて損耗量を求めることで、評価する。耐摩
耗性については、損耗量が大きく、試験後の形状が直線
状であるとは限らないので、試験後の試料を2次元の画
像として取り込み、損耗した部分の面積を求めることで
評価しても良い。耐食性及び耐酸化性についても、損耗
量が大きい場合は、損耗した部分の面積を求めることで
評価しても良い。もちろん、損耗部分の体積を求めて比
較、評価することも本発明の範囲に属する。
In the invention (5), a stable evaluation can be performed by measuring the surface temperature of the protective plate and / or the refractory with a radiation thermometer in order to quantify the evaluation conditions. . For the evaluation of abrasion resistance, corrosion resistance and oxidation resistance, the furnace was disassembled after the test, and the remaining size (in the case of oxidation resistance, the non-oxidized layer thickness) of the refractory sample was subtracted from the original size to determine the amount of wear. It is evaluated by Regarding wear resistance, since the amount of wear is large and the shape after the test is not always linear, the sample after the test is taken in as a two-dimensional image and evaluated by obtaining the area of the worn part. Is also good. When the amount of wear is large, the corrosion resistance and the oxidation resistance may be evaluated by obtaining the area of the worn part. Obviously, obtaining, comparing and evaluating the volume of the worn portion also falls within the scope of the present invention.

【0012】[0012]

【実施例】以下に本発明を実施例によって説明する。た
だし、本発明はこれらの実施例に限定されるものではな
い。本発明を、MgO−Cれんがを対象として評価を行
った実施例である。本試験に用いた試料は純度98%の
電融マグネシアクリンカーを77%,純度98%の鱗状
黒鉛を20%含有し,フェノール樹脂をバインダーとし
て用い、金属Alを3%添加したMgO−Cれんがであ
り、転炉の内張り耐火物として広く用いられているもの
である。試験に際しては、MgO−Cれんがを図1の形
状に切り出して試験片1を作製し、図2のように試験片
1を4枚並べた。試験片1の稼動面側10には、厚さ3
mmの鋼製の保護板2をアロンセラミックを用いて張り
つけた。
The present invention will be described below with reference to examples. However, the present invention is not limited to these examples. This is an example in which the present invention was evaluated for MgO-C brick. The sample used in this test contained MgO-C bricks containing 77% of electrofused magnesia clinker of 98% purity and 20% of scale graphite of 98% purity, using phenol resin as a binder, and adding 3% of metal Al. Yes, it is widely used as refractory lining for converters. In the test, the MgO-C brick was cut into the shape shown in FIG. 1 to produce a test piece 1, and four test pieces 1 were arranged as shown in FIG. On the working surface side 10 of the test piece 1, a thickness 3
The protective plate 2 made of steel having a thickness of 2 mm was attached using Aron ceramic.

【0013】燃焼ガスとして 体積比でプロパン1:酸
素5のものを用いた。1675℃に達したのちに、5分
間温度が安定したところで、バーナー3を止め、解体し
て試験片の残寸の測定を行った。鋼製の保護板3は、1
675℃に達した時点では全て溶け落ちるため、評価に
関しては全く問題はない。損耗寸法は、10mmおきに
5点の残寸(脱炭層厚みの場合は非酸化層厚み)を測定
しその平均を求め、さらに、4枚の平均値と定義した。
数値が小さいほど、酸化による脱炭脆弱層が少ない。
As the combustion gas, propane: oxygen 5 in a volume ratio of 5 was used. After reaching 1675 ° C., when the temperature was stabilized for 5 minutes, the burner 3 was stopped, disassembled, and the remaining size of the test piece was measured. The steel protection plate 3
When the temperature reaches 675 ° C., all of them are melted off, so that there is no problem in evaluation. The wear dimension was determined by measuring the remaining dimensions of five points (the thickness of the non-oxidized layer in the case of the decarburized layer thickness) every 10 mm, calculating the average, and further defining the average value of the four sheets.
The smaller the value, the less the decarburized fragile layer due to oxidation.

