JP2002033104A - Nonaqueous electrolyte secondary battery - Google Patents

Nonaqueous electrolyte secondary battery

Info

Publication number
JP2002033104A
JP2002033104A JP2000217629A JP2000217629A JP2002033104A JP 2002033104 A JP2002033104 A JP 2002033104A JP 2000217629 A JP2000217629 A JP 2000217629A JP 2000217629 A JP2000217629 A JP 2000217629A JP 2002033104 A JP2002033104 A JP 2002033104A
Authority
JP
Japan
Prior art keywords
negative electrode
weight
secondary battery
fibrous carbonaceous
carbonaceous material
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2000217629A
Other languages
Japanese (ja)
Other versions
JP4750929B2 (en
Inventor
Minoru Hashimoto
稔 橋本
Takayuki Nakajima
孝之 中島
Koichi Matsumoto
浩一 松本
Shinichi Kamibayashi
信一 上林
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
A&T Battery Corp
Toshiba Development and Engineering Corp
AT Battery KK
Original Assignee
A&T Battery Corp
AT Battery KK
Toshiba Electronic Engineering Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by A&T Battery Corp, AT Battery KK, Toshiba Electronic Engineering Co Ltd filed Critical A&T Battery Corp
Priority to JP2000217629A priority Critical patent/JP4750929B2/en
Publication of JP2002033104A publication Critical patent/JP2002033104A/en
Application granted granted Critical
Publication of JP4750929B2 publication Critical patent/JP4750929B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Carbon And Carbon Compounds (AREA)
  • Secondary Cells (AREA)
  • Battery Electrode And Active Subsutance (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a nonaqueous electrolyte secondary battery having an improved charge-discharge cycle life while realizing high capacity by improving the negative electrode thereof. SOLUTION: This battery is provided with a positive electrode capable of storing and releasing lithium, the negative electrode capable of storing and releasing lithium, a separator and a nonaqueous electrolyte. The positive electrode and the negative electrode each have a structure composed by applying a positive electrode material and a negative electrode material on a collector, respectively. The negative electrode material contains fibrous carbonaceous materials (a) and (b), and scale-like or spherical lump-like graphite (c). The battery is characterized in that the size Lc of crystal in the c-axis direction of the fibrous carbonaceous material (a) is 40-60 nm, and the size Lc of crystal in the c-axis direction of the fibrous carbonaceous material (b) is 100 nm or more.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、非水系電解液二次
電池に関し、特に負極を改良した非水系電解液二次電池
に係わる。
The present invention relates to a non-aqueous electrolyte secondary battery, and more particularly, to a non-aqueous electrolyte secondary battery having an improved negative electrode.

【0002】[0002]

【従来の技術】近年、VTR、携帯電話、パソコンなど
の各種電子機器、コードレスの携帯型電子機器の小型、
軽量化に伴ない、それら機器の電源の高エネルギー密度
の要求が高まり、負極活物質に金属リチウムを使用した
リチウム二次電池に代表される非水系電解液二次電池が
提案されている。しかしながら、負極活物質として金属
リチウムを用いたリチウム二次電池は、放電時にリチウ
ムイオンとして電解液中に溶解したリチウムが電解液中
の非水溶媒と反応して一部不活性になる。このため、充
放電を繰り返すと負極の表面の凸部にリチウムが電析し
てデンドライト状(樹枝状)に析出し、このデンドライ
ト状リチウムがセパレータを貫通して正極と接すること
により内部短絡を生じる問題があった。
2. Description of the Related Art In recent years, various types of electronic devices such as VTRs, mobile phones, and personal computers, and small-sized cordless portable electronic devices have been developed.
Along with the weight reduction, the demand for a high energy density of the power supply of such devices has been increased, and non-aqueous electrolyte secondary batteries represented by lithium secondary batteries using metallic lithium as a negative electrode active material have been proposed. However, in a lithium secondary battery using metallic lithium as the negative electrode active material, lithium dissolved in the electrolyte as lithium ions at the time of discharge reacts with the nonaqueous solvent in the electrolyte to become partially inactive. Therefore, when charge and discharge are repeated, lithium is electrodeposited on the convex portion on the surface of the negative electrode and precipitates in a dendrite shape (dendritic shape), and this dendrite-like lithium penetrates the separator and comes into contact with the positive electrode, thereby causing an internal short circuit. There was a problem.

