JPH09104915A - Refractory lining of rh degassing chamber - Google Patents

Refractory lining of rh degassing chamber

Info

Publication number
JPH09104915A
JPH09104915A JP25905895A JP25905895A JPH09104915A JP H09104915 A JPH09104915 A JP H09104915A JP 25905895 A JP25905895 A JP 25905895A JP 25905895 A JP25905895 A JP 25905895A JP H09104915 A JPH09104915 A JP H09104915A
Authority
JP
Japan
Prior art keywords
brick
magnesia carbon
tank
bricks
refractory lining
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP25905895A
Other languages
Japanese (ja)
Inventor
Kiyoshi Goto
潔 後藤
Masahiko Amano
正彦 天野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp filed Critical Nippon Steel Corp
Priority to JP25905895A priority Critical patent/JPH09104915A/en
Publication of JPH09104915A publication Critical patent/JPH09104915A/en
Pending legal-status Critical Current

Links

Abstract

PROBLEM TO BE SOLVED: To obtain the refractory linings of an RH degassing chamber having a long life. SOLUTION: The refractory linings of the RH degassing chamber are formed by lining part or the whole of the chamber with magnesia carbon bricks having <=5mm thickness of the oxidation decarburized layers after exposure for four hours in an atm. atmosphere of 1400 deg.C or the refractory linings of the RH degassing chamber are formed by lining part or the whole of the chamber with magnesia carbon bricks formed by covering the >=1 surfaces of the bricks with metallic plates or metallic foil.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、鉄鋼精錬に用いら
れるRH脱ガス設備の槽の耐火物内張りに関する。
TECHNICAL FIELD The present invention relates to a refractory lining for a tank of an RH degassing facility used for iron and steel refining.

【0002】[0002]

【従来の技術】近年の鉄鋼成分厳格化に伴い、RH脱ガ
ス設備(以下、RHと呼ぶ)の重要性は非常に高まり、
精錬操作は内張り耐火物にとって厳しいものとなってい
る。特に、精錬の際にフラックスをRH脱ガス槽(以
下、RH槽と呼ぶ)内の溶鋼に添加すると、内張り耐火
物の損耗は大きく加速される。しかも、内張り耐火物の
寿命は鉄鋼精錬コストに大きな影響を与えるため、少し
でも安価な鉄鋼製品を製造するために、内張り耐火物に
は益々の長寿命が求められている。また、転炉や連続鋳
造とのマッチングを取り、計画に則った生産計画を達成
するなどして生産性を向上させるためには、安定した槽
寿命すなわち内張り耐火物の寿命が期待されている。
2. Description of the Related Art With the recent tightening of steel composition, the importance of RH degassing equipment (hereinafter referred to as RH) has increased significantly.
Refining operations are demanding for refractory linings. In particular, when flux is added to molten steel in an RH degassing tank (hereinafter referred to as RH tank) during refining, the wear of the lining refractory material is greatly accelerated. Moreover, since the life of the lining refractory material has a great influence on the steel refining cost, the lining refractory material is required to have an even longer life in order to manufacture an inexpensive steel product. Further, in order to improve productivity by matching with converters and continuous casting and achieving a production plan in accordance with the plan, a stable tank life, that is, a life of lining refractory is expected.

