JP2002035112A - Method for removing endotoxin from dialysate - Google Patents

Method for removing endotoxin from dialysate

Info

Publication number
JP2002035112A
JP2002035112A JP2000223459A JP2000223459A JP2002035112A JP 2002035112 A JP2002035112 A JP 2002035112A JP 2000223459 A JP2000223459 A JP 2000223459A JP 2000223459 A JP2000223459 A JP 2000223459A JP 2002035112 A JP2002035112 A JP 2002035112A
Authority
JP
Japan
Prior art keywords
dialysate
water
acid
endotoxin
weight
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2000223459A
Other languages
Japanese (ja)
Other versions
JP3671137B2 (en
Inventor
Eiji Fukuda
英二 福田
Youji Harada
陽滋 原田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Clean Chemical Co Ltd
Original Assignee
Clean Chemical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Clean Chemical Co Ltd filed Critical Clean Chemical Co Ltd
Priority to JP2000223459A priority Critical patent/JP3671137B2/en
Publication of JP2002035112A publication Critical patent/JP2002035112A/en
Application granted granted Critical
Publication of JP3671137B2 publication Critical patent/JP3671137B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Abstract

PROBLEM TO BE SOLVED: To prevent various kinds of harmful influences resulting from the movement of the endotoxines contained in a dialysate used for artificial hemodialysis to the blood by removing the endotoxines contained in the dialysate. SOLUTION: At least part of a dialysate supply line from a dialysate preparing device for artificial hemodialysis to a dialyzer with a wash prepared by dissolving a water-soluble reducer composed mainly of a dithionite of 0.1-3 pts.wt. and at least one kind of pH buffer selected from among hydroxy- carboxylic compounds, carboxylic compounds, amino-carboxylic compounds, phosphate compounds, organic phosphate compounds, and carbonate compounds of 0.05-5 pts.wt. in water of 100 pts.wt.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、人工血液透析に用
いる透析液中のエンドトキシンを除去する方法、特に透
析液作製装置からダイアライザーに至る透析液供給ライ
ン、ならびに透析液の希釈水を製造する逆浸透膜装置内
から透析液作製装置に至る給水ラインの洗浄によるエン
ドトキシン除去方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for removing endotoxin in a dialysate used for artificial hemodialysis, and more particularly to a dialysate supply line from a dialysate preparation device to a dialyzer, and a reverse line for producing a dialysate dilution water. The present invention relates to a method for removing endotoxin by washing a water supply line from the inside of a permeable membrane device to a dialysate preparation device.

【0002】[0002]

【従来の技術】近年、人工血液透析においては、治療の
長期化に伴って血中に蓄積するβ2-ミクログロブリン
(分子量11800)による透析アミロイド合併症等を
予防するため、セルローストリアセテート膜等の膜孔径
の大きいハイパフォーマンス透析膜を用いた高性能ダイ
アライザーが急速に普及しつつある。しかるに、このよ
うな高性能ダイアライザーは、血中のβ2-ミクログロブ
リンを含む高分子物質の除去効率に優れる反面、透析液
側の有害物質が逆浸透や逆拡散によって血中へ移行する
懸念がある。この有害物質は、主として透析液の希釈水
を汚染したグラム陰性菌に由来するエンドトキシン(細
菌内毒素)であり、発熱症状を引き起こす他、各種のア
レルギー症状、サイトカインの産生の促進等による様々
な合併症の要因となることが指摘されている。
2. Description of the Related Art In recent years, in artificial hemodialysis, in order to prevent dialysis amyloid complications due to β 2 -microglobulin (molecular weight 11800) which accumulates in blood with prolonged treatment, a cellulose triacetate membrane or the like is used. High-performance dialyzers using high-performance dialysis membranes having a large pore size are rapidly spreading. However, such a high-performance dialyzer has excellent removal efficiency of macromolecules including β 2 -microglobulin in blood, but there is a concern that harmful substances on the dialysate side may migrate into blood by reverse osmosis or reverse diffusion. is there. This harmful substance is endotoxin (bacterial endotoxin) derived mainly from Gram-negative bacteria that contaminates the dilution water of the dialysate, causing fever, various allergic symptoms, and various complications due to promotion of cytokine production. It has been pointed out that this may be the cause of the disease.

【0003】そこで、上記の対策として、透析液の供給
ラインの途中にエンドトキシンカットフィルター(以
下、ETCFと略称する)を介在させ、透析液中のエン
ドトキシンをダイアライザーに入る前に濾過除去する手
段が一般的に採用されている。しかるに、このETCF
によってもエンドトキシンが完全に除去されるわけでは
なく、その濃度が低減されるだけであるから、エンドト
キシンによる様々な弊害を排除するためには透析液自体
を清浄に保つ必要がある。
Therefore, as a countermeasure, an endotoxin cut filter (hereinafter abbreviated as ETCF) is interposed in the middle of the dialysate supply line to filter and remove endotoxin in the dialysate before entering the dialyzer. Has been adopted. However, this ETCF
Does not completely remove endotoxin, but only reduces its concentration. Therefore, in order to eliminate various adverse effects caused by endotoxin, it is necessary to keep the dialysate itself clean.

【0004】現在、透析液の希釈水は、原水である水道
水からイオン交換樹脂によって主に陽イオンを除き、次
いで活性炭による塩素及び有機物の除去を行った上で、
逆浸透膜装置によって水分子以外を除く処理を経た逆浸
透膜濾過水(以下、RO水と略称する)が使用されてい
る。しかるに、RO水は、水分子以外を含まぬ筈である
が、実際には多量のエンドトキシンが測定される。これ
は、逆浸透膜装置においては前段のイオン交換樹脂や活
性炭による処理で除けなかった物質が膜面に蓄積し、濾
過能力の経時的な低下を生じることと、活性炭処理によ
って殺菌力のある塩素を前もって除去しているため、以
降の逆浸透膜装置を含めた通水経路が細菌汚染に対して
脆弱な環境になっていることによると考えられる。
At present, dialysate dilution water is obtained by removing mainly cations from tap water, which is raw water, using an ion exchange resin, and then removing chlorine and organic substances using activated carbon.
Reverse osmosis membrane filtered water (hereinafter abbreviated as RO water) which has been subjected to a treatment to remove other than water molecules by a reverse osmosis membrane device is used. However, RO water should not contain anything other than water molecules, but a large amount of endotoxin is actually measured. This is because in the reverse osmosis membrane device, substances that could not be removed by the previous treatment with ion-exchange resin or activated carbon accumulate on the membrane surface, causing the filtration ability to decrease over time. This is presumably due to the fact that the water passage including the reverse osmosis membrane device is in an environment vulnerable to bacterial contamination because the water is removed in advance.

【0005】従来、逆浸透膜装置内の細菌汚染を除去す
る手段として、ホルマリン等による消毒が行われてい
る。しかるに、RO水のエンドトキシン値の測定結果
は、このような消毒でも細菌汚染が容易には除去されな
いことを示している。そして、逆浸透膜装置では細菌そ
のものが濾過されなくても、菌体の微小な一部でも膜を
濾過あるいは漏洩すれば、エンドトキシンとして希釈水
を汚染することになる。
Conventionally, as a means for removing bacterial contamination in a reverse osmosis membrane device, disinfection with formalin or the like has been performed. However, the measurement results of the endotoxin level of the RO water show that such disinfection does not easily remove bacterial contamination. In the reverse osmosis membrane device, even if the bacteria themselves are not filtered, even if a very small part of the cells is filtered or leaked, the dilution water is contaminated as endotoxin.

【0006】一方、透析液は、透析液作製装置において
前記RO水で透析薬剤を希釈して調製され、通常は中央
供給装置から精密濾過器、患者監視装置、ETCFを経
てダイアライザーに送られ、ダイアライザーでの血液浄
化を担ったのちに再び患者監視装置を通って廃液とな
る。この透析ラインの配管には主として透明感のある医
用シリコンチューブが使用されている。しかして、透析
ラインは、従来より一般的に、透析終了後に次亜塩素酸
ナトリウムを含む殺菌消毒液にて消毒洗浄及び水洗する
ことにより、有機物の除去と殺菌消毒を行ない、更に定
期的に酢酸で洗浄して蓄積した炭酸カルシウムの除去を
行っている。
On the other hand, a dialysate is prepared by diluting a dialysate with the RO water in a dialysate preparation device, and is usually sent from a central supply device to a dialyzer via a microfilter, a patient monitoring device, and an ETCF. After performing blood purification in the above, the waste liquid is again passed through the patient monitoring device. For the dialysis line, a medical silicone tube having a transparent feeling is mainly used. Conventionally, dialysis lines have been generally used to remove organic substances and disinfect by disinfecting and rinsing with a disinfecting solution containing sodium hypochlorite after completion of dialysis, and then periodically perform acetic acid. To remove accumulated calcium carbonate.

【0007】しかしながら、前記の消毒洗浄後にダイア
ライザーの直前の位置で採取した水のエンドトキシン値
を測定すると、元のRO水のエンドトキシン値より常に
高い結果になることが普通である。これは、従来の次亜
塩素酸ナトリウムによる消毒洗浄と酢酸洗浄では、透析
ラインの清浄度を充分に保ち得ず、エンドトキシンが低
減されないばかりか、透析ライン中で更にエンドトキシ
ンの蓄積や新たな汚染を生じている可能性を示唆してい
る。
However, when the endotoxin value of the water sampled at the position immediately before the dialyzer after the disinfection cleaning is measured, the endotoxin value of the original RO water is always higher than that of the original RO water. This is because conventional disinfection cleaning with sodium hypochlorite and acetic acid cleaning cannot maintain sufficient cleanliness of the dialysis line, not only reducing endotoxin, but also accumulating additional endotoxin and new contamination in the dialysis line. Suggests that it may have occurred.