【0014】図3は1675℃で安定したところで解体
したときの、MgO−Cれんがの脱炭層の厚みの比較を
示すグラフに関するものである。耐火物の温度は、放射
温度計で測定した。図4は、耐火物の温度が試験温度の
1675℃で安定したのちに、マグネシア粗粒による摩
耗試験を実施し、摩耗試験終了後のMgO−Cれんがの
摩耗量の比較を示すグラフに関するものである。図5
は、耐火物の温度が1675℃で安定したのちに、スラ
グによる侵食試験を実施し、侵食試験終了後のMgO−
Cれんがの溶損量の比較を示すグラフに関するものであ
る。図6は、耐火物の温度が1675℃で安定したのち
に、所定時間、燃焼ガスを吹き続ける酸化試験を実施
し、酸化試験終了後のMgO−Cれんがの脱炭層厚みの
比較を示すグラフに関するものである。
FIG. 3 relates to a graph showing a comparison of the thickness of the decarburized layer of the MgO-C brick when it is disassembled when it is stabilized at 1675 ° C. The temperature of the refractory was measured with a radiation thermometer. FIG. 4 relates to a graph showing a comparison of the wear amount of MgO-C brick after the wear test was performed after the temperature of the refractory was stabilized at the test temperature of 1675 ° C., and then the wear test was performed by using magnesia coarse particles. is there. FIG.
Conducted an erosion test with slag after the temperature of the refractory was stabilized at 1675 ° C., and performed MgO-
It is related to a graph showing a comparison of the amount of erosion of C brick. FIG. 6 is a graph showing a comparison of the thickness of the decarburized layer of the MgO-C brick after performing the oxidation test in which the combustion gas is continuously blown for a predetermined time after the temperature of the refractory is stabilized at 1675 ° C. Things.

【0015】実施例1、2では、保護板の利用及び保護
板の材質に関する検討を行った。実施例1では、60×
100mm×厚さ3mmの鋼板を試料の稼動面に貼り付
けたものである。実施例2では、60×100mm×厚
さ3mmのアルミニウム板を試料の稼動面に貼り付けた
ものである。比較例1は保護板を使用しない従来までの
方法である。その結果、保護板の融点と試験温度の差が
120℃の実施例1では、昇温中の炭素含有耐火物表面
の酸化による脱炭層の厚みを2mmに抑制し、比較例1
と比べて大幅に酸化損耗を低減できたことがわかる。保
護板の融点と試験温度の差が900℃を超える実施例2
では、脱炭層厚みは抑制できたものの、実施例1に比べ
ると、その抑制効果は低いレベルであることがわかる。
これらの試験結果が示すように、本発明例による試験方
法では、大幅に初期の酸化損耗量を抑制し、全体に占め
る損耗量に対する初期損耗の影響を最小限にとどめるこ
とができた。
In Examples 1 and 2, the use of the protective plate and the material of the protective plate were examined. In the first embodiment, 60 ×
A steel plate having a size of 100 mm x a thickness of 3 mm was attached to the working surface of the sample. In Example 2, an aluminum plate having a size of 60 × 100 mm × thickness of 3 mm was attached to the working surface of the sample. Comparative Example 1 is a conventional method using no protective plate. As a result, in Example 1 in which the difference between the melting point of the protective plate and the test temperature was 120 ° C., the thickness of the decarburized layer due to oxidation of the surface of the carbon-containing refractory during heating was suppressed to 2 mm.
It can be seen that oxidation loss was significantly reduced as compared with the case of FIG. Example 2 in which the difference between the melting point of the protective plate and the test temperature exceeds 900 ° C.
In this example, although the thickness of the decarburized layer could be suppressed, it can be seen that the suppression effect was at a lower level than in Example 1.
As shown by these test results, the test method according to the example of the present invention was able to significantly suppress the initial oxidation wear amount and minimize the influence of the initial wear on the total wear amount.