【0003】従来、RH槽用内張り耐火物としてはマグ
クロれんがが広く使用されてきている。これはマグクロ
れんがが高温かつ真空下の条件で安定に使用できるこ
と、及び取鍋の溶鋼にRH槽を浸漬する際に槽内に侵入
する取鍋スラグに対する耐食性が比較的高いためであ
る。マグクロれんがとしては、焼結マグネシアクリンカ
ーと天然のクロム鉱をベースにした焼成れんがであるダ
イレクトボンドれんがが主に使用されている。しかし、
特に高耐用性が必要とされる場合は、マグネシアとクロ
ム鉱を一旦電気炉で溶融させた後に固化させ、これを粉
砕した電融マグクロクリンカーを併用したセミリボンド
れんがも使用される。
Conventionally, magro bricks have been widely used as refractory linings for RH tanks. This is because the magro brick can be stably used under high temperature and vacuum conditions, and has relatively high corrosion resistance against the ladle slag that enters the RH tank when it is immersed in the molten steel of the ladle. Directly-bonded bricks, which are fired bricks based on sintered magnesia clinker and natural chrome ore, are mainly used as magro bricks. But,
When particularly high durability is required, a semi-ribbon brick is also used in which magnesia and chrome ore are once melted in an electric furnace and then solidified, and this is crushed to use together with an electro-fused magcro clinker.

【0004】[0004]

【発明が解決しようとする課題】RH槽の内張り耐火物
には、前述のように安定した長い寿命が求められてい
る。しかし、内張りされたマグクロれんがは主に以下の
ような機構により損耗し、長寿命を達成するのは容易で
はない。
The refractory lining for the RH tank is required to have a stable and long life as described above. However, the lined magcro brick is mainly worn by the following mechanism, and it is not easy to achieve a long life.

【0005】マグクロれんがの損耗機構の一つとしてま
ず挙げられるのは、槽の稼働と待機の繰り返しに起因す
る熱衝撃がれんがに加わり、れんがに亀裂が生じて剥落
する現象である。これは熱的スポーリング、あるいは単
にスポーリングないしスポールとも呼ばれる。
One of the wear mechanisms of magro bricks is a phenomenon in which the bricks are cracked by thermal shock caused by repeated operation and standby of the tank, which causes cracks in the bricks. This is also called thermal spalling, or simply spalling or spalling.

【0006】一方、取鍋等から槽内に侵入した取鍋スラ
グはれんがを溶損あるいはれんがに浸潤する。スラグが
浸潤した部分は変質層となり、熱衝撃を受けると容易に
剥落する。スラグ浸潤層の剥落は構造的スポーリングあ
るいは単に構造スポールと呼ばれる。特に、マグクロれ
んがは、スラグの浸潤により変質層が形成されやすく、
構造的スポーリングが生じやすい欠点があり、これが内
張り耐火物としての寿命を決定している場合が多い。
On the other hand, the ladle slag that has entered the tank from the ladle or the like melts or infiltrates the brick. The part where the slag has infiltrated becomes an altered layer, and easily peels off when subjected to thermal shock. The exfoliation of the slag infiltration layer is called structural spalling or simply structural spall. In particular, magcro bricks easily form an altered layer due to the infiltration of slag,
There is a drawback that structural spalling is likely to occur, which often determines the life of the refractory lining.

【0007】ところで、スラグが浸潤し難く、熱的スポ
ーリングにも強いれんがとして、マグネシアカーボンれ
んががある。マグネシアカーボンれんがのRH槽への適
用事例としては、特開昭63−74956号公報に記載
された発明がある。この発明では金属を添加したマグネ
シアカーボンれんがをRH槽の内張り耐火物として使用
する。しかしこの発明を実施した場合、内張り耐火物で
あるマグネシアカーボンれんがが乾燥時、予熱時あるい
は操業中に酸化脱炭され、十分な耐用性と寿命が得られ
ないという問題がある。ここで、酸化脱炭とは、れんが
中の炭素成分が大気などに含まれる酸素によって酸化消
失することで、主にれんがの稼働面及び背面で観察され
る。
By the way, there is magnesia carbon brick as a brick that is hard to infiltrate slag and is resistant to thermal spalling. An example of application of magnesia carbon bricks to an RH tank is the invention described in JP-A-63-74596. In the present invention, a magnesia carbon brick containing a metal is used as a refractory lining for an RH tank. However, when the present invention is carried out, there is a problem in that magnesia carbon brick, which is a refractory lining, is oxidatively decarburized during drying, preheating, or during operation, and sufficient durability and life cannot be obtained. Here, the oxidative decarburization is mainly observed on the working surface and the back surface of the brick because the carbon component in the brick is oxidized and disappeared by oxygen contained in the atmosphere.

