JP2002033384A - Wiring structure and semiconductor device having the same - Google Patents

Wiring structure and semiconductor device having the same

Info

Publication number
JP2002033384A
JP2002033384A JP2000217215A JP2000217215A JP2002033384A JP 2002033384 A JP2002033384 A JP 2002033384A JP 2000217215 A JP2000217215 A JP 2000217215A JP 2000217215 A JP2000217215 A JP 2000217215A JP 2002033384 A JP2002033384 A JP 2002033384A
Authority
JP
Japan
Prior art keywords
wiring
plan
island
view
wiring structure
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2000217215A
Other languages
Japanese (ja)
Inventor
Kenji Hinode
憲治 日野出
Takafumi Oshima
隆文 大島
Kenichi Takeda
健一 武田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP2000217215A priority Critical patent/JP2002033384A/en
Publication of JP2002033384A publication Critical patent/JP2002033384A/en
Pending legal-status Critical Current

Links

Landscapes

  • Internal Circuitry In Semiconductor Integrated Circuit Devices (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide drastic via wiring connection structure that has superior heat-resistance property, will not depend on the kinds of an insulating film, and can form a reliable wiring system and semiconductor device. SOLUTION: To make a via connected to wide wiring equivalent to connection for narrow wiring near a connection part, and the island of the insulating film is provided near the via in the wide wiring, and the width of wiring connected to the via is narrowed.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は配線構造および半導
体装置に係わり、特に高速動作・低消費電力化に好適な
配線構造およびそれを有する半導体装置に関する。
The present invention relates to a wiring structure and a semiconductor device, and more particularly to a wiring structure suitable for high-speed operation and low power consumption and a semiconductor device having the same.

【0002】[0002]

【従来の技術】半導体素子の微細化・高速化のために配
線材料として銅の導入、層間絶縁膜として低誘電率材料
の導入が盛んに検討されている。さらに多層化に際して
の平坦化のために、CMP(Chemical Mechanical Po
lishing;化学機械的研磨法)を使ったダマシン法で配
線を形成する方法が広まりつつある。
2. Description of the Related Art The introduction of copper as a wiring material and the introduction of a low dielectric constant material as an interlayer insulating film have been actively studied in order to miniaturize and speed up semiconductor devices. In addition, for the purpose of flattening at the time of multilayering, CMP (Chemical Mechanical Po
A method of forming a wiring by a damascene method using lishing (chemical mechanical polishing method) is becoming widespread.

【0003】図1ないし図4は、従来検討されてきた銅
もしくはアルミニウムダマシン配線の形状を示す平面図
と鳥瞰図である。実素子ではこの配線が絶縁膜に埋め込
まれているが、この図では周囲の絶縁膜を描いてない。
図において、1は上層配線、2は上下配線層接続部(ヴ
ィア)、3は下層配線である。
FIGS. 1 to 4 are a plan view and a bird's-eye view showing the shape of a copper or aluminum damascene wiring which has been conventionally studied. In an actual device, this wiring is embedded in the insulating film, but the surrounding insulating film is not drawn in this figure.
In the figure, 1 is an upper wiring, 2 is an upper and lower wiring layer connecting portion (via), and 3 is a lower wiring.

【0004】[0004]

【発明が解決しようとする課題】配線の多層化が3〜4
層以下あるいは配線寸法があまり微細化されていない状
態(ヴィア径0.5μm程度以上)では、上記図1ない
し図4のような配線構造でも十分な特性が得られてい
た。しかし多層化、微細化がすすむにつれて問題がある
ことが分かってきた。すなわち配線抵抗、電流密度の都
合で太い(幅広の)配線に微細なヴィアが接続する図
3、図4のような構造があると、配線を多層化していく
過程で上記のような接続領域が優先的に劣化する(高抵
抗化)するという問題が生じることが分かった。同じ形
状のヴィアでも、図1、図2のような細い配線に接続し
たヴィアではそのような劣化が起きにくい。
The number of wiring layers is three to four.
Under the layer or in a state where the wiring size is not very fine (via diameter of about 0.5 μm or more), sufficient characteristics have been obtained even with the wiring structure as shown in FIGS. However, it has been found that there is a problem as multilayering and miniaturization progress. That is, if there is a structure as shown in FIGS. 3 and 4 in which fine vias are connected to a thick (wide) wiring due to the wiring resistance and current density, the above-described connection region is formed in the process of multilayering the wiring. It was found that a problem of preferential deterioration (high resistance) occurred. Even with vias having the same shape, such deterioration hardly occurs in vias connected to thin wirings as shown in FIGS.

【0005】上記の配線構造で、熱処理法または絶縁膜
の形成方法あるいは形成条件を変えると、定量的な不良
率等の変動はみられるが、確かな信頼性を得る十分なマ
ージンを得られるプロセスにはなり難かった。また微細
化がさらに進めば、そのマージンは狭まってくる。
In the above-described wiring structure, when the heat treatment method or the method of forming the insulating film or the forming conditions is changed, a change in the quantitative defect rate and the like is observed, but a process capable of obtaining a sufficient margin for obtaining reliable reliability. It was difficult to become. Further, as the miniaturization progresses further, the margin becomes narrower.

【0006】本発明の目的は、上述のようなプロセス条
件とは別の、高信頼度の配線構造およびそれを有する半
導体素子を形成できる抜本的な改善策を提供することに
ある。
An object of the present invention is to provide a drastic improvement which can form a highly reliable wiring structure and a semiconductor device having the same, which are different from the above-mentioned process conditions.

【0007】[0007]

【課題を解決するための手段】本発明は、ヴィア近傍の
配線パターンを最適化することにより、上記課題を解決
したものである。すなわち、先に述べた劣化現象の原因
は十分解明されてはいないものの、以下のようないくつ
かの可能性をあげることができる。
The present invention has solved the above-mentioned problems by optimizing a wiring pattern near a via. That is, although the cause of the above-described deterioration phenomenon has not been sufficiently elucidated, there are several possibilities as described below.