【0008】[0008]

【発明が解決しようとする課題】本発明者は、上述の事
情に照らし、透析液自体を清浄に保ってエンドトキシン
による弊害を排除するには、従来の消毒洗浄等とは異な
る抜本的な対策を講じる必要があるとの観点に立ち、様
々な角度からエンドトキシンの汚染除去手段について検
討を重ねた。そして、この検討の過程で、透析液作製装
置からダイアライザーに至る透析液供給ラインの配管、
ならびに透析液の希釈水を製造する逆浸透膜装置内から
透析液作製装置に至る給水ラインの配管に使用されてい
るシリコンチューブが一般的に茶色く着色している点に
着目し、その原因を分析した。
In view of the above circumstances, the present inventor has taken drastic measures different from the conventional disinfecting washing and the like in order to keep the dialysate itself clean and eliminate the harm caused by endotoxin. In view of the necessity of taking measures, the study on endotoxin decontamination means was repeated from various angles. In the course of this study, the piping of the dialysate supply line from the dialysate preparation device to the dialyzer,
Focusing on the fact that the silicon tubing used in the water supply line piping from the reverse osmosis membrane device that produces the dialysate dilution water to the dialysate preparation device is generally colored brown, and analyzed the causes did.

【0009】その結果、着色の主体がチューブ内面に付
着した錆様の鉄分(酸化鉄と考えられる)によるもので
あり、この鉄分にエンドトキシンを含む微小物質が抱き
込まれて付着堆積している可能性が高い上、堆積層中で
細菌が次亜塩素酸ナトリウム等による殺菌消毒から保護
されて繁殖している疑いがあることも判明した。しか
も、透析ラインでは、供給ラインのシリコンチューブが
ダイアライザー以降の廃液ラインのシリコンチューブよ
りも明らかに濃く着色しており、実際に検出される鉄分
も前者のチューブの方が多いことからして、透析時に供
給ラインの内壁に付着した鉄分が遊離してダイアライザ
ーを通して血液側へ移行しており、当然に鉄分と共に抱
き込まれていたエンドトキシン等も一緒に遊離して血液
側へ移行していることが推測される。
As a result, the coloring is mainly due to the rust-like iron (which is considered to be iron oxide) adhering to the inner surface of the tube, and a fine substance containing endotoxin may be entrapped and deposited on the iron. In addition to its high potential, it was also found that there was a suspicion that bacteria were proliferating in the sedimentary layer, protected from disinfection with sodium hypochlorite or the like. In addition, in the dialysis line, the silicon tube in the supply line is clearly darker than the silicon tube in the waste liquid line after the dialyzer, and the iron content actually detected is larger in the former tube. Sometimes it is speculated that iron adhering to the inner wall of the supply line is released and moves to the blood side through the dialyzer, and naturally endotoxin etc. entrapped together with the iron is also released and moves to the blood side Is done.

【0010】なお、上記の鉄分については、透析液供給
ラインでは消毒洗浄に使用された次亜塩素酸ナトリウム
による金属部分の腐食に起因するものが含まれる可能性
はあるが、この次亜塩素酸ナトリウムと接触しないRO
水タンクや前記給水ラインのシリコンチューブにも着色
が見られることから、主としてRO水自体に由来するも
のと考えられる。しかして、前記シリコンチューブの着
色の主体が鉄分であることは、その着色表面にクリーン
ケミカル社製の除鉄剤ダイラケミM−10(チオグリコ
ール酸アンモニウム配合…鉄の0.0005μg以上の
存在で無色から紫色に変化する)を滴下したときの呈色
変化にて確認されている。
[0010] The above-mentioned iron may be contained in the dialysate supply line due to corrosion of the metal part by sodium hypochlorite used for disinfection cleaning. RO not in contact with sodium
Since coloring is also seen in the water tank and the silicon tube of the water supply line, it is considered that the coloring is mainly derived from the RO water itself. The fact that the main component of the coloring of the silicon tube is iron is that the coloring surface has a colorless surface due to the iron removal agent Dirachemi M-10 (containing ammonium thioglycolate: 0.0005 μg or more of iron). (Changed to purple) was confirmed by color change when dropped.

【0011】そこで、本発明者は、前記の知見に基づ
き、透析液のエンドトキシン除去方法として、透析液作
製装置からダイアライザーに至る透析液供給ライン、な
らびに透析液の希釈水を製造する逆浸透膜装置内から透
析液作製装置に至る給水ラインの付着鉄分の除去によ
り、その鉄分に抱き込まれたエンドトキシン等の汚染物
質を同時に除去するという画期的な手段の可否について
検討を重ねた。なお、逆浸透膜装置については従来より
シュウ酸やクエン酸の水溶液による除鉄処理が行われて
いるが、これら水溶液を用いて実際にRO水タンク、シ
リコンチューブ、ETCF、除水ポンプ部(患者監視装
置内にある)等の合成樹脂からなる器材内面の洗浄を行
っても着色は除去できず、また逆浸透膜装置内を前記除
鉄処理後に更に前記のホルマリン処理を行ってもエンド
トキシン値が充分には低下しないことも確認されてお
り、これらの結果からして、シュウ酸やクエン酸の水溶
液による除鉄処理はエンドトキシン除去手段として実効
性に乏しいことが示唆される。
Based on the above findings, the present inventor has proposed, as a method for removing endotoxin from a dialysate, a dialysate supply line from a dialysate preparation device to a dialyzer, and a reverse osmosis membrane device for producing a dialysate dilution water. Investigations were made on the possibility of a revolutionary means of simultaneously removing contaminants such as endotoxin entrapped in the iron by removing the iron attached to the water supply line from the inside to the dialysate preparation device. The reverse osmosis membrane device has been conventionally subjected to iron removal treatment with an aqueous solution of oxalic acid or citric acid. By using these aqueous solutions, an RO water tank, a silicon tube, an ETCF, a water removal pump unit (patient) is actually used. Even if the inner surface of the device made of synthetic resin (such as in the monitoring device) is washed, the coloring cannot be removed, and even if the formalin treatment is further performed after the iron removal treatment in the reverse osmosis membrane device, the endotoxin value may be reduced. It has also been confirmed that they do not decrease sufficiently, and these results suggest that iron removal treatment with an aqueous solution of oxalic acid or citric acid is ineffective as a means of removing endotoxin.

【0012】[0012]

【課題を解決するための手段】しかして、本発明者の検
討の結果、特定の水溶性還元剤を含む洗浄液にて前記そ
の透析液供給ラインや希釈水の給水ラインを洗浄すれ
ば、シリコンチューブ等の合成樹脂からなる器材内面を
含め、ラインに付着蓄積していた鉄分が綺麗に除去さ
れ、しかも同時に鉄分に抱き込まれていたエンドトキシ
ン等の微小物質も除去されるため、以降の透析において
使用する透析液がエンドトキシンを殆ど含まない清浄な
ものとなり、エンドトキシンの血液側への移行による様
々な悪影響を確実に排除できることが判明し、本発明が
なされるに至った。
As a result of the study by the present inventor, if the dialysate supply line and the dilution water supply line are washed with a washing solution containing a specific water-soluble reducing agent, the silicone tube can be used. It is used for subsequent dialysis because the iron that has adhered and accumulated in the line, including the inner surface of the equipment made of synthetic resin, etc., is removed neatly, and at the same time, minute substances such as endotoxin embraced by the iron are also removed. It was found that the dialysate to be purified contained almost no endotoxin, and it was found that various adverse effects due to the transfer of endotoxin to the blood side could be reliably eliminated, and the present invention was achieved.

【0013】すなわち、本発明の請求項1に係る透析液
のエンドトキシン除去方法は、水100重量部に対し、
亜二チオン酸塩を主成分とする水溶性還元剤0.1〜4
重量部と、b)ヒドロキシカルボン酸化合物、カルボン
酸化合物、アミノカルボン酸化合物、リン酸化合物、有
機ホスホン酸化合物、炭酸化合物より選ばれる少なくと
も一種のPH緩衝剤0.05〜6重量部とが溶解され、
初期PHが6.0〜8.0である洗浄液により、人工血
液透析における透析液作製装置からダイアライザーに至
る透析液供給ラインの少なくとも一部を洗浄することを
特徴とするものである。
That is, the method for removing endotoxin from a dialysate according to claim 1 of the present invention is based on 100 parts by weight of water.
Water-soluble reducing agent containing dithionite as a main component 0.1 to 4
Parts by weight and b) 0.05 to 6 parts by weight of at least one PH buffer selected from a hydroxycarboxylic acid compound, a carboxylic acid compound, an aminocarboxylic acid compound, a phosphoric acid compound, an organic phosphonic acid compound and a carbonate compound. And
It is characterized in that at least a part of a dialysate supply line from a dialysate preparation device in artificial blood dialysis to a dialyzer is washed with a washing solution having an initial PH of 6.0 to 8.0.

【0014】また、本発明の請求項2に係る透析液のエ
ンドトキシン除去方法は、前記請求項1に記載の洗浄液
により、人工血液透析における透析液の希釈水を製造す
る逆浸透膜装置内から透析液作製装置に至る給水ライン
の少なくとも一部を洗浄することを特徴とするものであ
る。
According to a second aspect of the present invention, there is provided a method for removing endotoxin from a dialysate, wherein the washing solution according to the first aspect is used for dialysis from within a reverse osmosis membrane device for producing a dilution of the dialysate in artificial hemodialysis. The present invention is characterized in that at least a part of a water supply line leading to a liquid producing apparatus is washed.