【0003】このようなことから、特開昭63−121
260号公報には負極にカーボンを用いた軽量の二次電
池が開示されている。その後、負極活物質としてコーク
ス、グラファイト、樹脂焼成体、熱分解気相炭素等、種
々の炭素質材料を用いる、いわゆるリチウムイオン二次
電池が提案され、実用化されている。
In view of the above, Japanese Patent Application Laid-Open No. 63-121
No. 260 discloses a lightweight secondary battery using carbon for the negative electrode. After that, a so-called lithium ion secondary battery using various carbonaceous materials such as coke, graphite, a resin fired body, and pyrolysis gas phase carbon as a negative electrode active material has been proposed and put into practical use.

【0004】前記リチウムイオン二次電池としては、正
極にLiCoO2、LiNiO2、LiMn24等のカル
コゲン化合物を用い、負極に前記炭素質材料を用いたも
のが知られており、前記炭素質材料の素材によって種々
の特徴を有する。例えば、特開平5−89879号公報
のように繊維径の断面方向にラメラ構造を持つ炭素繊維
を負極活物質として含むリチウムイオン二次電池は優れ
た充放電特性を有する。また、黒鉛度の高いグラファイ
トを負極活物質として含むリチウムイオン二次電池は高
い充電エネルギーを有する。また、前記リチウムイオン
二次電池は金属リチウムを負極として用いた二次電池に
比べて安全性が高く、各種の携帯端末の電源として広く
利用されている。
As the lithium ion secondary battery, there is known a lithium ion secondary battery using a chalcogen compound such as LiCoO 2 , LiNiO 2 or LiMn 2 O 4 for a positive electrode and using the carbonaceous material for a negative electrode. It has various features depending on the material of the material. For example, a lithium ion secondary battery containing carbon fibers having a lamellar structure in the cross-sectional direction of the fiber diameter as a negative electrode active material as disclosed in JP-A-5-89879 has excellent charge / discharge characteristics. Further, a lithium ion secondary battery containing graphite having a high degree of graphite as a negative electrode active material has high charging energy. Further, the lithium ion secondary battery has higher safety than a secondary battery using metallic lithium as a negative electrode, and is widely used as a power source for various portable terminals.

【0005】前述したようにコークス、グラファイト、
樹脂焼成体、熱分解気相炭素等は負極の活物質として用
いられているものの、これらの負極を備えたリチウムイ
オン二次電池において携帯端末の要求特性、例えば薄型
化、軽量化、高容量化および高サイクル維持率を全て満
足するに至っていない。
As described above, coke, graphite,
Resin fired bodies, pyrolytic gas-phase carbon, etc. are used as the active material of the negative electrode. However, in lithium ion secondary batteries equipped with these negative electrodes, the required characteristics of mobile terminals, such as thinning, lightening, and high capacity And all of the high cycle maintenance rates have not been satisfied.

【0006】[0006]

【発明が解決しようとする課題】本発明は、負極を改良
することによって高容量化を達成しつつ、充放電サイク
ル寿命を向上した非水系電解液二次電池を提供しようと
するものである。
SUMMARY OF THE INVENTION It is an object of the present invention to provide a non-aqueous electrolyte secondary battery having improved charge / discharge cycle life while achieving high capacity by improving the negative electrode.