【0008】(1)幅広配線内の銅の収縮により、ヴィ
ア内の銅が吸い上げられ、ヴィア内に空洞が発生し、接
続部が高抵抗化する。すなわち銅の収縮は、高温で熱処
理される際、成膜時にできた格子欠陥(原子空孔・粒
界)が集合して大きな欠損・空隙を作るために起こる薄
膜金属に一般的な現象であるが、このとき作られる空隙
の割合は配線の幅によらず一定であるが、幅の広い配線
では空隙の絶対量が大きくなるため、接続しているヴィ
アへの影響が激しいものと考えられる。
(1) The copper in the via is sucked up by the shrinkage of the copper in the wide wiring, a cavity is generated in the via, and the connection portion has a high resistance. That is, shrinkage of copper is a general phenomenon in thin-film metals that, when heat-treated at a high temperature, lattice defects (atomic vacancies / grain boundaries) formed during film formation aggregate to create large defects / voids. However, the ratio of voids formed at this time is constant irrespective of the width of the wiring, but it is considered that the influence of the wide vias on the connected vias is severe because the absolute amount of the voids becomes large.

【0009】(2)熱処理時に配線の周囲の絶縁膜が銅
配線を取り囲んでいる体積(容積)を増加させるように
変形し、それに追随して配線内の銅も移動し、ヴィア内
に空隙を形成する。ここで、絶縁膜の変形現象は、高い
応力を持った膜の場合に特に顕著であり、アルミニウム
配線ではこのメカニズムによるボイド形成が報告されて
いる(文献1;Y.Sugano他,プロシーディングズ オブ
インタナショナル リライアビリティ フィジクス
(Proc. International Reliability Physics)pp.3
4−38(1988),文献2;K.Hinode他,アイイーイーイー
トランザクションズ オン エレクトロンデバイシズ
(IEEE Trans. On ED),vol.36,pp.1050−1055(19
89))。さらに、幅広配線では上記変形が著しくなる、
あるいは同じ変形量でも電気特性に及ぼす影響が著しく
なる場合がある。
(2) At the time of heat treatment, the insulating film around the wiring is deformed so as to increase the volume (volume) surrounding the copper wiring, and the copper in the wiring also moves following the deformation to form a void in the via. Form. Here, the deformation phenomenon of the insulating film is particularly remarkable in the case of a film having high stress, and void formation by this mechanism has been reported in aluminum wiring (Reference 1: Y. Sugano et al., Proceedings of International Reliability Physics pp.3
4-38 (1988), Reference 2; K. Hinode et al., IE Trans. On Electron Devices (IEEE Trans. On ED), vol. 36, pp. 1050-1055 (19)
89)). Furthermore, the above-mentioned deformation becomes remarkable in wide wiring,
Alternatively, even with the same amount of deformation, the effect on the electrical characteristics may be significant.

【0010】(3)幅広配線、もしくはそこに接続して
いるヴィア内の銅の膜質が悪い(格子欠陥が多い)た
め、そのような場所での劣化が著しくなる。
(3) The film quality of copper in a wide wiring or a via connected thereto is poor (many lattice defects), so that deterioration in such a place becomes remarkable.

【0011】以上に考えられる3つの場合を説明した
が、細い配線に接続しているヴィアは十分な特性である
ので、幅広配線に接続したヴィアにおいても、ヴィアと
の接続部近傍では細い配線に接続しているのと同等の構
造にしてやれば、上記3つの可能性のどれであっても対
策できる。その方法として、本発明においては、幅広配
線内のヴィア近傍に絶縁膜の島を設け、ヴィアに接続す
る配線の幅を狭くしてやることで、幅広配線に特有の劣
化現象を克服したものである。
Although the three possible cases have been described above, the vias connected to the thin wiring have sufficient characteristics. Therefore, even in the via connected to the wide wiring, the narrow wiring is used near the connection with the via. With a structure equivalent to that of the connection, any of the above three possibilities can be dealt with. According to the present invention, an island of an insulating film is provided in the vicinity of a via in a wide wiring to reduce the width of a wiring connected to the via, thereby overcoming a deterioration phenomenon peculiar to the wide wiring.

【0012】[0012]

【発明の実施の形態】<実施例1>図5ないし図8は1
層目銅配線(図示略)上にヴィア2と上層(2層目)配
線1とを同時に形成(溝・孔埋め込みおよびCMP)す
る、いわゆるデュアルダマシン法を採用した配線構造の
平面図を示している。
DESCRIPTION OF THE PREFERRED EMBODIMENTS <Embodiment 1> FIGS.
FIG. 3 is a plan view of a wiring structure employing a so-called dual damascene method in which a via 2 and an upper layer (second layer) wiring 1 are simultaneously formed (groove / hole filling and CMP) on a layer copper wiring (not shown). I have.

【0013】層間の絶縁膜(図示略)は代表的なp−C
VD−SiO2膜(Plasma Enhanced Chemical Vapor
Deposition)であるTEOS(Tetra−Ethoxy Silan
e)膜を用い、エッチングストップ(図示略)としてp
−CVD−SiN(SiliconNitride;窒化シリコン)膜
を積層した。膜厚はヴィア深さ0.5μm、配線厚さ
0.3μmとなるようにした。
The interlayer insulating film (not shown) is a typical p-C
VD-SiO 2 film (Plasma Enhanced Chemical Vapor
Deposition, TEOS (Tetra-Ethoxy Silan)
e) Using a film, p as an etching stop (not shown)
-A CVD-SiN (Silicon Nitride; silicon nitride) film was laminated. The film thickness was set to a via depth of 0.5 μm and a wiring thickness of 0.3 μm.

【0014】本実施例では、ヴィア2に接して(フォト
工程による合わせずれのため僅かな隙間ができる場合も
含む)各図に示すような絶縁膜の島4を設けた。島の形
状についての制約はないが、配線抵抗への影響が少なく
電流経路をできるだけ妨げないように、できるだけ小さ
く、平面図上の長手方向が配線の長手方向に平行になる
よう形成するのが望ましい。
In the present embodiment, islands 4 of the insulating film are provided in contact with the vias 2 (including a case where a slight gap is formed due to misalignment due to a photo process) as shown in each figure. Although there is no restriction on the shape of the island, it is desirable to form the island as small as possible so that the longitudinal direction in the plan view is parallel to the longitudinal direction of the wiring so that the influence on the wiring resistance is small and the current path is not obstructed as much as possible. .