【0008】RH槽の内張り耐火物にマグネシアカーボ
ンれんがを使用する際、れんがの背面で生じる酸化脱炭
への対策は、文献にも見られる。たとえば耐火物(19
87)vol.39,P.273〜281 には、可撓性と可縮性のある
マグネシアボードをマグネシアカーボンれんがの背面に
使用した例が記載されている。しかしこの対策も、マグ
ネシアボードの気孔率が高いために酸素を十分に遮断で
きず、全ての場合に十分な効果が得られるとは言えな
い。
When using magnesia carbon bricks for refractory linings in RH tanks, measures against oxidative decarburization that occur on the back surface of the bricks are also found in the literature. For example, refractories (19
87) vol.39, P.273-281 describes an example in which a flexible and contractible magnesia board is used for the back surface of a magnesia carbon brick. However, even this measure cannot block oxygen sufficiently because the porosity of magnesia board is high, and it cannot be said that a sufficient effect can be obtained in all cases.

【0009】[0009]

【課題を解決するための手段】マグネシアカーボンれん
がは、スラグが浸潤し難く、熱的スポーリングにも強い
優れたれんがである。これをRH槽内張り用耐火物とし
て使いこなすためには、その酸化脱炭を抑える必要があ
ると判断した。その対策として、まず稼働面側の酸化脱
炭を抑制するためには適切なれんが材質を選定すること
が必要であり、また、背面側の酸化脱炭を防止するため
には適当な酸化脱炭防止法を処置する必要があると考え
て研究を進め、本発明を得た。
[Means for Solving the Problems] Magnesia carbon brick is an excellent brick which is difficult for slag to infiltrate and is resistant to thermal spalling. In order to use this as a refractory for RH tank lining, it was judged that the oxidative decarburization had to be suppressed. As a countermeasure, first of all, it is necessary to select an appropriate brick material in order to suppress oxidative decarburization on the operating side, and to prevent oxidative decarburization on the rear side, an appropriate oxidative decarburization is required. The present inventors obtained the present invention by proceeding with research in consideration of the need to treat preventive measures.

【0010】すなわち、本発明は、1400℃の大気雰
囲気中に4時間暴露した後の酸化脱炭層厚さが5mm以下
のマグネシアカーボンれんがを一部あるいは全部に内張
りしたRH脱ガス槽の耐火物内張り、あるいは、れんが
の一面以上を金属板あるいは金属箔で覆ったマグネシア
カーボンれんがを一部あるいは全部に内張りしたRH脱
ガス槽の耐火物内張りである。
That is, according to the present invention, the refractory lining of an RH degassing tank in which a magnesia carbon brick having an oxidative decarburized layer thickness of 5 mm or less after being exposed in an air atmosphere of 1400 ° C. for 4 hours is lined partially or entirely. Alternatively, it is a refractory lining for an RH degassing tank in which a magnesia carbon brick in which one or more sides of a brick is covered with a metal plate or a metal foil is partially or entirely lined.

【0011】[0011]

【発明の実施の形態】まず、マグネシアカーボンれんが
の暴露試験法を説明する。試験片は直径50mm程度、高
さ50mm程度の円柱とし、かつ円柱の軸がれんが成形時
の加圧軸に平行となるようにする。また、その際に使用
する電気炉は容積が試験片1個あたり0.008m
3 (8リットル)以上となるようにし、雰囲気は大気と
する。なお、電気炉内へ外部から空気を供給できるよう
にしておくことが望ましい。発熱体は大気雰囲気下での
使用に耐える材質とする。
BEST MODE FOR CARRYING OUT THE INVENTION First, an exposure test method for a magnesia carbon brick will be described. The test piece is a cylinder with a diameter of about 50 mm and a height of about 50 mm, and the axis of the cylinder is parallel to the pressing axis during brick molding. The electric furnace used at that time has a volume of 0.008 m per one test piece.
At least 3 (8 liters), and the atmosphere is the atmosphere. It is desirable to be able to supply air from the outside into the electric furnace. The heating element shall be a material that can withstand use in the atmosphere.