【0007】[0007]

【課題を解決するための手段】上記目的を達成するため
の本発明に係わる非水系電解液二次電池は、リチウムを
吸蔵・放出可能な正極、リチウムを吸蔵・放出可能な負
極、セパレータおよび非水系電解液を備え、前記正極お
よび前記負極は、集電体にそれぞれ正極材料および負極
材料を塗布した構造を有し、かつ前記負極材料は、繊維
状炭素質材(a),(b)と鱗片状または球塊状の黒鉛
(c)とを含有し、前記繊維状炭素質材(a)はc軸方
向の結晶子の大きさ(Lc)が40〜60nmで、前記
繊維状炭素質材(b)はc軸方向の結晶子の大きさ(L
c)が100nm以上であることを特徴とするものであ
る。
In order to achieve the above object, a non-aqueous electrolyte secondary battery according to the present invention comprises a positive electrode capable of occluding and releasing lithium, a negative electrode capable of occluding and releasing lithium, a separator, and a battery. An aqueous electrolyte solution, wherein the positive electrode and the negative electrode have a structure in which a positive electrode material and a negative electrode material are applied to a current collector, respectively; and the negative electrode material includes fibrous carbonaceous materials (a) and (b). The fibrous carbonaceous material (a) has a crystallite size (Lc) of 40 to 60 nm in the c-axis direction, and the fibrous carbonaceous material ( b) is the size (L) of the crystallite in the c-axis direction.
c) is 100 nm or more.

【0008】[0008]

【発明の実施の形態】以下、本発明に係わる非水系電解
液二次電池を詳細に説明する。
BEST MODE FOR CARRYING OUT THE INVENTION Hereinafter, a non-aqueous electrolyte secondary battery according to the present invention will be described in detail.

【0009】この非水系電解液二次電池は、リチウムを
吸蔵・放出可能な正極、リチウムを吸蔵・放出可能な負
極、セパレータおよび非水系電解液を備える。
This non-aqueous electrolyte secondary battery includes a positive electrode capable of inserting and extracting lithium, a negative electrode capable of inserting and extracting lithium, a separator, and a non-aqueous electrolyte.

【0010】次に、前記負極、正極、セパレータおよび
非水系電解液を説明する。
Next, the negative electrode, the positive electrode, the separator and the non-aqueous electrolyte will be described.

【0011】1)負極 この負極は、集電体に負極材料を塗布した構造を有す
る。
1) Negative Electrode The negative electrode has a structure in which a current collector is coated with a negative electrode material.

【0012】前記集電体としては、例えば銅板、銅メッ
シュ材等を挙げることができる。
Examples of the current collector include a copper plate and a copper mesh material.

【0013】前記負極材料は、繊維状炭素質材(a),
(b)および鱗片状または球塊状の黒鉛(c)と、結着
剤を含有する。
The negative electrode material is a fibrous carbonaceous material (a),
(B) and flaky or spherical graphite (c), and a binder.

【0014】前記繊維状炭素質材(a),(b)として
は、例えばメソフェーズピッチ系カーボン繊維、PAN
系炭素繊維、またはフェノール樹脂、ポリイミドからな
る繊維状をなす炭素質材、繊維状の気相成長炭素体等を
挙げることができる。特に、メソフェーズピッチ系カー
ボン繊維が好ましい。
As the fibrous carbonaceous materials (a) and (b), for example, mesophase pitch-based carbon fibers, PAN
Examples thereof include a fibrous carbonaceous material made of a base carbon fiber, a phenol resin, and a polyimide, and a fibrous vapor-grown carbon body. Particularly, mesophase pitch-based carbon fibers are preferable.