【0015】図9ないし図12の実施例は、ヴィア2に
接してはいないものの、ヴィア2の近傍に前記実施例と
同様形状の絶縁膜の島4を設けたものである。この実施
例ではヴィア2に接して島4を設けた実施例に比べて相
対的に高信頼化の程度は劣るが、島4を設けたことによ
る配線抵抗等への影響は前記実施例よりも減らすことが
できるので、要求に応じて使い分ければよい。
In the embodiment shown in FIGS. 9 to 12, although not in contact with the via 2, an island 4 of an insulating film having the same shape as the above embodiment is provided near the via 2. FIG. In this embodiment, the degree of high reliability is relatively inferior to the embodiment in which the island 4 is provided in contact with the via 2, but the effect of providing the island 4 on the wiring resistance and the like is smaller than that in the embodiment. Since it can be reduced, it can be used properly according to requirements.

【0016】上層配線1の幅を5μmとし、ヴィア2の
径を3μmおよび0.2μmとしてそれぞれ10000
個、直列に接続したTEG(Test Element Group;特
性評価用のパターン)を形成し、本発明の効果を評価し
た結果を表1に示す。
The width of the upper wiring 1 is 5 μm, and the diameter of the via 2 is 3 μm and 0.2 μm.
Table 1 shows the results of evaluating the effects of the present invention by forming TEGs (Test Element Groups; patterns for characteristic evaluation) connected in series.

【0017】[0017]

【表1】 [Table 1]

【0018】上記の結果は次のようにまとめられる。配
線形成初期はあまり構造によらず、ほとんど100%の
歩留まりが得られている。しかし、追加熱処理を施すと
構造の差が見えてくる。まず熱処理温度が高いほど、そ
してヴィア径が小さいほど劣化が著しい。島の設け方に
よる差も見られる。図5の構造でも従来構造に比べると
大きな改善効果があるが、今回の熱処理に対しては必ず
しも充分ではない。できるだけヴィアの近くに置いた大
面積のものほど効果が大きくなっている。
The above results are summarized as follows. At the initial stage of wiring formation, almost 100% yield is obtained irrespective of the structure. However, when additional heat treatment is performed, a difference in structure becomes apparent. First, the higher the heat treatment temperature and the smaller the via diameter, the more remarkable the deterioration. There are differences depending on how the islands are set up. Although the structure of FIG. 5 has a great improvement effect as compared with the conventional structure, it is not always sufficient for the heat treatment of this time. The larger the area, the closer to the via, the greater the effect.

【0019】今回の熱処理に対しては、図6ないし図8
の構造を採れば十分な耐性が確保できる。より熱処理条
件の軽いものに対しては他の構造でも対応できる場合が
ある。
For this heat treatment, FIGS.
With this structure, sufficient resistance can be ensured. Other structures may be able to cope with lighter heat treatment conditions.

【0020】<実施例2> 繰り返し熱処理による劣化
の実施例 高温での熱処理が短時間であったり、1、2回ですむ場
合は上記の構造で対処できる。しかし、配線が5層以上
に多層化される場合も少なくない。実施例1で述べた配
線構造は1層分であるが、これを5回積層して、5層配
線を形成した。すなわち最下層の配線は少なくとも5回
の熱処理を経ることになる。
<Embodiment 2> Embodiment of Deterioration by Repeated Heat Treatment In the case where the heat treatment at a high temperature is for a short time or only once or twice, the above structure can be used. However, there are many cases where the wiring is multilayered into five or more layers. Although the wiring structure described in Example 1 is for one layer, this was laminated five times to form a five-layer wiring. That is, the lowermost wiring undergoes at least five heat treatments.

【0021】この熱処理に対しては、実施例1で述べた
図6ないし図8の構造でも劣化が著しく、実際の素子で
はさらに耐性を向上させる必要がある。そのため、図1
3ないし図20のようにヴィアの2方向以上に絶縁膜の
島4を設けた構造の配線を5層積層したTEGを形成
し、前実施例と同様にして1層目のヴィアチェーンの歩
留まりを測定した。ここで、各図は前記実施例と同様に
1層目配線(図示略)上にヴィア2と2層目配線1を形
成した場合の平面図を示している。
With respect to this heat treatment, the structure shown in FIGS. 6 to 8 described in the first embodiment is significantly deteriorated, and it is necessary to further improve the resistance in an actual device. Therefore, FIG.
As shown in FIGS. 3 to 20, a TEG is formed by stacking five layers of wiring having a structure in which insulating film islands 4 are provided in two or more via directions, and the yield of the first layer via chain is reduced in the same manner as in the previous embodiment. It was measured. Here, each drawing shows a plan view in the case where the via 2 and the second-layer wiring 1 are formed on the first-layer wiring (not shown) as in the above-described embodiment.

【0022】この場合もヴィアと上層配線とを同時に形
成(溝・孔埋め込みおよびCMP)する、いわゆるデュ
アルダマシン法を採用している。層間の絶縁膜は実施例
1と同様に、TEOS膜を用い、エッチングストップと
してSiN膜を積層した。1層分の膜厚はヴィア深さ
0.5μm、配線厚さ0.3μmとなるようにした。ま
た、このTEGでは1層形成するために、400℃以下
で総計約15分間、425℃で約10分間の熱処理が施
されている。歩留まり測定前に熱処理は施していない。
Also in this case, a so-called dual damascene method in which a via and an upper wiring are simultaneously formed (groove / hole filling and CMP) is employed. As in Example 1, a TEOS film was used as an interlayer insulating film, and a SiN film was stacked as an etching stop. The thickness of one layer was set to a via depth of 0.5 μm and a wiring thickness of 0.3 μm. Further, in this TEG, a heat treatment is performed at 400 ° C. or less for a total of about 15 minutes at 425 ° C. for about 10 minutes in order to form one layer. No heat treatment was performed before the yield measurement.