【0012】試験の方法は、常温で炉内に試験片を置
き、毎分10℃の昇温速度で炉内温度を上げていく。1
400℃に到達したら1400℃に4時間保つ。その後
炉内から試験片を取り出し、大気中で常温まで放冷す
る。冷却後、円柱試験片をその高さの半分の位置で円柱
の軸に垂直に切断する。このときの円形の切断面におい
て、白色あるいは灰色の酸化脱炭層の厚さを円の中心角
が90°毎の位置で4箇所でノギス等を用いて測定し、
得られた4つの値を平均して酸化脱炭層厚さとした。
The test method is to place a test piece in a furnace at room temperature and raise the temperature in the furnace at a temperature rising rate of 10 ° C. per minute. 1
After reaching 400 ° C, hold at 1400 ° C for 4 hours. After that, the test piece is taken out of the furnace and allowed to cool to room temperature in the atmosphere. After cooling, the cylinder test piece is cut perpendicular to the axis of the cylinder at half its height. On the circular cut surface at this time, the thickness of the white or gray oxidative decarburized layer was measured at four positions with the central angle of the circle at 90 °, using calipers or the like,
The obtained four values were averaged to obtain the oxidative decarburized layer thickness.

【0013】マグネシアカーボンれんがの暴露試験結果
と、RH槽において内張りされたマグネシアカーボンれ
んがの損耗速度との間には密接な関係がある。図1はこ
の関係を示す。すなわち、異なった銘柄のマグネシアカ
ーボンれんがを試料とし、その暴露試験結果と実際のR
H下部槽に部分張りした際の損耗速度の関係を調査し、
図1を作成した。その際、部分張りは容量350tのR
H下部槽の側壁で行っている。なお、図1で、横軸には
暴露試験による酸化脱炭層厚さを、縦軸には損耗速度を
プロットした。ここで、損耗速度としては従来から使用
されているマグクロダイレクトボンドれんがの場合を1
00として指数表示とした。値が大きいほど損耗速度が
大きく、値が小さいほど損耗速度が小さい。これによ
り、暴露試験による酸化脱炭層厚さが5mm以下であれ
ば、実際のRHでの損耗速度を低く抑えることができる
ことがわかる。
There is a close relationship between the result of the exposure test of the magnesia carbon brick and the wear rate of the magnesia carbon brick lined in the RH tank. FIG. 1 illustrates this relationship. That is, using different brands of magnesia carbon bricks as samples, the exposure test results and actual R
H Investigate the relationship of the wear rate when partially tensioned to the lower tank,
Figure 1 was created. At that time, the partial tension is R of 350t capacity.
H Side wall of the lower tank. In FIG. 1, the abscissa plots the oxidative decarburization layer thickness by the exposure test, and the ordinate plots the wear rate. Here, as the wear rate, 1 for the conventionally used magcro direct bond brick is used.
00 was displayed as an index. The larger the value, the larger the wear rate, and the smaller the value, the smaller the wear rate. From this, it can be seen that the wear rate in actual RH can be suppressed low if the thickness of the oxidized decarburized layer by the exposure test is 5 mm or less.