【0015】前記繊維状炭素質材(a)は、40〜60
nmのc軸方向の結晶子の大きさ(Lc)を有し、前記
負極材料の主たる炭素材料として機能する。この繊維状
炭素質材(a)は、平均繊維径8〜18μm、平均繊維
長10〜50μm、真密度2.24g/cc以上、Cu
−KαによるX線回折法での(101)回折ピークP
101と(100)回折ピークP100の強度比(P101/P
100)が1.2〜1.8であることが好ましい。特に、
平均繊維長を10μm未満にすると、繊維としての性質
が低下して、むしろ微粉末状態になって充放電効率が低
下する恐れがある。一方、平均繊維長が50μmを超え
ると、集電体に対する負極材料の密着性の低下、負極の
欠けのような負極物性が低下する恐れがある。前記繊維
状炭素質材(a)は、面間隔(d002)が0.3358
〜0.3370nmで、a軸方向の結晶子の大きさ(L
a)が60nm以上であることがさらに好ましい。
The fibrous carbonaceous material (a) is 40-60
having a crystallite size (Lc) in the c-axis direction of nm.
It functions as the main carbon material of the negative electrode material. This fibrous
The carbonaceous material (a) has an average fiber diameter of 8 to 18 μm,
10-50 μm long, true density 2.24 g / cc or more, Cu
(101) diffraction peak P in the X-ray diffraction method using -Kα
101And (100) diffraction peak P100Strength ratio (P101/ P
100) Is preferably from 1.2 to 1.8. In particular,
When the average fiber length is less than 10 μm, the properties as fiber
And the charge / discharge efficiency is low due to the fine powder state.
May fall. On the other hand, the average fiber length exceeds 50 μm
In this case, the adhesion of the negative electrode material to the current collector decreases,
The negative electrode properties such as chipping may be reduced. The fiber
The carbonaceous material (a) has an interplanar spacing (d002) Is 0.3358
〜0.3370 nm, the size of the crystallite in the a-axis direction (L
More preferably, a) is at least 60 nm.

【0016】前記繊維状炭素質材(b)は、100nm
以上のc軸方向の結晶子の大きさ(Lc)を有する。こ
の繊維状炭素質材(b)は、平均繊維径8〜18μm、
平均繊維長10〜50μm、真密度2.24g/cc以
上、Cu−KαによるX線回折法での(101)回折ピ
ークP101と(100)回折ピークP100の強度比(P
101/P100)が1.8を超える値であることことが好ま
しい。前記繊維状炭素質材(a)は、面間隔(d002
が0.3355〜0.3357nmであることがさらに
好ましい。
The fibrous carbonaceous material (b) has a thickness of 100 nm.
It has the above-mentioned crystallite size (Lc) in the c-axis direction. This
The fibrous carbonaceous material (b) has an average fiber diameter of 8 to 18 μm,
Average fiber length 10-50μm, true density 2.24g / cc or less
Above, the (101) diffraction peak in the X-ray diffraction method using Cu-Kα
Ark P101And (100) diffraction peak P100Strength ratio (P
101/ P100) Is preferably greater than 1.8.
New The fibrous carbonaceous material (a) has an interplanar spacing (d002)
Is from 0.3355 to 0.3357 nm.
preferable.

【0017】前記繊維状炭素質材(a),(b)は、前
者の平均繊維径をda、後者の平均繊維径をdbとする
と、db=1.15da〜1.35daの関係を満たすこ
とがより好ましい。
[0017] The fibrous carbonaceous material (a), (b), the former having an average fiber diameter of the d a, the latter having an average fiber diameter of the When d b, d b = 1.15d a ~1.35d a It is more preferable to satisfy the following relationship.

【0018】前記繊維状炭素質材(a),(b)の配合
割合は、前記繊維状炭素質材(b)が前記繊維状炭素質
材(a),(b)の合量に対して10〜90重量%、よ
り好ましくは20〜70重量%の範囲で占めることが好
ましい。前記繊維状炭素質材(b)の配合量を10重量
%未満にすると、高容量化が困難になるばかりか、電極
密度を高めることが困難になる。一方、前記繊維状炭素
質材(b)の配合量が90重量%を超えると、充放電サ
イクル寿命が短くなる恐れがある。
The mixing ratio of the fibrous carbonaceous materials (a) and (b) is such that the fibrous carbonaceous material (b) is mixed with the total amount of the fibrous carbonaceous materials (a) and (b). Preferably, it occupies 10 to 90% by weight, more preferably 20 to 70% by weight. If the blending amount of the fibrous carbonaceous material (b) is less than 10% by weight, it is difficult not only to increase the capacity but also to increase the electrode density. On the other hand, if the amount of the fibrous carbonaceous material (b) exceeds 90% by weight, the charge / discharge cycle life may be shortened.