【0015】更に、本発明による洗浄液の透析液のエン
ドトキシン除去方法においては、前記洗浄液の水溶性還
元剤が、亜二チオン酸塩60〜100重量%と、亜硫酸
塩、亜硫酸水素塩、ピロ亜硫酸塩、ロンガリット、二酸
化チオ尿素、チオグリコール酸及びその塩、アスコルビ
ン酸及びその塩、エリスロビン酸及びその塩より選ばれ
る還元剤成分0〜40重量%とからなる請求項3の構
成、ならびに洗浄液が、初期PH6.0〜7.5で、且
つ被洗浄ライン内での滞留1時間後のPHが6.0〜
7.0の範囲にあるように設定されてなる請求項4の構
成、をそれぞれ好適態様としている。
Further, in the method for removing endotoxin from a dialysate of a washing solution according to the present invention, the water-soluble reducing agent of the washing solution is 60 to 100% by weight of dithionite, sulfite, bisulfite, pyrosulfite. And Rongalit, thiourea dioxide, thioglycolic acid and a salt thereof, ascorbic acid and a salt thereof, and a reducing agent component selected from erythrobic acid and a salt thereof in an amount of 0 to 40% by weight. The initial pH is 6.0 to 7.5, and the pH after one hour of residence in the line to be cleaned is 6.0 to 7.5.
The configuration according to claim 4 which is set so as to be in the range of 7.0 is a preferable mode.

【0016】[0016]

【発明の実施の形態】本発明による透析液のエンドトキ
シン除去方法では、亜二チオン酸塩を主成分とする水溶
性還元剤を含む洗浄液により、人工血液透析における透
析液作製装置からダイアライザーに至る透析液供給ライ
ン、又は/及び透析液の希釈水を製造する逆浸透膜装置
内から透析液作製装置に至る給水ラインの少なくとも一
部を洗浄する。これにより、透析液供給ラインあるいは
前記給水ラインを構成する各器材内面に付着蓄積してい
た錆様の鉄分が除去されると共に、この鉄分の除去に伴
って付着蓄積層中に含まれていたエンドトキシン等の微
小物質も除去され、以降の透析において使用する透析液
を清浄なものとなし得ることが判明している。これは言
わば、器材内面に固着していて従来の消毒洗浄や酢酸洗
浄によっては除去できなかったエンドトキシンを、鉄分
の除去によって洗浄液中に遊離させ、この洗浄液と共に
排出して除去するものである。
DETAILED DESCRIPTION OF THE INVENTION In the method for removing endotoxin from a dialysate according to the present invention, dialysis from a dialysate preparation device to a dialyzer in an artificial hemodialysis is performed by a washing solution containing a water-soluble reducing agent containing dithionite as a main component. At least a part of a liquid supply line and / or a water supply line from a reverse osmosis membrane device for producing a dialysate dilution water to a dialysate preparation device is washed. As a result, the rust-like iron that has adhered and accumulated on the inner surface of each device constituting the dialysate supply line or the water supply line is removed, and the endotoxin contained in the adhesion accumulation layer along with the removal of the iron is removed. It has also been found that micro-substances such as can be removed and the dialysate used in the subsequent dialysis can be cleaned. In other words, endotoxin that has adhered to the inner surface of the equipment and could not be removed by conventional disinfection cleaning or acetic acid cleaning is released into the cleaning solution by removing iron, and is discharged and removed together with the cleaning solution.

【0017】ところで、金属表面に付着した鉄錆の除去
には、水溶性還元剤や酸性物質が有効とされている。そ
して、水溶性還元剤としては、本発明で用いる亜二チオ
ン酸塩の他に、亜硫酸塩、亜硫酸水素塩、ピロ亜硫酸
塩、チオ硫酸塩、ロンガリット、二酸化チオ尿素、アス
コルビン酸塩、エリスロビン酸塩、チオグリコール酸塩
等が代表的である。また、酸性物質としては、シュウ
酸、クエン酸、スルファミン酸等が鉄錆の除去に効果的
であるとされている。しかしながら、亜二チオン酸塩以
外の水溶性還元剤ならびに上記の酸性物質では、透析液
供給ラインや前記希釈水の給水ラインの配管に使用され
るシリコンチューブの如き合成樹脂の表面に付着した錆
様の鉄分を除去できないことが判明している。次に、こ
れらの水溶性還元剤及び酸性物質によるシリコンチュー
ブの除鉄試験とその結果を示す。
Incidentally, a water-soluble reducing agent or an acidic substance is considered to be effective for removing iron rust attached to a metal surface. Examples of the water-soluble reducing agent include, in addition to the dithionite used in the present invention, sulfite, bisulfite, pyrosulfite, thiosulfate, Rongalite, thiourea dioxide, ascorbate, erythrobic acid Representative examples include salts and thioglycolates. Also, as the acidic substance, oxalic acid, citric acid, sulfamic acid and the like are said to be effective in removing iron rust. However, with water-soluble reducing agents other than dithionite and the above-mentioned acidic substances, rust-like substances adhered to the surface of a synthetic resin such as a silicon tube used for piping of a dialysate supply line or a dilution water supply line. It has been found that iron cannot be removed. Next, the iron removal test of the silicon tube with these water-soluble reducing agents and acidic substances and the results are shown.

【0018】〔シリコンチューブの除鉄試験〕人工透析
施設で使用されている透析液供給ラインの茶色く着色し
たシリコンチューブを試料とし、このチューブ内に後記
表1に記載の各成分の水溶液を注入して充満させ、茶色
の着色が消えることで鉄分の除去を確認し、チューブ内
での滞留2時間以内で除去された場合を○、同2時間を
越えて6時間までに除去された場合を△、同24時間で
も除去されなかった場合を×として、表1に示した。な
お、水溶性還元剤成分については、1%水溶液を用い、
これに酸性化剤として5%(重量/容量)のリン酸水溶
液、アルカリ化剤として5%(重量/容量)の水酸化ナ
トリウム水溶液を加えてPH調整することにより、酸性
(PH4±0.2)、中性(PH6.5±0.3)、ア
ルカリ性(PH9.1±0.2)の3種の水溶液を調製
(1%水溶液自体の初期PHが3種のいずれかに相当す
る場合、該当種の水溶液としてPH調整なしで使用)
し、各水溶液による試験を行った。また、酸性物質のシ
ュウ酸及びクエン酸については、1%水溶液と、これに
アンモニアを加えてPHを少し高くした水溶液による試
験を行った。
[Silicon Tube Iron Removal Test] A brown colored silicon tube of a dialysate supply line used in an artificial dialysis facility was used as a sample, and an aqueous solution of each component described in Table 1 below was injected into the tube. The removal of iron was confirmed by the disappearance of the brown coloration. ○: Removed within 2 hours staying in the tube, ○: Removed within 2 hours and 6 hours , And the case where it was not removed even in the same 24 hours is shown in Table 1 as x. In addition, about a water-soluble reducing agent component, 1% aqueous solution was used,
A 5% (weight / volume) aqueous solution of phosphoric acid as an acidifying agent and a 5% (weight / volume) aqueous solution of sodium hydroxide as an alkalizing agent are added thereto to adjust the pH so that the acidity (PH4 ± 0.2) is obtained. ), Neutral (PH 6.5 ± 0.3) and alkaline (PH 9.1 ± 0.2) three aqueous solutions are prepared (when the initial PH of the 1% aqueous solution itself corresponds to any of the three types, (Use without pH adjustment as aqueous solution of applicable species)
Then, a test using each aqueous solution was performed. For the acidic substances oxalic acid and citric acid, a test was performed using a 1% aqueous solution and an aqueous solution in which ammonia was added to slightly increase the pH.

【0019】[0019]

【表1】 [Table 1]

【0020】表1から明らかなように、シリコンチュー
ブの内面に付着した鉄分は、亜二チオン酸ナトリウムの
中性からアルカリ性の水溶液によってのみ滞留6時間以
内に除去可能であり、他の水溶性還元剤や酸性物質では
24時間という長時間でも除去できない。しかして、人
工血液透析における透析液供給ラインならびに透析液の
希釈水の給水ラインを構成する器材には、上記のシリコ
ンチューブを始めとして、RO水タンク、逆浸透膜装置
の膜体、透析液作製装置内のミキシングチャンバー、精
密濾過器、ETCF、患者監視装置内の除水ポンプ部
等、接液面を合成樹脂とするものが多いため、前記の他
の水溶性還元剤や酸性物質の水溶液による洗浄を行って
も、除鉄によるエンドトキシンの除去効果は殆ど期待で
きないことが示唆される。
As is clear from Table 1, iron attached to the inner surface of the silicon tube can be removed within 6 hours only by a neutral to alkaline aqueous solution of sodium dithionite. Agents and acidic substances cannot be removed for as long as 24 hours. The equipment constituting the dialysate supply line and the dialysate dilution water supply line in artificial hemodialysis includes the above-mentioned silicon tube, RO water tank, membrane of reverse osmosis membrane device, dialysate preparation. The liquid contact surface is often made of synthetic resin, such as a mixing chamber in the device, a microfiltration device, an ETCF, and a water removal pump in a patient monitoring device. This suggests that even if the washing is performed, the effect of removing iron by endotoxin can hardly be expected.

【0021】なお、本発明で使用する洗浄液は、上記の
ように亜二チオン酸塩を必須成分とするが、この亜二チ
オン酸塩を主成分とし、他の水溶性還元剤を副成分とし
て含んでいても差し支えない。このような副成分の水溶
性還元剤としては、亜硫酸塩、亜硫酸水素塩、ピロ亜硫
酸塩、ロンガリット、二酸化チオ尿素、チオグリコール
酸及びその塩、アスコルビン酸及びその塩、エリスロビ
ン酸及びその塩等が使用可能である。ただし、主成分と
しての亜二チオン酸塩は、除鉄によるエンドトキシンの
除去効果を充分に発揮させる上で、水溶性還元剤全量中
の60重量%以上を占めることが望ましい。従って、本
発明で使用する好適な洗浄液は、水溶性還元剤が亜二チ
オン酸塩60〜100重量%と他の還元剤成分0〜40
重量%とからなるものである。
The cleaning solution used in the present invention contains dithionite as an essential component as described above, but contains this dithionite as a main component and another water-soluble reducing agent as an auxiliary component. It may be included. Examples of the water-soluble reducing agent of such an auxiliary component include sulfites, bisulfites, pyrosulfites, Rongalite, thiourea dioxide, thioglycolic acid and its salts, ascorbic acid and its salts, erythrobic acid and its salts, and the like. Can be used. However, the dithionite as the main component desirably accounts for 60% by weight or more of the total amount of the water-soluble reducing agent in order to sufficiently exert the endotoxin removing effect of iron removal. Therefore, a preferred washing liquid used in the present invention is such that the water-soluble reducing agent is 60 to 100% by weight of dithionite and the other reducing agent components are 0 to 40%.
% By weight.