【0016】実施例3では、実施例1の方法により、耐
火物を加熱した後、実際にマグネシア粗粒を吹き付けて
耐摩耗性の評価試験を行った場合である。マグネシア粗
粒の成分はMgO:96%で、粒径は1〜5mmとし
た。試験温度は1675℃で2時間吹き付けを行った。
マグネシア粗粒の吹き付け量は50kg/1時間とし
た。試験終了後の摩耗量は10mmを超え、昇温中の脱
炭層の厚みと比べても十分な摩耗量があり、炭素含有耐
火物の耐摩耗性を高精度に評価することができた。比較
例2は、比較例1に引き続き実施例3と同じ条件でマグ
ネシアを吹き付けた際の評価結果であり、実施例3と比
較して、昇温中の脱炭層厚みの影響が大きく、高精度の
評価ができなかった。
In the third embodiment, the refractory is heated by the method of the first embodiment, and then a magnesia coarse particle is actually sprayed to perform a wear resistance evaluation test. The component of the magnesia coarse particles was MgO: 96%, and the particle size was 1 to 5 mm. The spraying was performed at a test temperature of 1675 ° C. for 2 hours.
The spray amount of the magnesia coarse particles was 50 kg / 1 hour. The amount of wear after the test was over 10 mm, which was sufficient compared with the thickness of the decarburized layer during the temperature rise, and the wear resistance of the carbon-containing refractory could be evaluated with high accuracy. Comparative Example 2 is an evaluation result when magnesia was sprayed under the same conditions as Example 3 subsequent to Comparative Example 1. Compared with Example 3, the influence of the thickness of the decarburized layer during temperature rise was large, and high accuracy was obtained. Could not be evaluated.

【0017】実施例4では、実施例1の方法により、実
際にスラグを導入して耐食性の評価試験を行った場合で
ある。スラグの組成は、CaO=50.45,SiO2=
16.85,MgO=7,Al23=2,MnO=2.
5,FeO=21.2として、試験温度は1675℃で
2時間スラグを吹き付ける試験を実施した。スラグの吹
き付け量は15kg/1時間とした。スラグの加熱は引
き続き、実施例1と同じ条件でバーナーにより行った。
損耗深さは10mm程度と、昇温中の脱炭層の厚みと比
べても十分な損耗量があり、炭素含有耐火物の耐食性を
高精度に評価することができた。比較例3は、比較例1
の加熱に引き続き実施例4と同じ条件でスラグを導入し
た際の評価結果であり、実施例4と比較し、大きく外れ
た溶損量を示し、高精度の評価ができなかった。
In the fourth embodiment, a slag is actually introduced by the method of the first embodiment, and a corrosion resistance evaluation test is performed. The composition of the slag was CaO = 50.45, SiO 2 =
16.85, MgO = 7, Al 2 O 3 = 2, MnO = 2.
5, a test was conducted in which slag was sprayed at 1675 ° C. for 2 hours with FeO = 21.2. The amount of slag sprayed was 15 kg / hour. The heating of the slag was subsequently performed with a burner under the same conditions as in Example 1.
The depth of wear was about 10 mm, which was a sufficient amount of wear even when compared with the thickness of the decarburized layer during temperature rise, and the corrosion resistance of the carbon-containing refractory could be evaluated with high accuracy. Comparative Example 3 is Comparative Example 1
This is an evaluation result when slag was introduced under the same conditions as in Example 4 following the heating of Example 4. As compared with Example 4, the amount of erosion greatly deviated, and high-precision evaluation was not possible.

【0018】実施例5では、実施例1の加熱方法によ
り、1675℃に達して安定したのちに、燃焼ガスを2
時間吹き続ける耐酸化性の評価試験を行った場合であ
る。脱炭層厚みは7mmと、昇温中の脱炭層厚みと比べ
ても十分な損耗量があり、炭素含有耐火物の耐酸化性を
高精度に評価することができた。比較例4は、比較例1
の加熱に引き続き実施例5と同じ条件で燃焼ガスを吹き
続けた際の評価結果であり、実施例5と比較して、昇温
中の脱炭層厚みの影響が大きく、高精度な評価ができな
かった。
In the fifth embodiment, after the temperature reaches 1675 ° C. and is stabilized by the heating method of the first embodiment, the combustion gas is
This is a case where an evaluation test of oxidation resistance that continues to be performed for a long time is performed. The thickness of the decarburized layer was 7 mm, which was a sufficient amount of wear compared to the thickness of the decarburized layer during the temperature rise, and the oxidation resistance of the carbon-containing refractory could be evaluated with high accuracy. Comparative Example 4 is Comparative Example 1
This is an evaluation result when the combustion gas was continuously blown under the same conditions as in Example 5 following the heating of Example 5. Compared with Example 5, the influence of the thickness of the decarburized layer during the temperature increase was large, and highly accurate evaluation was possible. Did not.