【0019】前記鱗片状または球塊状の黒鉛(c)は、
3〜30μmの平均粒径を有することが好ましい。この
黒鉛(c)の平均粒径を3μm未満にすると、比表面
積、吸油量が大きくなって負極材料を集電体に塗布する
際の固形分比率が低下すると共に、負極の不可逆容量が
大きくなる恐れがある。一方、前記黒鉛(c)の平均粒
径が30μmを超えると、集電体に対する負極材料の密
着性が低下する等の物性劣化とプレス成形に際して必要
とする圧下線圧が増大する恐れがある。
The scaly or spherical graphite (c) is
It preferably has an average particle size of 3 to 30 μm. When the average particle size of the graphite (c) is less than 3 μm, the specific surface area and the oil absorption increase, the solid content ratio when the negative electrode material is applied to the current collector decreases, and the irreversible capacity of the negative electrode increases. There is fear. On the other hand, if the average particle size of the graphite (c) exceeds 30 μm, there is a possibility that physical properties such as a decrease in the adhesion of the negative electrode material to the current collector and a reduction linear pressure required in press molding may increase.

【0020】前記鱗片状または球塊状の黒鉛(c)は、
前記繊維状炭素質材(a),(b)および前記黒鉛
(c)の合量に対して5〜50重量%の割合で含有する
ことが好ましい。
The scaly or spherical graphite (c) is
It is preferable to contain the fibrous carbonaceous materials (a), (b) and the graphite (c) at a ratio of 5 to 50% by weight based on the total amount.

【0021】前記結着剤は、PVdFに代表される有機
溶媒に溶解性を持つ高分子材料、CMC、SBRに代表
される水に分散し易い高分子材料等を用いることができ
るが、これらの高分子材料は一例に過ぎず特に制約を受
けない。ただし、今後の環境の点も考慮すると水に分散
し易い高分子材料が好ましい。
As the binder, a polymer material having solubility in an organic solvent represented by PVdF, a polymer material easily dispersed in water represented by CMC and SBR, and the like can be used. The polymer material is merely an example and is not particularly limited. However, in consideration of the environment in the future, a polymer material that is easily dispersed in water is preferable.

【0022】前記結着剤は、負極材料に対して1.0〜
6.0重量%配合されることが好ましい。結着剤利配合
量を1.0重量%未満にすると、容量の向上等の電極性
能の点で好ましいものの、集電体に対する負極材料の密
着性が低下して負極の加工時(特に裁断時)において欠
けや剥離を生じ、また例えば正負極間にセパレータを介
在した帯状物を捲回して電極群を作製する際にその電極
群に微細な欠損物が混入して正負極の短絡等を招く恐れ
がある。一方、前記結着剤の配合量が6.0重量%を超
えると、負極中に占める結着剤量が増大して容量の低下
を招く恐れがある。
The binder is used in an amount of 1.0 to 1.0 with respect to the negative electrode material.
It is preferred to be blended at 6.0% by weight. When the amount of the binder is less than 1.0% by weight, although it is preferable from the viewpoint of electrode performance such as improvement of capacity, the adhesiveness of the negative electrode material to the current collector is reduced and the negative electrode is processed at the time of processing the negative electrode (especially at the time of cutting). ) Causes chipping or peeling, and, for example, when winding a belt-like material having a separator interposed between the positive and negative electrodes to produce an electrode group, minute defects are mixed into the electrode group to cause a short circuit between the positive and negative electrodes. There is fear. On the other hand, when the compounding amount of the binder exceeds 6.0% by weight, the amount of the binder occupying in the negative electrode may increase, leading to a decrease in capacity.