【0022】しかして、亜二チオン酸塩を用いた除鉄に
おける問題として、亜二チオン酸塩の分解による有毒な
亜硫酸(SO2 )ガスの発生がある。この亜二チオン酸
塩の分解性は水溶液のPHによって大きく異なり、酸性
域では強く、アルカリ域で弱くなる。因みに、亜二チオ
ン酸ナトリウム水溶液のPHと亜硫酸ガスの発生量との
関係を調べた試験結果を、次の表2に示す。なお、この
試験は、5%(重量/容量)リン酸水溶液と5%(重量
/容量)水酸化ナトリウム水溶液とを用いてPH調整し
た緩衝液500mlを1Lビーカーに入れ、この液中に
亜二チオン酸ナトリウム5gを溶解させ、直ちにPHを
測定したのち、ビーカーを密封して1時間経過後に検知
管にてビーカー内の亜硫酸ガス濃度を測定したものであ
る。
However, a problem in iron removal using dithionite is generation of toxic sulfurous acid (SO 2 ) gas due to decomposition of dithionite. The decomposability of this dithionite varies greatly depending on the pH of the aqueous solution, and is strong in an acidic region and weak in an alkaline region. Incidentally, Table 2 below shows test results obtained by examining the relationship between the pH of the aqueous solution of sodium dithionite and the amount of generated sulfurous acid gas. In this test, 500 ml of a buffer adjusted with a 5% (weight / volume) aqueous solution of phosphoric acid and a 5% (weight / volume) aqueous solution of sodium hydroxide was placed in a 1 L beaker. After dissolving 5 g of sodium thionate and immediately measuring the pH, the beaker was sealed, and after one hour, the concentration of sulfur dioxide in the beaker was measured with a detector tube.

【0023】[0023]

【表2】 [Table 2]

【0024】表2より、亜二チオン酸ナトリウム水溶液
からの亜硫酸ガス発生量は、PH5.6で500ppm
であるのに対し、同PH6.1では20ppmに過ぎ
ず、PH6付近を境として酸性側になるほど極めて急激
に増大することが判る。従って、洗浄作業を安全に行う
上で、亜二チオン酸塩を含む洗浄剤は初期PHを6.0
以上に設定する必要がある。
According to Table 2, the amount of sulfur dioxide gas generated from the aqueous solution of sodium dithionite was 500 ppm at PH 5.6.
On the other hand, in the case of the same PH6.1, it is only 20 ppm, and it can be seen that the pH increases extremely rapidly toward the acidic side around the vicinity of PH6. Therefore, in order to carry out the washing operation safely, the detergent containing dithionite has an initial pH of 6.0.
It is necessary to set above.

【0025】更に、亜二チオン酸塩水溶液による除鉄に
おいては、還元反応の進行に伴って水溶液のPHが低下
することになるが、このPHの低下が急激であると、上
記の亜硫酸ガスの発生が顕著になり、やはり作業の安全
性に問題を生じることになる。また、亜二チオン酸塩単
独の水溶液では、次第に不溶性の硫黄化合物の沈澱を生
じて液が白濁する現象が認められており、この沈澱物や
浮遊物の生成は透析ラインの清浄化という目的からして
嫌忌すべきことである。そこで、本発明で使用する洗浄
液においては、亜二チオン酸塩を主成分とする水溶性還
元剤と共に、ヒドロキシカルボン酸化合物、カルボン酸
化合物、アミノカルボン酸化合物、リン酸化合物、有機
ホスホン酸化合物、炭酸化合物より選ばれる少なくとも
一種のPH緩衝剤を溶解させる。
Further, in iron removal using an aqueous solution of dithionite, the pH of the aqueous solution decreases with the progress of the reduction reaction. Occurrence becomes remarkable, which also causes a problem in work safety. In addition, in the aqueous solution of dithionite alone, a phenomenon has been observed in which the insoluble sulfur compound precipitates gradually and the liquid becomes cloudy, and the formation of this precipitate and suspended matter is for the purpose of purifying the dialysis line. It is a thing to dislike. Therefore, in the cleaning solution used in the present invention, a hydroxycarboxylic acid compound, a carboxylic acid compound, an aminocarboxylic acid compound, a phosphoric acid compound, an organic phosphonic acid compound, together with a water-soluble reducing agent containing dithionite as a main component. At least one PH buffer selected from carbonate compounds is dissolved.

【0026】すなわち、このPH緩衝剤の使用により、
還元反応の進行に伴う洗浄液(水溶液)のPH低下が抑
えられ、もって亜硫酸ガスの発生が顕著に減少すること
になるが、これによって除鉄性も向上すると共に、前記
の白濁現象も防止できることが判明している。
That is, by using this PH buffer,
A decrease in the pH of the cleaning solution (aqueous solution) accompanying the progress of the reduction reaction is suppressed, and thus the generation of sulfurous acid gas is remarkably reduced. However, the iron elimination property is improved, and the white turbidity phenomenon can be prevented. It is known.

【0027】ここで、前記のPH緩衝剤の具体例として
は、ヒドロキシカルボン酸化合物では乳酸、グリコール
酸、リンゴ酸、酒石酸、クエン酸、グルコン酸等のアル
カリ金属塩及びアンモニウム塩、カルボン酸化合物では
蟻酸、酢酸、シュウ酸、コハク酸、マレイン酸、フマル
酸等のアルカリ金属塩及びアンモニウム塩、アミノカル
ボン酸化合物ではニトリロ三酢酸(NTA)、エチレン
ジアミン四酢酸(EDTA)等のアルカリ金属塩及びア
ンモニウム塩、リン酸化合物ではリン酸、ピロリン酸、
トリポリリン酸、テトラリン酸、ヘキサメタリン酸等の
アルカリ金属塩及びアンモニウム塩、有機ホスホン酸化
合物では2−ホスホン・ブタン・トリカルボン酸1,
2,4、1−ヒドロキシエチリデン−1,1−ジホスホ
ン酸、アミノトリ(メチレンホスホン酸)、エチレンジ
アミン(テトラホスホン酸)、ジエチレントリアミノペ
ンタン(メチレンホスホン酸)等のアルカリ金属塩及び
アンモニウム塩が挙げられる。また炭酸化合物では、炭
酸塩、炭酸水素塩、セスキ炭酸塩等におけるアルカリ金
属塩及びアンモニウム塩が挙げられる。
Here, as specific examples of the above-mentioned PH buffer, there are alkali metal salts and ammonium salts such as lactic acid, glycolic acid, malic acid, tartaric acid, citric acid and gluconic acid for hydroxycarboxylic acid compounds and carboxylic acid compounds. Alkali metal salts and ammonium salts such as formic acid, acetic acid, oxalic acid, succinic acid, maleic acid and fumaric acid, and alkali metal salts and ammonium salts such as nitrilotriacetic acid (NTA) and ethylenediaminetetraacetic acid (EDTA) for aminocarboxylic acid compounds , Phosphate compounds, phosphoric acid, pyrophosphate,
Alkali metal salts and ammonium salts such as tripolyphosphoric acid, tetraphosphoric acid, and hexametaphosphoric acid, and 2-phosphone-butane-tricarboxylic acid 1 in organic phosphonic acid compounds.
Examples thereof include alkali metal salts and ammonium salts such as 2,4,1-hydroxyethylidene-1,1-diphosphonic acid, aminotri (methylenephosphonic acid), ethylenediamine (tetraphosphonic acid), and diethylenetriaminopentane (methylenephosphonic acid). Examples of the carbonate compound include an alkali metal salt and an ammonium salt in carbonate, hydrogen carbonate, sesquicarbonate and the like.

【0028】洗浄液における水溶性還元剤及びPH緩衝
剤の配合量は、水100重量部に対し、水溶性還元剤で
は0.1〜4重量部、PH緩衝剤では0.05〜6重量
部とする。すなわち、水溶性還元剤の配合量が水100
重量部に対して0.1重量部未満では除鉄作用ひいては
除鉄に伴うエンドトキシンの除去作用が不充分になり、
逆に4重量部を越えても除鉄作用のそれ以上の向上は認
められず、溶解が困難になる上に排水処理上の問題(還
元剤は排水上でヨウ素消費量としてカウントされる)も
大きくなる。またPH緩衝剤については、使用する化合
物の種類によってPH緩衝作用の強弱があるが、水10
0重量部に対して0.05重量部未満では充分なPH緩
衝作用が得られず、逆に6重量部を越える場合は、やは
り溶解の困難さや排水のBODやCODが高くなるとい
う問題があるほか、量に見合った効果は期待できないた
めに不経済でもある。
The amount of the water-soluble reducing agent and the pH buffer in the washing solution is 0.1 to 4 parts by weight for the water-soluble reducing agent and 0.05 to 6 parts by weight for the PH buffer per 100 parts by weight of water. I do. That is, the amount of the water-soluble reducing agent is 100
If the amount is less than 0.1 part by weight with respect to part by weight, the iron removing action and, consequently, the endotoxin removing action accompanying iron removing will be insufficient,
Conversely, if the amount exceeds 4 parts by weight, no further improvement in the iron removal action is recognized, dissolving becomes difficult, and there is a problem in wastewater treatment (the reducing agent is counted as iodine consumption in the wastewater). growing. The pH buffering agent has a strong or weak pH buffering action depending on the type of compound used.
If the amount is less than 0.05 part by weight with respect to 0 part by weight, a sufficient PH buffering effect cannot be obtained, and if it exceeds 6 parts by weight, there is a problem that the dissolution is difficult and the BOD and COD of the wastewater also increase. In addition, it is uneconomical because the effect corresponding to the amount cannot be expected.