【0014】このように、暴露試験による酸化脱炭層厚
さが5mm以下となるマグネシアカーボンれんがとして
は、Al、Si、Mg、Caなどの金属、これらのうち
の2種以上の金属から成る合金、各種ほう化物、各種炭
化物、あるいは各種ガラス等を添加した炭素含有量2〜
20重量%程度のマグネシアカーボンれんがをあげるこ
とができる。ただし上述の添加物の量を調整するだけで
は、暴露試験による酸化脱炭層厚さを5mm以下とするこ
とは必ずしもできない場合がある。マグネシアクリンカ
ーや鱗状黒鉛などの炭素源の粒度構成、バインダーの選
定、混練、成形、乾燥などの製造条件も重要な要因子で
あり、これらをすべて総合的に制御した上で、暴露試験
による酸化脱炭層厚さが5mm以下のマグネシアカーボン
れんがが得られる。
As described above, as the magnesia carbon brick having an oxidative decarburization layer thickness of 5 mm or less in the exposure test, metals such as Al, Si, Mg and Ca, alloys composed of two or more of these metals, Carbon content 2 with various boride, various carbides, or various glasses added
Approximately 20% by weight of magnesia carbon brick can be mentioned. However, it may not always be possible to reduce the thickness of the oxidative decarburized layer by the exposure test to 5 mm or less simply by adjusting the amounts of the above-mentioned additives. The particle size composition of the carbon source such as magnesia clinker and scaly graphite, the manufacturing conditions such as binder selection, kneading, molding, and drying are also important factors. A magnesia carbon brick with a coal layer thickness of 5 mm or less can be obtained.

【0015】さらに、マグネシアカーボンれんがの背面
の酸化脱炭を抑制して内張りの長寿命化を実現するため
には、れんがの背面あるいは目地部などの酸化脱炭の起
こる部位を金属板あるいは金属箔で覆う。金属板あるい
は金属箔はれんがへの酸素の流通経路を遮断するため、
れんがの酸化脱炭を抑制することができる。この方法は
気孔率の高いマグネシアボードを使用する方法よりも非
常に確実性が高い。
Further, in order to suppress the oxidative decarburization on the back surface of the magnesia carbon brick to realize a long life of the lining, the portion on the back surface or joint of the brick where the oxidative decarburization occurs is a metal plate or a metal foil. Cover with. Since the metal plate or metal foil blocks the flow path of oxygen to the brick,
Oxidative decarburization of bricks can be suppressed. This method is much more reliable than the method using high porosity magnesia board.

【0016】金属板あるいは金属箔の材質としては各種
の耐熱鋼あるいは耐熱合金が理想的である。しかし、一
般の鋼材、ステンレス鋼、合金鋼も使用可能である。厚
さは使用部位と金属の耐酸化脱炭性や強度を考慮して決
定しなければならない。ハンドリングと耐用性を考慮す
ると、0.1〜2mm程度が適当であろう。
Various types of heat-resistant steels or heat-resistant alloys are ideal as the material of the metal plate or metal foil. However, general steel, stainless steel, and alloy steel can also be used. The thickness must be determined in consideration of the part to be used and the resistance to oxidative decarburization and strength of the metal. Considering handling and durability, 0.1 to 2 mm is suitable.

【0017】れんが表面を金属板あるいは金属箔で覆う
方法としては、無機あるいは有機系の接着剤により貼付
ける方法、れんがを箱状の金属板あるいは金属箔で覆う
方法、れんが成形時に金属板あるいは箔を金型内面に沿
わせて置き、坏土と共に成形する方法などがあげられ
る。
As a method of covering the surface of the brick with a metal plate or a metal foil, a method of sticking it with an inorganic or organic adhesive, a method of covering the brick with a box-shaped metal plate or a metal foil, a metal plate or foil at the time of brick molding There is a method of molding along with the inner surface of the mold and molding with the kneaded clay.

【0018】[0018]

【実施例】【Example】

[実施例1]Al及びAl−Mg粉末をそれぞれ1重量
%、4重量%添加し、C=15重量%で暴露試験におけ
る酸化脱炭層厚さが3mmのマグネシアカーボンれんが
を、容量350tのRH槽の下部槽側壁に内張りした。
なお、上部槽や下部槽の槽底など他の部位は従来通りマ
グクロダイレクトボンドれんがで内張りした。また、背
面の酸化脱炭対策は特に講じなかった。
[Example 1] 1% by weight and 4% by weight of Al and Al-Mg powder were added, respectively, and a magnesia carbon brick having an oxidative decarburization layer thickness of 3 mm in an exposure test at C = 15% by weight was used in an RH tank having a capacity of 350 t. Was lined on the side wall of the lower tank.
Other parts such as the bottom of the upper and lower tanks were lined with magcro direct bond bricks as before. In addition, no measures were taken to prevent oxidative decarburization on the back side.