【0023】図13ないし図16ではヴィア2に接して
図に示すような絶縁膜の島4を設けた。また、図17な
いし図20はヴィアから若干の距離を置いてヴィア2の
近傍に同様の絶縁膜4の島を設けたものである。図17
ないし図20の例ではヴィアに接して島を設けたものに
比べて、高信頼化の程度は劣るが、島を設けたことによ
る配線抵抗等への影響をより減らすことができるので、
実施に当たっては、要求に応じて使い分ければよいこと
は前述と同様である。実施例1と同様に上層配線の幅を
5μmとし、ヴィア径として0.3μmおよび0.2μm
のものをそれぞれ10000個直列に接続したTEGを
形成して評価した結果を表2に示す。
In FIGS. 13 to 16, an insulating film island 4 as shown in FIG. 17 to 20 show similar islands of the insulating film 4 provided near the via 2 at a slight distance from the via. FIG.
In the example of FIG. 20, the degree of high reliability is inferior to that in which an island is provided in contact with the via, but the influence of the island on wiring resistance and the like can be further reduced.
In the implementation, it is the same as described above that it can be properly used depending on the request. As in the first embodiment, the width of the upper wiring is set to 5 μm, and the via diameters are set to 0.3 μm and 0.2 μm.
Table 2 shows the results of forming and evaluating a TEG in which 10000 of these were connected in series.

【0024】[0024]

【表2】 [Table 2]

【0025】上記の結果は次のようにまとめられる。ヴ
ィア径が小さいほど劣化が著しく初期歩留まりが低い。
島の設け方による差も見られ、図13の構造では図6の
構造と大差なく、このプロセスで十分な耐性を持ってい
ない。図14ないし図16のように、できるだけヴィア
の近くに置いた大面積の島ほど効果が大きくなってい
る。今回の熱処理に対しては、図14、図16の構造を
採れば十分な耐性が確保できる。層数の少ないものに対
しては他の構造でも対応できる場合がある。
The above results are summarized as follows. As the via diameter is smaller, the deterioration is remarkable and the initial yield is lower.
There is also a difference depending on how the islands are provided, and the structure in FIG. 13 is not much different from the structure in FIG. 6 and does not have sufficient resistance in this process. As shown in FIGS. 14 to 16, the effect is greater for a large-area island placed as close to the via as possible. Sufficient resistance to the heat treatment of this time can be ensured by adopting the structures of FIGS. In some cases, other structures can be used for those having a small number of layers.

【0026】<実施例3>図21ないし図24も前記実
施例と同様に1層目配線(図示略)上にヴィア2と2層
目配線1を形成した場合の平面図を示している。本実施
例は、複数のヴィアがある場合に、できるだけヴィアの
多数の方向に島を設け、かつ配線への影響が少なくなる
ように島を配置した例である。
<Embodiment 3> FIGS. 21 to 24 are plan views showing a case where a via 2 and a second-layer wiring 1 are formed on a first-layer wiring (not shown), similarly to the above-described embodiment. This embodiment is an example in which, when there are a plurality of vias, islands are provided in as many directions as possible of the vias, and the islands are arranged so as to reduce the influence on the wiring.

【0027】図21ないし図24の構造で配線を5層積
層したTEGを形成し、前の実施例と同様にして1層目
のヴィアチェーンの歩留まりを測定した。このTEGで
は一層形成するための熱処理として、400℃以下の熱
処理が総計約15分間、425℃で約10分間の熱処理
が施されている。歩留まり測定前に熱処理は施していな
い。
A TEG in which five layers of wiring were stacked in the structure shown in FIGS. 21 to 24 was formed, and the yield of the first-layer via chain was measured in the same manner as in the previous embodiment. In this TEG, as a heat treatment for forming a single layer, heat treatment at 400 ° C. or less is performed for a total of about 15 minutes and 425 ° C. for about 10 minutes. No heat treatment was performed before the yield measurement.

【0028】この場合もヴィアと上層配線とを同時に形
成(溝・孔埋め込みおよびCMP)する、いわゆるデュ
アルダマシン法を採用している。層間の絶縁膜(図示
略)は実施例1と同様にTEOS膜を用い、エッチング
ストップ(図示略)としてSiN膜を積層した。1層分
の膜厚はヴィア深さ0.5μm、配線厚さ0.3μmとな
るようにした。
Also in this case, a so-called dual damascene method in which a via and an upper wiring are simultaneously formed (groove / hole filling and CMP) is employed. A TEOS film was used as an interlayer insulating film (not shown) as in Example 1, and a SiN film was laminated as an etching stop (not shown). The thickness of one layer was set to a via depth of 0.5 μm and a wiring thickness of 0.3 μm.

【0029】上層配線1の幅は5μmとし、ヴィア2の
径として0.3μmおよび0.2μmのものをそれぞれ1
0000個直列に接続したTEGを形成して評価した。
この結果、図20から24の構造でほぼ98%以上の歩
留まりが得られ、このようなヴィア近傍の島の配置が高
信頼化に有効であることを確認した。
The width of the upper wiring 1 is 5 μm, and the diameter of the via 2 is 0.3 μm and 0.2 μm, respectively.
0000 TEGs connected in series were formed and evaluated.
As a result, a yield of about 98% or more was obtained with the structures of FIGS. 20 to 24, and it was confirmed that such an arrangement of islands near the vias was effective for high reliability.

【0030】<実施例4>図25ないし図26は、複数
のヴィア2がある場合に、島の形成による電気特性の劣
化ができるだけ少なくなるように島を配置した例であ
る。前記実施例と同様に1層目配線(図示略)上にヴィ
ア2と2層目配線1を形成した場合の平面図を示してい
る。また、図27ないし図28はヴィアの2方向以上に
絶縁膜を設ける際、一方向を島ではなく、配線端で兼用
させた場合の島の配置例である。
<Embodiment 4> FIGS. 25 to 26 show an example in which, when there are a plurality of vias 2, the islands are arranged so that the deterioration of the electric characteristics due to the formation of the islands is minimized. A plan view in the case where a via 2 and a second-layer wiring 1 are formed on a first-layer wiring (not shown) as in the above-described embodiment is shown. FIGS. 27 to 28 show examples of the arrangement of islands in the case where an insulating film is provided in at least two directions of vias, and one direction is used not as an island but as a wiring end.