【0029】次に、種々の配合組成で調製した洗浄液に
ついて、シリコンチューブの洗浄に適用した時のPHの
経時変化、亜硫酸ガス発生量の経時変化、除鉄性を調べ
た結果を、各成分の配合量(水100重量部に対する重
量部)と共に表3〜表6に示す。なお、これら表中にお
ける各成分の名称に付したNaはナトリウム、Kはカリ
ウムである。また、これら表中の符号( )は測定なし
を意味する。しかして、シリコンチューブは、前記同様
に人工透析施設で使用されている透析液供給ラインの茶
色く着色したものを試料として用い、このチューブ内に
各洗浄液を注入して充満させ、茶色の着色が消えること
で鉄分の除去を確認した。除鉄性の評価は、次の5段階
とした。 ◎・・・完全に茶色が消える。 ○・・・僅かに茶色味を認める。 □・・・少し茶色が残る。 △・・・かなり茶色が残る ×・・・元の茶色から殆ど変化なし。
Next, with respect to the cleaning liquids prepared with various compositions, the time-dependent changes in PH, the time-dependent changes in the amount of generated sulfurous gas, and the iron removal properties when applied to the cleaning of silicon tubes were examined. The amounts are shown in Tables 3 to 6 together with the amounts (parts by weight based on 100 parts by weight of water). In addition, Na attached to the name of each component in these tables is sodium, and K is potassium. The symbols () in these tables mean that no measurement was made. Thus, as for the silicon tube, the brown color of the dialysate supply line used in the artificial dialysis facility is used as a sample as described above, and each washing solution is injected into the tube to fill the tube, and the brown color disappears. This confirmed the removal of iron. The iron elimination property was evaluated on the following five levels. ◎ ・ ・ ・ Brown completely disappears.・ ・ ・: Slight brown color is recognized. □ ・ ・ ・ A little brown remains. Δ: fairly brown remains ×: little change from original brown

【0030】[0030]

【表3】 [Table 3]

【0031】[0031]

【表4】 [Table 4]

【0032】[0032]

【表5】 [Table 5]

【0033】[0033]

【表6】 [Table 6]

【0034】表3〜表6より、次のことが明らかであ
る。まず、水溶性還元剤である亜二チオン酸塩のみを溶
解した洗浄液(No.1,2)では、除鉄性はよいもの
の、短時間でPHが急激に低下して亜硫酸ガスの大量放
出を生じるため、洗浄作業の安全性に問題がある。これ
に対し、亜二チオン酸塩と共にPH緩衝剤を加えた洗浄
液(No.3〜36)では、使用したPH緩衝剤の種類
と配合量によって差はあるが、PH緩衝作用によって経
時的なPH低下が抑制されるため、亜硫酸ガスの発生が
少なくなる。しかるに、初期PHを8.0より高く設定
した洗浄液(No.4,5)では、亜硫酸ガスの発生を
防止できるが、除鉄性を発揮できず、除鉄に伴うエンド
トキシンの除去作用は期待できない。従って、洗浄液の
初期PHは6.0〜8.0の範囲にあることが必要であ
る。
From Tables 3 to 6, the following is clear. First, in the cleaning solution (No. 1 and 2) in which only a water-soluble reducing agent, disulfite, was dissolved, although the iron removal property was good, the PH rapidly decreased in a short time and a large amount of sulfurous acid gas was released. Therefore, there is a problem in the safety of the cleaning operation. On the other hand, in the cleaning solution (No. 3-36) in which the PH buffer was added together with the dithionite, although there was a difference depending on the type and the amount of the PH buffer used, the pH over time was due to the PH buffer action. Since the decrease is suppressed, the generation of sulfurous acid gas is reduced. However, the cleaning solution (No. 4, 5) whose initial PH is set higher than 8.0 can prevent the generation of sulfurous acid gas, but cannot exert the iron-removing property and cannot expect the action of removing endotoxin accompanying iron-removing. . Therefore, the initial pH of the cleaning liquid needs to be in the range of 6.0 to 8.0.

【0035】ところで、人工血液透析を行う医療施設の
現場では、透析装置を長く休止させることが難しく、ま
た洗浄作業に携わる人員と労力にも制約があり、できる
だけ短時間でラインの洗浄作業を終えることが必要であ
る。この点、特にPH緩衝剤を加えて初期PHを6.0
〜7.5に設定した洗浄液(No.9〜36)は、4時
間以内の短時間で除鉄が可能であるから、上記の要求に
充分に対応できる。ただし、初期PHが8.0以下で且
つ7.5よりも高く設定した洗浄液(No.6〜8)で
は、短時間での除鉄はできないが、24時間後には充分
に除鉄できるから、例えば医療機関の休日等で透析ライ
ンを休止する機会を利用できるならば、エンドトキシン
の除去洗浄用として有用になる。
Meanwhile, at the site of a medical facility where artificial hemodialysis is performed, it is difficult to suspend the dialysis apparatus for a long time, and there are restrictions on the personnel and labor involved in the cleaning operation, and the cleaning operation of the line is completed in as short a time as possible. It is necessary. In this regard, the initial pH is adjusted to 6.0 by adding a pH buffer.
The cleaning solution (Nos. 9 to 36) set to ~ 7.5 can remove iron in a short time of 4 hours or less, and thus can sufficiently meet the above requirements. However, with the cleaning solution (No. 6 to 8) in which the initial PH is 8.0 or less and higher than 7.5, iron removal cannot be performed in a short time, but after 24 hours, iron removal can be sufficiently performed. For example, if an opportunity to suspend the dialysis line on a medical institution holiday or the like can be used, it becomes useful for endotoxin removal and cleaning.

【0036】なお、PH緩衝剤を加えていても滞留1時
間後のPHが6.0より低くなる洗浄液(No.10,
16)では、亜硫酸ガスの発生を充分には抑制できな
い。また、滞留1時間後のPHが7.0を越える場合
は、除鉄性が低下し、それだけエンドトキシンの除去作
用も低くなることが判明している。従って、迅速な除鉄
を可能にして且つ亜硫酸ガスの発生を充分に抑制できる
洗浄液とする上では、初期PHが6.0〜7.5の範囲
で、且つ滞留1時間後のPHが6.0〜7.0の範囲に
なるように設定することが最も望ましい。なお、このよ
うな滞留1時間後のPHは、亜二チオン酸塩の配合量
と、PH緩衝剤の種類及び配合量とから、経験的に容易
に知ることができる。
Note that even if a pH buffer was added, the cleaning solution (No. 10, No. 10) in which the pH after one hour of retention was lower than 6.0.
In 16), the generation of sulfurous acid gas cannot be sufficiently suppressed. In addition, it has been found that when the pH after one hour of residence exceeds 7.0, the iron-removing property decreases, and the endotoxin removing action also decreases accordingly. Therefore, in order to obtain a cleaning liquid that enables rapid iron removal and sufficiently suppresses the generation of sulfurous acid gas, the initial PH is in the range of 6.0 to 7.5, and the pH after one hour of retention is 6.0. It is most desirable to set it so that it is in the range of 0 to 7.0. It should be noted that the pH one hour after the retention can be easily known empirically from the amount of the dithionite and the type and amount of the PH buffer.

【0037】一方、水溶性還元剤として主成分である亜
二チオン酸塩と共に他の水溶性還元剤成分を配合した場
合は、No.28〜35の洗浄液と他の洗浄液との除鉄
性の比較から明らかなように、水溶性還元剤として亜二
チオン酸塩を単独使用した洗浄液よりも除鉄の進行が遅
くなる傾向がある。従って、これら他の水溶性還元剤成
分は、副成分として使用は可能であっても、特に使用す
ることによる格別な効果か得られるわけではない。
On the other hand, when other water-soluble reducing agent components were blended together with dithionite as a main component as a water-soluble reducing agent, As is clear from the comparison between the 28-35 cleaning solution and the other cleaning solutions, the progress of iron removal tends to be slower than the cleaning solution using dithionite alone as the water-soluble reducing agent. Therefore, even though these other water-soluble reducing agent components can be used as accessory components, no particular effect can be obtained by using them.

【0038】本発明に係る透析液のエンドトキシン除去
方法は、既述のように、上述の洗浄液により、人工血液
透析における透析液作製装置からダイアライザーに至る
透析液供給ラインの少なくとも一部、もしくは人工血液
透析における透析液の希釈水を製造する逆浸透膜装置内
から透析液作製装置に至る給水ラインの少なくとも一部
を洗浄するものである。後者の給水ラインの洗浄では、
除鉄に伴うエンドトキシンの除去によってRO水が清浄
なものとなるから、これを希釈水として用いた透析液の
エンドトキシンが低減されることになる。しかして、洗
浄は、ライン全体に通液する形で行う他、ラインの一定
区間毎に行ったり、ラインに介在する各装置や取り外し
たシリコンチューブを始めとする器材単位で行ってもよ
い。ラインに介在する装置としては、透析液供給ライン
では、透析液作製装置、中央供給装置、精密濾過器、患
者監視装置、ETCF等がある。また給水ラインでは、
逆浸透膜装置やRO水タンクがある。
As described above, the method for removing endotoxin from a dialysate according to the present invention uses at least a part of the dialysate supply line from the dialysate preparation device to the dialyzer in artificial hemodialysis, This is to wash at least a part of a water supply line from a reverse osmosis membrane device for producing dialysate dilution water in dialysis to a dialysate preparation device. In the latter cleaning of the water supply line,
Since the RO water is cleaned by removing endotoxin accompanying iron removal, endotoxin in a dialysate using the RO water as dilution water is reduced. The washing may be performed not only by passing the liquid through the entire line, but also at every fixed section of the line, or may be performed in units of equipment such as devices interposed in the line and detached silicon tubes. In the dialysis fluid supply line, the dialysis fluid supply line includes a dialysis fluid preparation device, a central supply device, a microfilter, a patient monitoring device, an ETCF, and the like. In the water supply line,
There are reverse osmosis membrane devices and RO water tanks.