【0023】2)正極 この正極は、集電体に正極材料を塗布した構造を有す
る。
2) Positive electrode This positive electrode has a structure in which a positive electrode material is applied to a current collector.

【0024】前記集電体としては、例えばアルミニウム
板、アルミニウムメッシュ材等を挙げることができる。
Examples of the current collector include an aluminum plate and an aluminum mesh material.

【0025】前記正極材料は、例えば活物質と結着剤と
を含有する。前記活物質としては、例えば二酸化マンガ
ン、二硫化モリブデン、LiCoO2、LiNiO2、L
iMn24等のカルコゲン化合物を挙げることができ
る。これらのカルコゲン化合物は、2種以上の混合物で
用いることができる。前記結着剤としては、例えば例え
ばフッ素系樹脂、ポリオレフィン樹脂、スチレン系樹
脂、アクリル系樹脂のような熱可塑性エラストマー系樹
脂、またはフッ素ゴムのようなゴム系樹脂を用いること
ができる。具体的には、ポリテトラフルオロエチレン、
ポリフッ化ビニリデン、ポリフッ化ビニル、ポリエチレ
ン、ポリアクリロニトリル、ニトリルゴム、ポリブタジ
エン、ブチルゴム、ポリスチレン、スチレン−ブタジエ
ンゴム、水添スチレン−ブタジエンゴム、多硫化ゴム、
ニトロセルロース、シアノエチルセルロース、カルボキ
シメチルセルロース等が挙げられる。これらの結着剤の
中でエラストマー、ゴム架橋体または極性基を導入した
変成体は、前記集電体と前記正極材料との密着性の向上
および過充電時における抵抗増大効果の向上の観点から
好適である。
The positive electrode material contains, for example, an active material and a binder. Examples of the active material include manganese dioxide, molybdenum disulfide, LiCoO 2 , LiNiO 2 , L
Chalcogen compounds such as iMn 2 O 4 can be mentioned. These chalcogen compounds can be used in a mixture of two or more. As the binder, for example, a thermoplastic elastomer resin such as a fluorine resin, a polyolefin resin, a styrene resin, and an acrylic resin, or a rubber resin such as a fluorine rubber can be used. Specifically, polytetrafluoroethylene,
Polyvinylidene fluoride, polyvinyl fluoride, polyethylene, polyacrylonitrile, nitrile rubber, polybutadiene, butyl rubber, polystyrene, styrene-butadiene rubber, hydrogenated styrene-butadiene rubber, polysulfide rubber,
Examples include nitrocellulose, cyanoethylcellulose, carboxymethylcellulose, and the like. Among these binders, elastomers, cross-linked rubbers or modified compounds having polar groups introduced are preferably used in view of improving the adhesion between the current collector and the positive electrode material and improving the resistance increasing effect during overcharge. It is suitable.

【0026】前記正極材料には、導電補助材としてアセ
チレンブラック、粉末状膨張黒鉛などのグラファイト
類、炭素繊維粉砕物、黒鉛化炭素繊維粉砕物、等をさら
に含有することを許容する。
The positive electrode material is allowed to further contain acetylene black, graphite such as powdered expanded graphite, crushed carbon fiber, crushed graphitized carbon fiber, and the like as a conductive auxiliary material.

【0027】3)セパレータ このセパレータとしては、例えば20〜30μmの厚さ
を有するポリエチレン多孔質フィルム、ポリプロピレン
多孔質フィルム等を用いることができる。
3) Separator As the separator, for example, a porous polyethylene film or a porous polypropylene film having a thickness of 20 to 30 μm can be used.