【0031】図25ないし図28の構造で配線を5層積
層したTEGを形成し、前の実施例と同様にして1層目
のヴィアチェーンの歩留まりを測定した。このTEGで
は1層形成するたびに、400℃以下で総計約15分
間、425℃で約10分間の熱処理が施されている。歩
留まり測定前に熱処理は施していない。
A TEG in which five layers of wiring were stacked in the structure shown in FIGS. 25 to 28 was formed, and the yield of the first layer via chain was measured in the same manner as in the previous embodiment. In this TEG, each time one layer is formed, heat treatment is performed at 400 ° C. or less for a total of about 15 minutes and at 425 ° C. for about 10 minutes. No heat treatment was performed before the yield measurement.

【0032】この場合もヴィアと上層配線とを同時に形
成(溝・孔埋め込みおよびCMP)する、いわゆるデュ
アルダマシン法を採用している。層間の絶縁膜は実施例
1と同様に、TEOS膜を用い、エッチングストップと
してSiN膜を積層した。1層分の膜厚はヴィア深さ
0.5μm、配線厚さ0.3μmとなるようにした。上層
配線の幅は5μmとし、ヴィア径として0.3μmおよび
0.2μmのものをそれぞれ10000個直列に接続し
たTEGを形成して評価した。
Also in this case, a so-called dual damascene method in which a via and an upper layer wiring are simultaneously formed (groove / hole filling and CMP) is employed. As in Example 1, a TEOS film was used as an interlayer insulating film, and a SiN film was stacked as an etching stop. The thickness of one layer was set to a via depth of 0.5 μm and a wiring thickness of 0.3 μm. The width of the upper layer wiring was set to 5 μm, and TEGs in which 10,000 vias having a via diameter of 0.3 μm and 0.2 μm were connected in series were formed and evaluated.

【0033】その結果、図25から28の構造でほぼ9
8%以上の歩留まりが得られ、島を設けないもの(歩留
まりは30%以下)に比べて極めて高く、本実施例のよ
うなヴィア近傍の島の配置が高信頼化に有効であること
を確認した。
As a result, the structure shown in FIGS.
A yield of 8% or more is obtained, which is extremely high as compared with the case where no island is provided (the yield is 30% or less), and it is confirmed that the arrangement of islands near the vias as in this embodiment is effective for high reliability. did.

【0034】また、図29ないし32に示すように、島
を設けるのではなく、配線の側面を変形させても本発明
の効果を得ることができるのは言うまでもない。
Further, as shown in FIGS. 29 to 32, it is needless to say that the effect of the present invention can be obtained even if the side surface of the wiring is deformed instead of providing the island.

【0035】<実施例5>実施例1と同様のTEGで、
上層配線の幅を変えたものを作成し、歩留まりを測定し
比較した結果を表3に示す。
<Embodiment 5> With the same TEG as in Embodiment 1,
Table 3 shows the results of making and changing the width of the upper layer wiring, measuring the yield, and comparing.

【0036】[0036]

【表3】 [Table 3]

【0037】本実施例の結果、ヴィアの径に比べて上層
配線の幅が狭い場合、劣化が生じにくいが、配線幅がヴ
ィア径の10倍程度を超えると熱処理による劣化が著し
くなることがわかる。配線やヴィアの寸法が変化したと
きもこのような傾向は保たれるが、今回得られたヴィア
径の10倍程度という比率は普遍的なものとは考えにく
い。配線材料と絶縁膜材料の取り合わせでは数倍程度か
ら影響が顕著になる場合もあると思われる。
As a result of this example, it is found that when the width of the upper layer wiring is narrower than the diameter of the via, deterioration hardly occurs, but when the wiring width exceeds about 10 times the diameter of the via, deterioration due to heat treatment becomes remarkable. . This tendency is maintained even when the dimensions of the wiring and the via are changed, but the ratio of about 10 times the via diameter obtained this time is hardly considered to be universal. It is considered that the influence of the combination of the wiring material and the insulating film material may be remarkable from about several times.

【0038】<実施例6> 島の大きさ(長さ)依存性 実施例1の図6と同様のTEGで、島の長さを変えたも
のを作成し、歩留まりを測定し比較した結果を表4に示
す。
<Embodiment 6> Dependency on island size (length) TEG similar to that in FIG. 6 of Embodiment 1 was prepared by changing the length of the island, and the yield was measured and compared. It is shown in Table 4.

【0039】[0039]

【表4】 [Table 4]

【0040】上記の結果はヴィアの径に比べて上層配線
中の島の長さが短いと劣化しやすいものの、島を十分長
くし、ヴィア径の10倍程度を超えると高い信頼度が得
られることを示している。配線寸法やヴィアの寸法が変
化したときもこのような傾向は保たれるが、今回得られ
た10倍程度というこの比率は必ずしも普遍的なものと
は考えにくい。配線と絶縁膜の取り合わせでは数倍程度
で十分な信頼性が得られる場合もあると思われる。表4
では島の長さについてのみ検討した結果を示したが、島
の幅等にも依存すると考えられる。配線の電気特性に対
する悪影響が最小で効果が最大の形状については、個々
の場合について求めて最適化すればよい。
The above results indicate that, although the islands in the upper wiring are easily deteriorated when the length of the islands in the upper wiring is shorter than the diameter of the vias, high reliability can be obtained if the islands are sufficiently long and the diameter exceeds about 10 times the via diameter. Is shown. This tendency is maintained even when the wiring size or via size changes, but this ratio of about 10 times obtained this time is not necessarily considered to be universal. It is thought that a sufficient reliability may be obtained with a combination of the wiring and the insulating film of about several times. Table 4
The above shows the results of studying only the length of the island, but it is considered that it depends on the width of the island. The shape having the least adverse effect on the electrical characteristics of the wiring and the greatest effect may be obtained and optimized for each individual case.

【0041】<実施例7>本発明の実施例はすべてダマ
シン法で形成した配線について説明している。その方法
では溝と孔を形成した絶縁膜に金属(この実施例では
銅)を埋め込み、CMP法で不要部分の銅を除去し、残
したところを配線とする。銅を埋め込む際、シードと呼
ばれる下地層として銅をスパッタ法で薄く形成(最終配
線厚さの1/10程度)したものに、電解めっき法で厚
い銅を形成している。
<Embodiment 7> The embodiments of the present invention have all described the wiring formed by the damascene method. In this method, a metal (copper in this embodiment) is buried in an insulating film in which a groove and a hole are formed, an unnecessary portion of copper is removed by a CMP method, and the remaining portion is used as a wiring. When copper is embedded, thick copper is formed by electrolytic plating on a thin layer of copper (approximately 1/10 of the final wiring thickness) formed by sputtering as a base layer called a seed.