【0039】[0039]

【実施例】以下に、本発明に係る透析液のエンドトキシ
ン除去方法の実施例について、具体的に説明する。
EXAMPLES Examples of the method for removing endotoxin from a dialysis solution according to the present invention will be specifically described below.

【0040】実施例1 水100重量部にクエン酸ナトリウム15重量部と炭酸
ナトリウム1.5重量部を溶かし、この水溶液中に更に
亜二チオン酸ナトリウム16.5重量部を溶解させ、洗
浄原液を調製した。この洗浄原液を透析液供給ラインの
中央供給装置(日機装社製DAB−C)においてRO水
で35倍に希釈して洗浄液とし、この洗浄液を当該中央
供給装置→精密濾過器(旭エマース社製EK100−
B)→患者監視装置(日機装社製DSC−22B)→E
TCF(日機装社製EF−01)→患者監視装置→廃液
となるシリコンチューブで連結された透析液供給ライン
に15分間送液し、2時間滞留させたのちに水洗(2時
間)することにより、除鉄洗浄を行った。なお、この洗
浄液は、希釈後の初期PHが6.9、滞留1時間後のP
Hが6.3であった。
Example 1 15 parts by weight of sodium citrate and 1.5 parts by weight of sodium carbonate were dissolved in 100 parts by weight of water, and 16.5 parts by weight of sodium dithionite was further dissolved in this aqueous solution. Prepared. The washing stock solution is diluted 35 times with RO water in a central supply device (DAB-C manufactured by Nikkiso Co., Ltd.) of a dialysate supply line to make a washing solution, and the washing solution is converted into the central supply device → a microfiltration device (EK100 manufactured by Asahi Emers Co., Ltd.). −
B) → Patient monitoring device (DS-22B manufactured by Nikkiso Co., Ltd.) → E
TCF (Nikkiso Co., Ltd. EF-01) → Patient monitoring device → Liquid is sent to the dialysate supply line connected by a silicon tube that becomes waste liquid for 15 minutes, and is retained for 2 hours and then washed with water (2 hours). Iron removal cleaning was performed. The cleaning solution had an initial pH of 6.9 after dilution, and a pH of 1 hour after retention.
H was 6.3.

【0041】しかして、中央供給装置内のミキシングタ
ンク(ステンレス鋼)及びシリコンチューブ、精密濾過
器、患者監視装置内の気泡分離チャンバー(ガラスとポ
リプロピレン)及び除水ポンプのハウジング(ステンレ
ス鋼)、ETCF、配管のシリコンチューブは、いずれ
も茶色に着色していたが、前記の除鉄洗浄後には茶色が
完全に消えて元来の色を取り戻していた。また精密濾過
器及びETCFのハウジング内にあった茶色の粒子も該
除鉄洗浄後には消えていた。なお、この除鉄洗浄中、中
央供給装置のある機械室と患者監視装置のある透析治療
室においては、亜硫酸ガスの臭いはなく、ガス検知管に
よっても亜硫酸ガスは検出されなかった。また、前記水
洗に供した水は、ヨウ素液による還元剤成分の検出とナ
トリウム量及び導電率の推移をみることにより、最終的
に洗浄液成分を含まないことが確認された。
Thus, a mixing tank (stainless steel) and a silicon tube in a central feeder, a microfilter, a bubble separation chamber (glass and polypropylene) in a patient monitor and a housing of a dewatering pump (stainless steel), an ETCF Each of the silicon tubes in the piping was colored brown, but after the above-described iron removal cleaning, the brown completely disappeared and the original color was restored. Also, the brown particles in the microfilter and the ETCF housing disappeared after the iron removal washing. During the iron removal cleaning, there was no smell of sulfurous acid gas in the machine room having the central supply device and the dialysis treatment room having the patient monitoring device, and no sulfurous acid gas was detected by the gas detection tube. Further, it was confirmed that the water subjected to the water washing did not finally contain the washing liquid component by detecting the reducing agent component using the iodine solution and observing changes in the amount of sodium and the conductivity.

【0042】一方、前記除鉄洗浄を行う前の透析液供給
ラインにおいて、中央供給装置の出入口とETCF出口
における透析液中の微粒子数を微粒子計(ミクニキカイ
社製MILPA−PR)にて測定すると共に、ETCF
出口の透析液中のエンドトキシン値をエンドスペーシー
法にて測定した。また前記の除鉄洗浄後の透析液供給ラ
インについて、通常の次亜塩素酸ナトリウムによる消毒
洗浄を行った上で、通常の人工透析治療を3日間実施し
たのち、同様に中央供給装置の出入口とETCF出口に
おける透析液中の微粒子数とエンドトキシンを測定し
た。その結果、次の表7に示すように、除鉄洗浄によ
り、中央供給装置の出口及びETCF出口における微粒
子数が著しく減少すると共に、ETCF出口におけるエ
ンドトキシンは不検出となった。なお、上記の消毒洗浄
は通常、毎回の透析終了後に次亜塩素酸ナトリウム10
00ppm水溶液を30分間ラインに送液後、水洗を行
うものである。また、ラインは週2回、前記消毒洗浄前
に1%酢酸水溶液を30分間送液して水洗する方法によ
って酸洗浄を行っているが、この酸洗浄の週1回に代え
る形で本除鉄洗浄を行った。
On the other hand, in the dialysate supply line before performing the iron removal cleaning, the number of fine particles in the dialysate at the entrance and exit of the central supply device and the ETCF outlet was measured by a fine particle meter (MILPA-PR manufactured by Mikuni Kikai). , ETCF
The endotoxin level in the dialysate at the outlet was measured by the endospace method. In addition, the dialysis solution supply line after the iron removal cleaning was subjected to normal disinfection cleaning with sodium hypochlorite, and then subjected to normal artificial dialysis treatment for 3 days. The number of microparticles in the dialysate at the ETCF outlet and endotoxin were measured. As a result, as shown in the following Table 7, the iron removal cleaning significantly reduced the number of fine particles at the outlet of the central feeder and at the ETCF outlet, and did not detect endotoxin at the ETCF outlet. Note that the above disinfecting cleaning is usually performed after the completion of each dialysis with sodium hypochlorite 10 times.
After the 00 ppm aqueous solution is sent to the line for 30 minutes, it is washed with water. Also, the line is acid-washed twice a week by a method in which a 1% aqueous solution of acetic acid is fed for 30 minutes and washed with water before the disinfecting washing. Washing was performed.

【0043】[0043]

【表7】 [Table 7]

【0044】実施例2 水100重量部にリン酸水素二カリウム8重量部とED
TA・2Na6重量部及び炭酸ナトリウム1.5重量部
を溶かし、この水溶液中に更に亜二チオン酸ナトリウム
16重量部を溶解させ、洗浄原液を調製した。この洗浄
原液を透析液供給ラインの中央供給装置(ニプロ社製N
CS−400N)においてRO水で50倍に希釈して洗
浄液とし、この洗浄液を当該中央供給装置→→患者監視
装置(ニプロ社製NCU−5)→ETCF(ニプロ社製
CF−6009)→患者監視装置→廃液となるシリコン
チューブで連結された透析液供給ラインに15分間送液
し、2時間滞留させたのちに水洗(2時間)することに
より、除鉄洗浄を行った。なお、この洗浄液は、希釈後
の初期PHが6.6、滞留1時間後のPHが6.4であ
った。
Example 2 8 parts by weight of dipotassium hydrogen phosphate in 100 parts by weight of water and ED
6 parts by weight of TA · 2Na and 1.5 parts by weight of sodium carbonate were dissolved, and 16 parts by weight of sodium dithionite were further dissolved in this aqueous solution to prepare a stock solution for washing. This washing stock solution is supplied to the central supply unit (Nipro N
CS-400N), dilute 50-fold with RO water to obtain a washing solution, and apply this washing solution to the central supply device →→ Patient monitoring device (Nipro NCU-5) → ETCF (Nipro CF-6009) → Patient monitoring Iron removal was carried out by feeding for 15 minutes to a dialysate supply line connected by a silicon tube which becomes a waste liquid from the apparatus and retaining for 2 hours, followed by washing with water (2 hours). In addition, this washing liquid had an initial pH of 6.6 after dilution and a pH of 6.4 after one hour of residence.

【0045】しかして、中央供給装置内のミキシングチ
ャンバー(ステンレス鋼)及びシリコンチューブ、患者
監視装置内のシリコンチューブ及び除水ポンプのハウジ
ング(ステンレス鋼)、ETCF、配管のシリコンチュ
ーブは、いずれも茶色に着色していたが、前記の除鉄洗
浄後には茶色が完全に消えて元来の色を取り戻してい
た。なお、この除鉄洗浄中、中央供給装置のある機械室
と患者監視装置のある透析治療室においては、亜硫酸ガ
スの臭いはなく、ガス検知管によっても亜硫酸ガスは検
出されなかった。また、前記水洗に供した水は、実施例
1の場合と同様にして最終的に洗浄液成分を含まないこ
とが確認された。
The mixing chamber (stainless steel) and silicon tube in the central feeding device, the silicon tube in the patient monitoring device and the housing of the dewatering pump (stainless steel), the ETCF, and the silicon tube in the piping are all brown. However, the brown color had completely disappeared and the original color had been restored after the iron removal washing. During the iron removal cleaning, there was no smell of sulfurous acid gas in the machine room having the central supply device and the dialysis treatment room having the patient monitoring device, and no sulfurous acid gas was detected by the gas detection tube. Further, it was confirmed that the water subjected to the water washing did not finally contain the washing liquid component in the same manner as in Example 1.