【0019】その結果、側壁高さの半分の位置で測定し
た平均損耗速度は通常のマグクロダイレクトボンドれん
がの場合の約25%減となり、槽寿命すなわち内張り耐
火物寿命は約20%向上し、マグネシアカーボンれんが
を内張りした効果が現れた。しかし、使用後のマグネシ
アカーボンれんがを調査したところ、背面側が20mm程
度の深さまで酸化脱炭して白色あるいは灰色に変色し、
ぼろぼろになっていた。
As a result, the average wear rate measured at a position half the height of the side wall is reduced by about 25% in the case of a normal magcro direct bond brick, and the life of the tank, that is, the life of the refractory lining is improved by about 20%. The effect of lining a magnesia carbon brick appeared. However, when investigating the magnesia carbon bricks after use, the back side was oxidized and decarburized to a depth of about 20 mm and turned white or gray,
It was tattered.

【0020】[実施例2]実施例1で用いたものと同じ
れんがの側面で背面側の3分の1の部分および背面に厚
さ0.5mmの耐熱鋼の板を箱状に形成して取付けたもの
を、実施例1の場合と同様にRHの下部槽側面に内張り
した。
[Embodiment 2] A box of heat-resistant steel plate having a thickness of 0.5 mm is formed on the side surface of the same brick as that used in Embodiment 1, one third of the back surface side and the back surface. The attached one was lined on the side surface of the lower tank of the RH as in the case of Example 1.

【0021】その結果、側面高さの半分の位置で測定し
た平均損耗速度は通常のマグクロダイレクトボンドれん
がの場合の約30%減となり、槽寿命は約25%向上し
た。使用後のマグネシアカーボンれんがの背面側には酸
化脱炭層は観察されなかった。
As a result, the average wear rate measured at a position half the height of the side surface was reduced by about 30% and the life of the tank was improved by about 25% as compared with the case of a normal magcro direct bond brick. No oxidative decarburized layer was observed on the back side of the used magnesia carbon brick.

【0022】[0022]

【発明の効果】本発明により、RH槽の内張り耐火物寿
命を伸ばすことができ、鉄鋼の生産コスト削減と生産性
向上に寄与することができることから、有意義な発明で
あるということができる。
Industrial Applicability According to the present invention, it is possible to prolong the life of refractory linings in the RH tank, which contributes to the reduction of steel production costs and the improvement of productivity.

【図面の簡単な説明】[Brief description of the drawings]

【図1】試験片を1400℃の大気雰囲気中に4時間暴
露した後の酸化脱炭層厚さとRH下部槽での損耗速度の
関係を示す。なお、損耗速度は従来RH下部槽の使用さ
れてきたマグクロダイレクトボンドれんがの場合を10
0とした。
FIG. 1 shows the relationship between the oxidative decarburized layer thickness and the wear rate in the RH lower tank after exposing a test piece to an air atmosphere at 1400 ° C. for 4 hours. Note that the wear rate is 10 in the case of magcro direct bond brick, which has been used in the conventional RH lower tank.
It was set to 0.