【0042】しかし、上記の工程で、比較的深いヴィア
孔を埋め込むための条件と浅い配線溝を埋め込む条件で
は、最適条件が異なる場合が多い。これについては、印
加電流条件をめっき成膜の途中で変化させる手法が一般
に用いられているが、必ずしも十分な効果をあげていな
い。それはヴィアに接続している配線の幅が異なり、デ
ユアルダマシン法の埋め込みの際に、孔と溝が一体とな
って形成されている形状(アスペクト)が広い分布をも
つからである。
However, in the above-described process, the optimum condition is often different between the condition for filling a relatively deep via hole and the condition for filling a shallow wiring groove. In this regard, a technique of changing the applied current condition during plating film formation is generally used, but does not necessarily provide a sufficient effect. This is because the width of the wiring connected to the via is different, and the shape (aspect) in which the hole and the groove are integrally formed has a wide distribution when the dual damascene method is buried.

【0043】今回のヴィア近傍に絶縁膜の島を設ける方
法を採用すると、全てのヴィア部のアスペクトを狭い範
囲に収められるため、その形状(アスペクト)に最適な
めっき条件を選択することができる。
If the method of providing the insulating film islands near the vias is adopted this time, the aspect of all the vias can be kept within a narrow range, so that the optimal plating conditions for the shape (aspect) can be selected.

【0044】このような考え方に基づき、硫酸銅を主成
分とするめっき液を用いる銅めっきチャンバを2つ用意
し、表5のような組成のめっき液を調整作成した。
Based on the above concept, two copper plating chambers using a plating solution containing copper sulfate as a main component were prepared, and plating solutions having compositions shown in Table 5 were prepared.

【0045】[0045]

【表5】 [Table 5]

【0046】めっきを(1)Aチャンバのみで最終膜厚
まで形成、(2)Bチャンバで最終膜厚まで形成、
(3)最初Aチャンバで1/5の膜厚を形成後、ウェハ
をBチャンバに設置し直して残りの膜厚を形成の3通り
の場合について膜厚均一性、埋め込み性について評価し
比較した結果を表6に示す。
The plating is (1) formed to the final thickness only in the chamber A, (2) formed to the final thickness in the chamber B,
(3) First, after forming a 1/5 film thickness in the chamber A, the wafer was re-installed in the chamber B, and the remaining film thicknesses were evaluated for the three cases of formation, and the film thickness uniformity and the embedding property were evaluated and compared. Table 6 shows the results.

【0047】[0047]

【表6】 [Table 6]

【0048】プロセスが複雑化する欠点があるが、埋め
込み性と膜厚均一性を同時に実現できるという点では表
6の(3)の方法が(1)または(2)に比べて優れて
いることが明らかである。ヴィアの見かけの形状(アス
ペクト)を統一することで、このような2段階埋め込み
が可能になり、LSI配線製造に好適な成膜ができるよ
うになることも、本発明の優れた効果といえる。
Although there is a disadvantage that the process becomes complicated, the method (3) in Table 6 is superior to the method (1) or (2) in that the embedding property and the film thickness uniformity can be realized simultaneously. Is evident. By unifying the apparent shape (aspect) of the via, such a two-stage embedding becomes possible, and it is possible to form a film suitable for manufacturing LSI wiring.

【0049】[0049]

【発明の効果】本発明のヴィア近傍の配線に絶縁膜の島
を設けることで、多層配線の歩留まり、信頼性を向上す
ることができ、高性能のLSIを実現することが可能に
なる。
According to the present invention, by providing the island of the insulating film in the wiring near the via, the yield and reliability of the multilayer wiring can be improved, and a high-performance LSI can be realized.

【図面の簡単な説明】[Brief description of the drawings]

【図1】従来の多層配線のヴィア接続方法の一例を示す
平面図。
FIG. 1 is a plan view showing an example of a conventional via connection method for multilayer wiring.

【図2】従来の多層配線のヴィア接続方法の一例を示す
鳥瞰図。
FIG. 2 is a bird's-eye view showing an example of a conventional via connection method for multilayer wiring.

【図3】従来の多層配線のヴィア接続方法の一例を示す
平面図。
FIG. 3 is a plan view showing an example of a conventional via connection method of a multilayer wiring.

【図4】従来の多層配線のヴィア接続方法の一例を示す
鳥瞰図。
FIG. 4 is a bird's-eye view showing an example of a conventional via connection method for multilayer wiring.

【図5】本発明の多層配線のヴィア接続方法の一例を示
す平面図。
FIG. 5 is a plan view showing an example of a via connection method for a multilayer wiring according to the present invention.

【図6】本発明の多層配線のヴィア接続方法の一例を示
す平面図。
FIG. 6 is a plan view showing an example of a via connection method for a multilayer wiring according to the present invention.

【図7】本発明の多層配線のヴィア接続方法の一例を示
す平面図。
FIG. 7 is a plan view showing an example of a via connection method for a multilayer wiring according to the present invention.

【図8】本発明の多層配線のヴィア接続方法の一例を示
す平面図。
FIG. 8 is a plan view showing an example of a via connection method for a multilayer wiring according to the present invention.

【図9】本発明の多層配線のヴィア接続方法の一例を示
す平面図。
FIG. 9 is a plan view showing an example of a via connection method for a multilayer wiring according to the present invention.

【図10】本発明の多層配線のヴィア接続方法の一例を
示す平面図。
FIG. 10 is a plan view showing an example of a via connection method for a multilayer wiring according to the present invention.

【図11】本発明の多層配線のヴィア接続方法の一例を
示す平面図。
FIG. 11 is a plan view showing an example of a via connection method for a multilayer wiring according to the present invention.

【図12】本発明の多層配線のヴィア接続方法の一例を
示す平面図。
FIG. 12 is a plan view showing an example of a via connection method for a multilayer wiring according to the present invention.

【図13】本発明の多層配線のヴィア接続方法の一例を
示す平面図。
FIG. 13 is a plan view showing an example of a via connection method for a multilayer wiring according to the present invention.