【0046】一方、前記除鉄洗浄を行う前の透析液供給
ラインにおいて、透析液をETCF出口まで送液し、こ
の透析液を採取してエンドトキシン値を実施例1同様に
測定したところ、1.9(EU/L)であった。しかる
に、前記の除鉄洗浄後に通常の次亜塩素酸ナトリウムに
よる消毒洗浄を行ったのち、翌日の人工透析治療の準備
前に透析液をETCF出口まで送液し、このRO水を採
取してエンドトキシン値を同様に測定したところ、採取
水のエンドトキシンは不検出であった。なお、この透析
液供給ラインでは、前記消毒洗浄として毎回の透析終了
後に次亜塩素酸ナトリウム800ppm水溶液を30分
間ラインに送液して水洗を行い、また酸洗浄として週1
回の割合で1%酢酸水溶液を30分間送液して水洗して
いる。
On the other hand, in the dialysate supply line before the iron removal washing, the dialysate was sent to the ETCF outlet, and the dialysate was collected and the endotoxin value was measured as in Example 1. 9 (EU / L). However, after the above-described iron-removal cleaning, normal disinfection cleaning with sodium hypochlorite is performed, and before the preparation for artificial dialysis treatment on the next day, the dialysate is sent to the ETCF outlet, and the RO water is collected and the endotoxin is collected. When the values were measured in the same manner, endotoxin in the collected water was not detected. In this dialysate supply line, an 800 ppm aqueous solution of sodium hypochlorite was sent to the line for 30 minutes after the completion of each dialysis as the disinfecting cleaning, and water washing was performed.
A 1% aqueous solution of acetic acid was sent for 30 minutes at a time to wash with water.

【0047】なお、前記実施例1,2で用いた洗浄液に
ついて、20時間の液中浸漬を7回繰り返すことによ
り、合成樹脂、ゴム、金属の各種素材への影響を調べ
た。その結果、フッ素樹脂、ポリプロピレン、ポリエチ
レン、アクリル樹脂、ポリスチレン、ポリアミド、ポリ
カーボネート、ポリ塩化ビニル等の合成樹脂、ブタジエ
ンゴム、シリコンゴム、天然ゴム、ルトリルゴム等のゴ
ム、ステンレス鋼の何れについても変色や寸法及び重量
変化は認められなかった。これにより、本発明で使用す
る洗浄液は、透析ラインを構成する各種器材に悪影響を
与えず、エンドトキシン除去に安心して使用できること
が判った。
The cleaning liquid used in Examples 1 and 2 was repeatedly immersed in the liquid for 20 hours seven times to examine the effects of synthetic resins, rubbers, and metals on various materials. As a result, any resin such as fluororesin, polypropylene, polyethylene, acrylic resin, polystyrene, polyamide, polycarbonate, synthetic resin such as polyvinyl chloride, butadiene rubber, silicone rubber, natural rubber, rutile rubber, etc. No dimensional or weight changes were observed. As a result, it was found that the cleaning solution used in the present invention did not adversely affect various devices constituting the dialysis line, and could be used for endotoxin removal with confidence.

【0048】実施例3 合成樹脂製RO水タンク内で、水100重量部に対し、
クエン酸ナトリウム0.5重量部と亜二チオン酸ナトリ
ウム0.5重量部を溶解して洗浄液を調製し、透析液の
希釈水となるRO水製造用の逆浸透膜装置(ミクニキカ
イ社製MP−α)の3分間の運転により、前記洗浄液を
当該装置のモジュール内に充填して100分間滞留さ
せ、次いで水洗を導電率が低下して一定になるまで行
い、除鉄洗浄を終了した。この洗浄液は、希釈後の初期
PHが6.4、滞留1時間後のPHが6.3であった。
なお、RO水タンク内は茶色に着色していたが、前記洗
浄液によって茶色が消えた。次に、この逆浸透膜装置に
より、更に30分間RO水をドレインした上で、RO水
採取運転を行った。この運転2時間後のRO水(除鉄洗
浄後)と、除鉄洗浄前のRO水とについて、微粒子数及
びエンドトキシン値を実施例1と同様にして測定した結
果を次の表8に示す。なお、表8には、除鉄洗浄前後と
装置導入時(新設備)の運転状況を併せて示した。
Example 3 In a synthetic resin RO water tank, with respect to 100 parts by weight of water,
A washing solution is prepared by dissolving 0.5 part by weight of sodium citrate and 0.5 part by weight of sodium dithionite, and a reverse osmosis membrane device (MP-Miknikikai Co., Ltd. By the operation of α) for 3 minutes, the cleaning liquid was filled in the module of the apparatus and allowed to stay for 100 minutes, and then water washing was performed until the conductivity was reduced to a constant level, and the iron removal cleaning was completed. This cleaning solution had an initial pH of 6.4 after dilution and a pH of 6.3 after 1 hour of residence.
Although the inside of the RO water tank was colored brown, the brown color disappeared due to the cleaning liquid. Next, the RO water was drained by the reverse osmosis membrane device for another 30 minutes, and then the RO water sampling operation was performed. The results obtained by measuring the number of fine particles and the endotoxin value in the same manner as in Example 1 for the RO water after the operation for 2 hours (after the iron removal cleaning) and the RO water before the iron removal cleaning are shown in Table 8 below. Table 8 also shows the operation status before and after the iron removal cleaning and at the time of introducing the apparatus (new equipment).

【0049】[0049]

【表8】 [Table 8]

【0050】表8から明らかなように、RO水中の微粒
子数及びエンドトキシン値は除鉄洗浄によって著しく減
少しており、これを希釈水として用いた透析液の微粒子
数及びエンドトキシン値も当然に低減することが判る。
また、逆浸透膜装置の運転においても、除鉄処理によっ
て運転圧が下がると共に導電率も低下し、装置導入時に
近い濾過状況が復元されていることが示唆される。
As is clear from Table 8, the number of fine particles in the RO water and the endotoxin value were remarkably reduced by the iron removal washing, and the number of fine particles and the endotoxin value of the dialysate using this as the dilution water were naturally reduced. You can see that.
Also, in the operation of the reverse osmosis membrane device, the operating pressure is reduced and the conductivity is also reduced by the iron removal treatment, suggesting that the filtration state close to the time of introduction of the device is restored.

【0051】[0051]

【発明の効果】請求項1の発明に係る透析液のエンドト
キシン除去方法によれば、除鉄作用を有する特定の洗浄
液により、人工血液透析における透析液作製装置からダ
イアライザーに至る透析液供給ラインの少なくとも一部
を洗浄することから、ラインを構成する各器材内面に付
着蓄積していた錆様の鉄分が除去されるのに伴い、付着
蓄積層中に含まれていたエンドトキシン等の微小物質も
除去されることになり、従来の消毒洗浄や酸洗浄によっ
ては除去できなかったエンドトキシンを効率よく除去で
きるため、透析液が清浄なものとなり、透析中に透析液
側のエンドトキシンが逆浸透や拡散によって血液側へ移
行することによる、発熱症状、各種のアレルギー症状、
様々な合併症等を防止でき、また洗浄作業を安全に行え
ると共に洗浄によるライン構成材料への悪影響もない。
According to the method for removing endotoxin from a dialysate according to the first aspect of the present invention, at least a dialysate supply line from a dialysate preparation device to a dialyzer in artificial hemodialysis is provided by a specific washing solution having an iron-removing action. Since part of the line is washed, the rust-like iron that has adhered and accumulated on the inner surface of each device constituting the line is removed, and minute substances such as endotoxin contained in the adhered accumulation layer are also removed. In other words, endotoxin that could not be removed by conventional disinfection washing or acid washing can be efficiently removed, making the dialysate clean. Fever symptoms, various allergic symptoms,
Various complications and the like can be prevented, the cleaning operation can be performed safely, and there is no adverse effect on the line constituting materials due to the cleaning.

【0052】請求項2の発明に係る透析液のエンドトキ
シン除去方法によれば、上記の除鉄作用を有する特定の
洗浄液により、人工血液透析における透析液の希釈水を
製造する逆浸透膜装置内から透析液作製装置に至る給水
ラインの少なくとも一部を洗浄することから、ラインを
構成する各器材内面に付着蓄積していた錆様の鉄分が除
去されるのに伴い、付着蓄積層中に含まれていたエンド
トキシン等の微小物質も除去されることになり、従来の
消毒洗浄や酸洗浄によっては除去できなかったエンドト
キシンを効率よく除去でき、もって透析液の希釈水とす
る逆浸透膜濾過水が清浄なものとなるため、この希釈水
を用いて製造される透析液のエンドトキシンを低減で
き、もって前記同様の透析中のエンドトキシンの血液側
への移行による、発熱症状、各種のアレルギー症状、様
々な合併症等の発生を抑えることができ、また洗浄作業
を安全に行えると共に洗浄によるライン構成材料への悪
影響もない。
According to the method for removing endotoxin from a dialysate according to the second aspect of the present invention, the specific washing solution having the above-mentioned iron-removing action is used to produce a dialysate dilution water in artificial hemodialysis from within a reverse osmosis membrane device. Since at least a part of the water supply line leading to the dialysate preparation device is washed, the rust-like iron that has adhered and accumulated on the inner surface of each device constituting the line is removed, and is included in the adhesion accumulation layer. Endotoxins and other small substances that had been removed were also removed, and endotoxins that could not be removed by conventional disinfection washing or acid washing can be efficiently removed, and the reverse osmosis membrane filtered water used as dilution water for the dialysate is cleaned. As a result, the endotoxin in the dialysate produced using this dilution water can be reduced, and the endotoxin during the dialysis is transferred to the blood side in the same manner as described above. Symptoms, various allergic symptoms, it is possible to suppress the occurrence of various complications, also no adverse effects on the line the material by washing with safe to scrubbing.

【0053】請求項3の発明によれば、上記のエンドト
キシン除去方法において、使用する洗浄剤が特に除鉄作
用ひいてはエンドトキシンの除去作用に優れるという利
点がある。
According to the third aspect of the present invention, in the above-described method for removing endotoxin, there is an advantage that the detergent used is particularly excellent in the iron removing action and the endotoxin removing action.