【0019】[0019]

【発明の効果】本発明では、保護板により、火炎や火炎
と共に巻き込まれる空気との接触を遮断することで、昇
温中の耐火物表面の酸化、表面の組織の脆弱化を抑制し
ているので、本発明による保護板を用いた試験方法で
は、炭素含有耐火物の耐摩耗性、耐食性及び耐酸化性を
高精度に評価することができる。
According to the present invention, the protection plate prevents contact with the flame or air entrained with the flame, thereby suppressing oxidation of the surface of the refractory during heating and weakening of the surface structure. Therefore, in the test method using the protective plate according to the present invention, the wear resistance, corrosion resistance and oxidation resistance of the carbon-containing refractory can be evaluated with high accuracy.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明に使用する試料の形状を示す説明図。FIG. 1 is an explanatory view showing the shape of a sample used in the present invention.

【図2】本発明の試験方法の概略を示す説明図。FIG. 2 is an explanatory view schematically showing a test method of the present invention.

【図3】1675℃で安定したところで解体したとき
の、MgO−Cれんがの脱炭層の厚みの比較を示すグラ
フ。
FIG. 3 is a graph showing a comparison of the thickness of a decarburized layer of MgO—C brick when it is disassembled when it is stabilized at 1675 ° C.

【図4】マグネシア粗粒による摩耗試験を実施したのち
の、MgO−Cれんがの摩耗量の比較を示すグラフ。
FIG. 4 is a graph showing a comparison of wear amounts of MgO—C bricks after performing a wear test using magnesia coarse particles.

【図5】スラグによる侵食試験を実施したのちの、Mg
O−Cれんがの溶損量の比較を示すグラフ。
FIG. 5 shows the results of an erosion test using slag and Mg.
The graph which shows the comparison of the amount of erosion of OC brick.

【図6】酸化試験を実施したのちの、MgO−Cれんが
の脱炭層厚みの比較を示すグラフ。
FIG. 6 is a graph showing a comparison of the decarburized layer thickness of MgO-C brick after performing an oxidation test.

【符号の簡単な説明】[Brief description of reference numerals]

1 試験片 2 保護板 3 バーナー DESCRIPTION OF SYMBOLS 1 Test piece 2 Protective plate 3 Burner

Claims (5)

【特許請求の範囲】[Claims] 【請求項1】炭素含有耐火物に保護板を介して間接的に
耐火物を加熱し、前記保護板が消失するまで加熱を継続
した後又は前記保護板を除去した後、燃焼火炎中に摩耗
媒体を吹き込み、耐火物表面に吹き付けることによって
耐火物を摩耗させ、耐火物の残厚及び/又は損耗面積を
測定することを特徴とする炭素含有耐火物の耐摩耗性の
評価方法。
An indirect heating of a carbon-containing refractory through a protective plate, and after the heating is continued until the protective plate disappears or after the protective plate is removed, abrasion occurs during the combustion flame. A method for evaluating the abrasion resistance of a carbon-containing refractory, which comprises measuring a residual thickness and / or a worn area of a refractory by blowing a medium and spraying the refractory on a surface of the refractory.
【請求項2】前記摩耗媒体の粒径を1〜10mmとする
ことを特徴とする請求項1記載の炭素含有耐火物の耐摩
耗性の評価方法。
2. The method for evaluating the wear resistance of a carbon-containing refractory according to claim 1, wherein the wear medium has a particle size of 1 to 10 mm.
【請求項3】炭素含有耐火物に保護板を介して間接的に
耐火物を加熱し、前記保護板が消失するまで加熱を継続
した後又は前記保護板を除去した後、燃焼火炎中にスラ
グ原料粉体を吹き込み、スラグを溶解させながら耐火物
表面に吹き付けることによって耐火物を侵食させ、耐火
物の残厚及び/又は損耗面積を測定することを特徴とす
る炭素含有耐火物の耐食性の評価方法。
3. A method of heating a refractory indirectly through a protective plate to a carbon-containing refractory and continuing heating until the protective plate disappears or removing the protective plate, and then slagging in the combustion flame. Evaluation of the corrosion resistance of carbon-containing refractories, characterized in that the raw material powder is blown, the slag is melted, and the refractory is eroded by spraying on the refractory surface, and the residual thickness and / or the wear area of the refractory is measured. Method.
【請求項4】炭素含有耐火物に保護板を介して間接的に
耐火物を加熱し、前記保護板が消失するまで加熱を継続
した後又は前記保護板を除去した後、所定時間加熱後に
生成した耐火物の脱炭層厚み/又は脱炭部分の面積を測
定することを特徴とする炭素含有耐火物の耐酸化性の評
価方法。
4. After the refractory is heated indirectly to the carbon-containing refractory through a protective plate, and the heating is continued until the protective plate disappears or after the protective plate is removed, the refractory is formed after heating for a predetermined time. A method for evaluating the oxidation resistance of a carbon-containing refractory, wherein the thickness of the decarburized layer and / or the area of the decarburized portion of the refractory is measured.
【請求項5】耐火物及び/又は保護板の表面温度を連続
的に測定することを特徴とする請求項1〜4のいずれか
1項に記載の炭素含有耐火物の耐摩耗性、耐食性又は耐
酸化性の評価方法。
5. The carbon-containing refractory according to claim 1, wherein the surface temperature of the refractory and / or the protective plate is continuously measured. Evaluation method of oxidation resistance.
JP2000219606A 2000-07-19 2000-07-19 Evaluation method of abrasion resistance, corrosion resistance and oxidation resistance of carbon-including refractory Withdrawn JP2002040014A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2000219606A JP2002040014A (en) 2000-07-19 2000-07-19 Evaluation method of abrasion resistance, corrosion resistance and oxidation resistance of carbon-including refractory