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 1400℃の大気雰囲気中に4時間暴露
した後の酸化脱炭層厚さが5mm以下のマグネシアカーボ
ンれんがを一部あるいは全部に内張りしたRH脱ガス槽
の耐火物内張り。
1. A refractory lining for an RH degassing tank in which part or all of a magnesia carbon brick having an oxidative decarburization layer thickness of 5 mm or less after being exposed to an air atmosphere at 1400 ° C. for 4 hours is lined.
【請求項2】 れんがの一面以上を金属板あるいは金属
箔で覆ったマグネシアカーボンれんがを一部あるいは全
部に内張りしたRH脱ガス槽の耐火物内張り。
2. A refractory lining for a RH degassing tank in which a magnesia carbon brick whose one or more surfaces are covered with a metal plate or a metal foil is lined partially or entirely.
JP25905895A 1995-10-05 1995-10-05 Refractory lining of rh degassing chamber Pending JPH09104915A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP25905895A JPH09104915A (en) 1995-10-05 1995-10-05 Refractory lining of rh degassing chamber

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP25905895A JPH09104915A (en) 1995-10-05 1995-10-05 Refractory lining of rh degassing chamber

Publications (1)

Publication Number Publication Date
JPH09104915A true JPH09104915A (en) 1997-04-22

Family

ID=17328746

Family Applications (1)

Application Number Title Priority Date Filing Date
JP25905895A Pending JPH09104915A (en) 1995-10-05 1995-10-05 Refractory lining of rh degassing chamber

Country Status (1)

Country Link
JP (1) JPH09104915A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001349677A (en) * 2000-06-07 2001-12-21 Kawasaki Steel Corp Refractory lining of vacuum degassing processing container and non-calcined magnesia-carbon brick used therefor
JP2005140417A (en) * 2003-11-06 2005-06-02 Taikisha Ltd Heat resisting airtight wall structure, heat storage type gas treatment device, and adsorptive/desorptive gas treatment device

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001349677A (en) * 2000-06-07 2001-12-21 Kawasaki Steel Corp Refractory lining of vacuum degassing processing container and non-calcined magnesia-carbon brick used therefor
JP4644911B2 (en) * 2000-06-07 2011-03-09 Jfeスチール株式会社 Refractory lining structure for vacuum degassing vessel
JP2005140417A (en) * 2003-11-06 2005-06-02 Taikisha Ltd Heat resisting airtight wall structure, heat storage type gas treatment device, and adsorptive/desorptive gas treatment device

Similar Documents

Publication Publication Date Title
Ewais Carbon based refractories
CA1196767A (en) Production of castings containing steel tubes
US6875716B2 (en) Carbonaceous refractory and method for preparing the same
US6464932B1 (en) Unburned carbon-containing refractory material and vessel for molten metal
EP0076577B1 (en) Molten metal transfer channels
JP7416117B2 (en) Castable refractories and ladle
JPH09104915A (en) Refractory lining of rh degassing chamber
WO2011058811A1 (en) Sliding nozzle plate
Ertuğ Classification and characteristics of predominant refractories used in metallurgy
JP2017083400A (en) Evaluation method for refractory material
Biswas et al. Modern refractory practice for clean steel
JP2004525772A (en) Fire resistant article with resin bonded liner
JP2827375B2 (en) Coating method for kiln interior
JP3751135B2 (en) Indefinite refractory
JP2002362969A (en) Plate brick
Biswas et al. Refractory for Secondary Refining of Steel
JP2000001363A (en) Refractory lining
JP2968542B2 (en) Refractory
JPH0952759A (en) Refractory superior in corrosion resistance to melted metal
Kumar Containment materials for thin-strip casting of steel
Biswas et al. BOF Refractory
Feifang et al. Innovative Lining of Unburnt Al2O3-MgO Brick for 300t Steel Ladle in Baosteel
JPH04317478A (en) Carbonaceous refractory for treating molten light metal and its production
JP2002040014A (en) Evaluation method of abrasion resistance, corrosion resistance and oxidation resistance of carbon-including refractory
Zhao et al. Interfacial phenomena during interactions of metal and carbon-bearing refractories- wettability and carbon transfer

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20041221

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20050218

A02 Decision of refusal

Effective date: 20050315

Free format text: JAPANESE INTERMEDIATE CODE: A02