【0054】請求項4の発明によれば、上記のエンドト
キシン除去方法において、使用する洗浄液が被洗浄ライ
ン内での滞留1時間後のPHを特定範囲に設定したもの
であるから、除鉄に伴うエンドトキシンの除去作用を充
分に確保して、且つ洗浄液中の水溶性還元剤成分の分解
による亜硫酸ガスの発生を非常に少なくし、作業の安全
性を確保できるという利点がある。
According to the fourth aspect of the present invention, in the above endotoxin removal method, the cleaning liquid used is one in which the pH after one hour of residence in the line to be cleaned is set to a specific range, so that the cleaning liquid is used in conjunction with iron removal. There is an advantage that the action of removing endotoxin is sufficiently ensured, the generation of sulfurous acid gas due to the decomposition of the water-soluble reducing agent component in the cleaning solution is extremely reduced, and the safety of operation can be ensured.

───────────────────────────────────────────────────── フロントページの続き Fターム(参考) 4C077 AA05 BB01 BB02 EE03 HH02 JJ02 NN14 4D006 GA03 GA07 GA13 KC01 KC16 KD02 KD14 KD26 KD30 PA01 PB54 PC44  ──────────────────────────────────────────────────続 き Continued on the front page F term (reference) 4C077 AA05 BB01 BB02 EE03 HH02 JJ02 NN14 4D006 GA03 GA07 GA13 KC01 KC16 KD02 KD14 KD26 KD30 PA01 PB54 PC44

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】 水100重量部に対し、a)亜二チオン
酸塩を主成分とする水溶性還元剤0.1〜4重量部と、
b)ヒドロキシカルボン酸化合物、カルボン酸化合物、
アミノカルボン酸化合物、リン酸化合物、有機ホスホン
酸化合物、炭酸化合物より選ばれる少なくとも一種のP
H緩衝剤0.05〜6重量部とが溶解され、初期PHが
6.0〜8.0である洗浄液により、人工血液透析にお
ける透析液作製装置からダイアライザーに至る透析液供
給ラインの少なくとも一部を洗浄することを特徴とする
透析液のエンドトキシン除去方法。
1. a) 0.1 to 4 parts by weight of a water-soluble reducing agent containing dithionite as a main component per 100 parts by weight of water;
b) hydroxycarboxylic acid compound, carboxylic acid compound,
At least one type of P selected from aminocarboxylic acid compounds, phosphoric acid compounds, organic phosphonic acid compounds, and carbonate compounds;
At least a part of the dialysate supply line from the dialysate preparation device to the dialyzer in the artificial hemodialysis by the washing solution in which 0.05 to 6 parts by weight of the H buffer is dissolved and the initial PH is 6.0 to 8.0. A method for removing endotoxin from a dialysis solution, comprising washing dialysis fluid.
【請求項2】 請求項1に記載の洗浄液により、人工血
液透析における透析液の希釈水を製造する逆浸透膜装置
内から透析液作製装置に至る給水ラインの少なくとも一
部を洗浄することを特徴とする透析液のエンドトキシン
除去方法。
2. A washing liquid according to claim 1, wherein at least a part of a water supply line from a reverse osmosis membrane device for producing a dialysate dilution water in artificial hemodialysis to a dialysate preparation device is washed. A method for removing endotoxin from a dialysate.
【請求項3】 前記洗浄液の水溶性還元剤が、亜二チオ
ン酸塩60〜100重量%と、亜硫酸塩、亜硫酸水素
塩、ピロ亜硫酸塩、ロンガリット、二酸化チオ尿素、チ
オグリコール酸及びその塩、アスコルビン酸及びその
塩、エリスロビン酸及びその塩より選ばれる還元剤成分
0〜40重量%とからなる請求項1又は2に記載の透析
液のエンドトキシン除去方法。
3. The washing solution according to claim 1, wherein the water-soluble reducing agent is 60 to 100% by weight of a dithionate, a sulfite, a bisulfite, a pyrosulfite, a Rongalite, a thiourea dioxide, a thioglycolic acid, and a salt thereof. 3. The method for removing endotoxin in a dialysis solution according to claim 1, comprising 0 to 40% by weight of a reducing agent component selected from ascorbic acid and a salt thereof, and erythrobic acid and a salt thereof.
【請求項4】 洗浄液が、初期PH6.0〜7.5で、
且つ被洗浄ライン内での滞留1時間後のPHが6.0〜
7.0の範囲にあるように設定されてなる請求項1〜3
のいずれかに記載の透析液のエンドトキシン除去方法。
4. The cleaning liquid having an initial pH of 6.0 to 7.5,
In addition, the pH after one hour of residence in the line to be cleaned is 6.0 to 6.0.
4. It is set so as to be in the range of 7.0.
The method for removing endotoxin from a dialysate according to any one of the above.
JP2000223459A 2000-07-25 2000-07-25 Method for cleaning dialysate supply line and dialysate dilution water supply line Expired - Lifetime JP3671137B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2000223459A JP3671137B2 (en) 2000-07-25 2000-07-25 Method for cleaning dialysate supply line and dialysate dilution water supply line

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2000223459A JP3671137B2 (en) 2000-07-25 2000-07-25 Method for cleaning dialysate supply line and dialysate dilution water supply line

Publications (2)

Publication Number Publication Date
JP2002035112A true JP2002035112A (en) 2002-02-05
JP3671137B2 JP3671137B2 (en) 2005-07-13

Family

ID=18717546

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000223459A Expired - Lifetime JP3671137B2 (en) 2000-07-25 2000-07-25 Method for cleaning dialysate supply line and dialysate dilution water supply line

Country Status (1)

Country Link
JP (1) JP3671137B2 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006025813A (en) * 2004-07-12 2006-02-02 Asahi Kasei Medical Co Ltd Medical apparatus and liquid circulation circuit
JP2008070188A (en) * 2006-09-13 2008-03-27 Miura Co Ltd Quantitative determination method of iron
CN104277126A (en) * 2013-07-11 2015-01-14 北大方正集团有限公司 Method for purifying hydroxyethyl starch
WO2016056453A1 (en) * 2014-10-06 2016-04-14 栗田工業株式会社 Cleaning agent, cleaning liquid and cleaning method for reverse osmosis membrane
JP2021074329A (en) * 2019-11-11 2021-05-20 クリーンケミカル株式会社 Calcium carbonate scale remover

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006025813A (en) * 2004-07-12 2006-02-02 Asahi Kasei Medical Co Ltd Medical apparatus and liquid circulation circuit
JP2008070188A (en) * 2006-09-13 2008-03-27 Miura Co Ltd Quantitative determination method of iron
CN104277126A (en) * 2013-07-11 2015-01-14 北大方正集团有限公司 Method for purifying hydroxyethyl starch
WO2016056453A1 (en) * 2014-10-06 2016-04-14 栗田工業株式会社 Cleaning agent, cleaning liquid and cleaning method for reverse osmosis membrane
JP2016073915A (en) * 2014-10-06 2016-05-12 栗田工業株式会社 Detergent, cleaning fluid and cleaning method of reverse osmosis membrane
US10443023B2 (en) 2014-10-06 2019-10-15 Kurita Water Industries Ltd. Alkaline cleaning liquid comprising urea and/or biuret, and cleaning method for reverse osmosis membrane
JP2021074329A (en) * 2019-11-11 2021-05-20 クリーンケミカル株式会社 Calcium carbonate scale remover

Also Published As

Publication number Publication date
JP3671137B2 (en) 2005-07-13

Similar Documents

Publication Publication Date Title
US20060273038A1 (en) Chemical cleaning for membranes
US9751049B2 (en) Compositions and methods of cleaning polyvinyl pyrrolidone-based hemodialysis filtration membrane assemblies
JP2005087887A (en) Membrane washing method
EP0864334A1 (en) Method of regenerating dialyzer and regenerative apparatus
US6022512A (en) Method of cleaning and disinfecting hemodialysis equipment, cleaning disinfectant, and cleaning and disinfecting apparatus
US5078967A (en) Method of cleaning, disinfecting and sterilizing hemodialysis apparatus
JP3403258B2 (en) Fluid flow path cleaning method and cleaning device
JP3053550B2 (en) How to clean medical equipment
US8206752B2 (en) Rejuvenation of reverse osmosis membrane
JP2002035112A (en) Method for removing endotoxin from dialysate
JP2000140585A (en) Operation of membrane separation apparatus, and membrane separation apparatus
JP3758417B2 (en) Dialysis machine cleaning method
JP4602178B2 (en) Cleaning method
JP5059469B2 (en) Method for treating treated water containing iron
KR101427797B1 (en) Maintenance cleaning method of filtration membrane for water treatment and water treatment system for the same
JPH06238136A (en) Method for washing filter membrane module
JP4332829B2 (en) Dialysis system
US11491445B2 (en) Method of regenerating member and method of seawater desalination
JP2023029086A (en) Aide for preparing medical machine washing composition by blending with chlorine-based oxidant and medical machine washing composition using the same
CN208943850U (en) It is a kind of to prevent reverse osmosis dirty stifled system
JP2018114471A (en) Water treatment system
JPH09313901A (en) Washing method for filter for water purification
Kawasaki et al. Guidance of technical management of dialysis water and dialysis fluid for the Japan Association for Clinical Engineering Technologists
JPH05168873A (en) Method for maintaining treating capacity of filter membrane
Cappelli et al. Retention of limulus amoebocyte lysate reactive bacterial products by polysulfone dialyzers is affected by the type of disinfectant

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20040728

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20040929

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20041125

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20050323

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20050418

R150 Certificate of patent or registration of utility model

Ref document number: 3671137

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080422

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090422

Year of fee payment: 4

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090422

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100422

Year of fee payment: 5

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100422

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110422

Year of fee payment: 6

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130422

Year of fee payment: 8

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130422

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140422

Year of fee payment: 9

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term