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2000219606A JP2002040014A (en) 2000-07-19 2000-07-19 Evaluation method of abrasion resistance, corrosion resistance and oxidation resistance of carbon-including refractory

Publications (1)

Publication Number Publication Date
JP2002040014A true JP2002040014A (en) 2002-02-06

Family

ID=18714357

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000219606A Withdrawn JP2002040014A (en) 2000-07-19 2000-07-19 Evaluation method of abrasion resistance, corrosion resistance and oxidation resistance of carbon-including refractory

Country Status (1)

Country Link
JP (1) JP2002040014A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009523414A (en) * 2005-12-21 2009-06-25 ブルーディ、テクノロジー、ソシエダッド、リミターダ Use of DHA, EPA or DHA-derived EPA to treat lesions associated with oxidative damage of cells
JP2014028830A (en) * 2005-12-21 2014-02-13 Brudy Technology Sl Use of dha, epa or dha-derived epa for treating pathology associated with cellular oxidative damage

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009523414A (en) * 2005-12-21 2009-06-25 ブルーディ、テクノロジー、ソシエダッド、リミターダ Use of DHA, EPA or DHA-derived EPA to treat lesions associated with oxidative damage of cells
JP2014028830A (en) * 2005-12-21 2014-02-13 Brudy Technology Sl Use of dha, epa or dha-derived epa for treating pathology associated with cellular oxidative damage

Similar Documents

Publication Publication Date Title
JP2007298433A (en) Method of evaluating corrosion resistance, abrasion resistance and oxidation resistance of carbon-containing refractory material
JP2002040014A (en) Evaluation method of abrasion resistance, corrosion resistance and oxidation resistance of carbon-including refractory
WO2022215727A1 (en) Castable refractory
JP2022161032A (en) Castable refractory and molten steel ladle
JP4167382B2 (en) Evaluation method of corrosion resistance, wear resistance and oxidation resistance of refractories containing carbon
JP2003171170A (en) Magnesia-carbon brick
JP2000159579A (en) Flame coating material
JP2005089271A (en) Carbon-containing refractory, its manufacturing method and its use application
JPH0415484A (en) Inner lining material for cement baking filn
JP2552987B2 (en) Refractory for casting
JP3330811B2 (en) Carbon-containing refractory and melting and refining vessel for molten metal lined with the refractory
JP3330810B2 (en) Carbon-containing basic refractory and melting and refining vessel for molten metal lined with the refractory
KR100286663B1 (en) Basic flame retardant for timing ladle
KR910005026B1 (en) Graphitic refractories and preparation method thereof
JPH11147776A (en) Amorphous refractory
JPH0952759A (en) Refractory superior in corrosion resistance to melted metal
JP2004323260A (en) Nozzle material for continuous casting and nozzle for continuous casting
JP2003221271A (en) Carbon-containing brick
JP2000001363A (en) Refractory lining
JP3470588B2 (en) Powder mixture for flame spray repair
JP2002277174A (en) Method for heating molten metal container
JPH09104915A (en) Refractory lining of rh degassing chamber
JP2953293B2 (en) Gas injection tuyere structure for steelmaking furnace
JPH04209744A (en) Carbon-containing refractory
JPH11278940A (en) Alumina-silicon carbide refractory

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20071002