【図14】本発明の多層配線のヴィア接続方法の一例を
示す平面図。
FIG. 14 is a plan view showing an example of a via connection method for a multilayer wiring according to the present invention.

【図15】本発明の多層配線のヴィア接続方法の一例を
示す平面図。
FIG. 15 is a plan view showing an example of a via connection method for a multilayer wiring according to the present invention.

【図16】本発明の多層配線のヴィア接続方法の一例を
示す平面図。
FIG. 16 is a plan view showing an example of a via connection method for a multilayer wiring according to the present invention.

【図17】本発明の多層配線のヴィア接続方法の一例を
示す平面図。
FIG. 17 is a plan view showing an example of a via connection method for a multilayer wiring according to the present invention.

【図18】本発明の多層配線のヴィア接続方法の一例を
示す平面図。
FIG. 18 is a plan view showing an example of a via connection method for a multilayer wiring according to the present invention.

【図19】本発明の多層配線のヴィア接続方法の一例を
示す平面図。
FIG. 19 is a plan view showing an example of a via connection method for a multilayer wiring according to the present invention.

【図20】本発明の多層配線のヴィア接続方法の一例を
示す平面図。
FIG. 20 is a plan view showing an example of a via connection method for a multilayer wiring according to the present invention.

【図21】本発明の多層配線のヴィア接続方法の一例を
示す平面図。
FIG. 21 is a plan view showing an example of a via connection method for a multilayer wiring according to the present invention.

【図22】本発明の多層配線のヴィア接続方法の一例を
示す平面図。
FIG. 22 is a plan view showing an example of a via connection method for a multilayer wiring according to the present invention.

【図23】本発明の多層配線のヴィア接続方法の一例を
示す平面図。
FIG. 23 is a plan view showing an example of a via connection method for a multilayer wiring according to the present invention.

【図24】本発明の多層配線のヴィア接続方法の一例を
示す平面図。
FIG. 24 is a plan view showing an example of a via connection method for a multilayer wiring according to the present invention.

【図25】本発明の多層配線のヴィア接続方法の一例を
示す平面図。
FIG. 25 is a plan view showing an example of a via connection method for a multilayer wiring according to the present invention.

【図26】本発明の多層配線のヴィア接続方法の一例を
示す平面図。
FIG. 26 is a plan view showing an example of a via connection method for a multilayer wiring according to the present invention.

【図27】本発明の多層配線のヴィア接続方法の一例を
示す平面図。
FIG. 27 is a plan view showing an example of a via connection method for a multilayer wiring according to the present invention.

【図28】本発明の多層配線のヴィア接続方法の一例を
示す平面図。
FIG. 28 is a plan view showing an example of a via connection method for a multilayer wiring according to the present invention.

【図29】本発明の多層配線のヴィア接続方法の一例を
示す平面図。
FIG. 29 is a plan view showing an example of a via connection method for a multilayer wiring according to the present invention.

【図30】本発明の多層配線のヴィア接続方法の一例を
示す平面図。
FIG. 30 is a plan view showing an example of a via connection method for a multilayer wiring according to the present invention.

【図31】本発明の多層配線のヴィア接続方法の一例を
示す平面図。
FIG. 31 is a plan view showing an example of a via connection method for a multilayer wiring according to the present invention.

【図32】本発明の多層配線のヴィア接続方法の一例を
示す平面図。
FIG. 32 is a plan view showing an example of a via connection method for a multilayer wiring according to the present invention.

【符号の説明】[Explanation of symbols]

1…上層配線、2…上下配線層接続孔、3…下層配線、
4…配線中に設けた絶縁膜の島。
1 upper wiring, 2 upper and lower wiring connection holes, 3 lower wiring,
4: islands of insulating film provided in wiring.

───────────────────────────────────────────────────── フロントページの続き (72)発明者 武田 健一 東京都国分寺市東恋ケ窪一丁目280番地 株式会社日立製作所中央研究所内 Fターム(参考) 5F033 HH08 HH11 JJ01 JJ08 JJ11 MM01 MM02 MM21 MM22 PP15 PP27 QQ25 RR04 RR06 SS04 SS15 XX00  ────────────────────────────────────────────────── ─── Continuing on the front page (72) Inventor Kenichi Takeda 1-280 Higashi-Koigakubo, Kokubunji-shi, Tokyo F-term in Central Research Laboratory, Hitachi, Ltd. 5F033 HH08 HH11 JJ01 JJ08 JJ11 MM01 MM02 MM21 MM22 PP15 PP27 QQ25 RR04 RR06 SS04 SS15 XX00

Claims (9)

【特許請求の範囲】[Claims] 【請求項1】ヴィアに接続し、ヴィア径よりも幅の広い
銅もしくはアルミニウムを主成分とする配線で、ヴィア
近傍の配線内部に絶縁膜で埋め込んだ領域(以下単に島
という)があることを特徴とする配線構造。
1. A wiring connected to a via and having copper or aluminum as a main component and having a width larger than the via diameter and having a region (hereinafter simply referred to as an island) buried with an insulating film inside the wiring near the via. Characteristic wiring structure.
【請求項2】バリア等導電性物質の境界なしにヴィアに
接続し、ヴィア径よりも幅の広い銅もしくはアルミニウ
ムを主成分とする配線で、ヴィア近傍の配線内部に島が
あることを特徴とする配線構造。
2. A wiring connected to a via without a boundary of a conductive material such as a barrier and having copper or aluminum as a main component having a width larger than the via diameter, wherein an island is present inside the wiring near the via. Wiring structure.
【請求項3】デユアルダマシン構造のヴィアに接続し、
ヴィア径よりも幅の広い銅もしくはアルミニウムを主成
分とする配線で、ヴィア近傍の配線内部に島があること
を特徴とする配線構造。
3. A connection to a dual damascene via,
A wiring structure mainly composed of copper or aluminum having a width larger than a via diameter and having an island inside the wiring near the via.
【請求項4】平面図上で、実質的にヴィアに接した(重
なりがあるか、間隔がリソグラフィーの最小寸法以下で
近接する)島があることを特徴とする請求項1ないし3
のいずれかに記載の配線構造。
4. In a plan view, there are islands substantially in contact with the vias (overlapping or closely spaced below the lithographic minimum dimension).
The wiring structure according to any one of the above.
【請求項5】平面図上で、実質的にヴィアの半分以上の
方向に島があることを特徴とする請求項1ないし請求項
4のいずれかに記載の配線構造。
5. The wiring structure according to claim 1, wherein there are islands in a direction substantially equal to or more than half of the via in a plan view.
【請求項6】平面図上で、実質的にヴィアの半分以上の
方向に島、もしくは配線端部があることを特徴とする請
求項1ないし請求項5のいずれかに記載の配線構造。
6. The wiring structure according to claim 1, wherein, in a plan view, an island or a wiring end is provided in a direction substantially equal to or more than half of the via.
【請求項7】ヴィアに接続し、ヴィア径の10倍より幅
の広い銅もしくはアルミニウムを主成分とする配線で、
ヴィア近傍の配線内部に島があることを特徴とする請求
項1ないし請求項6のいずれかに記載の配線構造。
7. A wiring connected to a via and mainly composed of copper or aluminum having a width larger than 10 times the via diameter,
7. The wiring structure according to claim 1, wherein there is an island inside the wiring near the via.
【請求項8】請求項1ないし請求項7のいずれか記載の
配線構造を有すること特徴とする半導体装置。
8. A semiconductor device having the wiring structure according to claim 1.
【請求項9】4層以上の配線層を有し、少なくともその
一部に請求項1ないし請求項7のいずれか記載の配線構
造を有することを特徴とする半導体装置。
9. A semiconductor device having four or more wiring layers, at least a part of which has the wiring structure according to claim 1. Description:
JP2000217215A 2000-07-13 2000-07-13 Wiring structure and semiconductor device having the same Pending JP2002033384A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2000217215A JP2002033384A (en) 2000-07-13 2000-07-13 Wiring structure and semiconductor device having the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2000217215A JP2002033384A (en) 2000-07-13 2000-07-13 Wiring structure and semiconductor device having the same

Publications (1)

Publication Number Publication Date
JP2002033384A true JP2002033384A (en) 2002-01-31

Family

ID=18712360

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000217215A Pending JP2002033384A (en) 2000-07-13 2000-07-13 Wiring structure and semiconductor device having the same

Country Status (1)

Country Link
JP (1) JP2002033384A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003257970A (en) * 2002-02-27 2003-09-12 Nec Electronics Corp Semiconductor device and wiring structure of the same
US7439623B2 (en) 2003-12-03 2008-10-21 Matsushita Electric Industrial Co., Ltd. Semiconductor device having via connecting between interconnects
JP2010045255A (en) * 2008-08-15 2010-02-25 Fujitsu Microelectronics Ltd Semiconductor device and method of manufacturing the same
US8004087B2 (en) 2004-08-12 2011-08-23 Nec Corporation Semiconductor device with dual damascene wirings and method for manufacturing same

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003257970A (en) * 2002-02-27 2003-09-12 Nec Electronics Corp Semiconductor device and wiring structure of the same
US7439623B2 (en) 2003-12-03 2008-10-21 Matsushita Electric Industrial Co., Ltd. Semiconductor device having via connecting between interconnects
US7632751B2 (en) 2003-12-03 2009-12-15 Panasonic Corporation Semiconductor device having via connecting between interconnects
US7964969B2 (en) 2003-12-03 2011-06-21 Panasonic Corporation Semiconductor device having via connecting between interconnects
US8334597B2 (en) 2003-12-03 2012-12-18 Panasonic Corporation Semiconductor device having via connecting between interconnects
US8004087B2 (en) 2004-08-12 2011-08-23 Nec Corporation Semiconductor device with dual damascene wirings and method for manufacturing same
US8916466B2 (en) 2004-08-12 2014-12-23 Renesas Electronics Corporation Method for manufacturing dual damascene wiring in semiconductor device
US9257390B2 (en) 2004-08-12 2016-02-09 Renesas Electronics Corporation Semiconductor device with dual damascene wirings
JP2010045255A (en) * 2008-08-15 2010-02-25 Fujitsu Microelectronics Ltd Semiconductor device and method of manufacturing the same
US8836126B2 (en) 2008-08-15 2014-09-16 Fujitsu Semiconductor Limited Semiconductor device having insulating layers containing oxygen and a barrier layer containing manganese
US9704740B2 (en) 2008-08-15 2017-07-11 Fujitsu Semiconductor Limited Semiconductor device having insulating layers containing oxygen and a barrier layer containing manganese

Similar Documents

Publication Publication Date Title
US11587830B2 (en) Self-forming barrier for use in air gap formation
US7399706B2 (en) Manufacturing method of semiconductor device
US9607946B2 (en) Reverse damascene process
US6143672A (en) Method of reducing metal voidings in 0.25 μm AL interconnect
KR100669929B1 (en) Semiconductor device
US7186642B2 (en) Low temperature nitride used as Cu barrier layer
JP2007329478A (en) Micro electronic component structure and method for manufacturing it
US7378338B2 (en) Method of forming an interconnect structure diffusion barrier with high nitrogen content
US20070023917A1 (en) Semiconductor device having multilayer wiring lines and manufacturing method thereof
JP2004055919A (en) Semiconductor device
US20070145596A1 (en) Interconnect structure and method of fabricating same
US11887888B2 (en) Multi-pass plating process with intermediate rinse and dry
KR100714476B1 (en) Semiconductor device and method for fabricating the same
KR100896159B1 (en) Semiconductor device and method for manufacturing same
KR100914982B1 (en) Metal wiring of semiconductor device and method of manufacturing the same
US7436040B2 (en) Method and apparatus for diverting void diffusion in integrated circuit conductors
JP2002033384A (en) Wiring structure and semiconductor device having the same
US20190311948A1 (en) Fully aligned via in ground rule region
TWI657509B (en) Post zero via layer keep out zone over through silicon via reducing beol pumping effects
JP2003218115A (en) Wiring structure provided with via
KR100973277B1 (en) Metal wiring of semiconductor device and method for forming the same
TW202232660A (en) Semiconductor device, semiconductor structure and methods of making the same
KR100508538B1 (en) Method for forming an air gap in a semiconductor metal line manufacturing process
JP2003086679A (en) Integrated circuit device and its manufacturing method
KR101029106B1 (en) Metal wiring of semiconductor device and method for forming the same