【0028】4)非水系電解液 この非水系電解液は、例えばエチレンカーボネート、ジ
メチルカーボネート、メチルエチルカーボネート、ジエ
チルカーボネート、γ−ブチロラクトンから選ばれる少
なくとも1種からなる非水溶媒に過塩素酸リチウム(L
iClO4)、六フッ化リン酸リチウム(LiPF6)、
ホウフッ化リチウム(LiBF4)、六フッ化砒素リチ
ウム(LiAsF6)を溶解した組成のもの等を用いる
ことができる。
4) Non-aqueous Electrolyte This non-aqueous electrolyte is prepared, for example, by adding lithium perchlorate to a non-aqueous solvent comprising at least one selected from ethylene carbonate, dimethyl carbonate, methyl ethyl carbonate, diethyl carbonate and γ-butyrolactone. L
iClO 4 ), lithium hexafluorophosphate (LiPF 6 ),
For example, those having a composition in which lithium borofluoride (LiBF 4 ) or lithium arsenic hexafluoride (LiAsF 6 ) is dissolved can be used.

【0029】前記非水溶媒は、粘性との関係から単独で
使用するよりも2〜3種類を混合して使用することが好
ましく、この非水溶媒に溶解する電解質の濃度は0.5
〜1.5モル/Lの範囲にすることが好ましい。前記電
解質は、単独でも混合物の形態でも使用することができ
る。
The non-aqueous solvent is preferably used as a mixture of two or three types rather than used alone in view of viscosity. The concentration of the electrolyte dissolved in this non-aqueous solvent is 0.5%.
It is preferably in the range of 1.5 mol / L. The electrolyte can be used alone or in the form of a mixture.

【0030】本発明に係る非水系電解液二次電池として
は、次に説明する図1に示す円筒型、図2に示す角型、
図3,図4に示す薄型の構造のものが挙げられる。
The non-aqueous electrolyte secondary battery according to the present invention includes a cylindrical type shown in FIG. 1 and a rectangular type shown in FIG.
3 and 4 have a thin structure.

【0031】(1)円筒型非水系電解液二次電池 図1に示すように有底円筒状をなす金属製外装缶1は、
例えば負極端子を兼ね、底部内面に下部絶縁板2が配置
されている。発電要素である電極体3は、前記外装缶1
内に収納されている。前記電極体3は、負極4とセパレ
ータ5と正極6とを前記セパレータ5が最外周に位置す
るように渦巻き状に捲回することにより作製したもので
ある。前記負極4の下端面には、負極リードタブ7がせ
つぞくされ、かつこのリードタブ7の他端は前記外装缶
1の底部内面に接続されている。中心付近に正極リード
タブ取出穴を有する上部絶縁板8は、前記外装缶1内の
前記電極体3上に配置されている。
(1) Cylindrical Nonaqueous Electrolyte Secondary Battery As shown in FIG. 1, a metal outer can 1 having a bottomed cylindrical shape is
For example, the lower insulating plate 2 is disposed on the inner surface of the bottom portion also serving as a negative electrode terminal. The electrode body 3 as a power generating element is provided with the outer can 1
Is housed inside. The electrode body 3 is manufactured by spirally winding the negative electrode 4, the separator 5, and the positive electrode 6 such that the separator 5 is located at the outermost periphery. A negative electrode lead tab 7 is formed on the lower end surface of the negative electrode 4, and the other end of the lead tab 7 is connected to the bottom inner surface of the outer can 1. An upper insulating plate 8 having a positive electrode lead tab extraction hole near the center is disposed on the electrode body 3 in the outer can 1.

【0032】茫漠気孔を有する封口部材9は、正極端子
を兼ね、前記外装缶1の上端開口部に絶縁ガスケット1
0を介してかしめ固定されている。この封口部材9は、
中央付近にガス抜き穴11が開口された皿形封口板12
と、この封口板12に前記ガス抜き穴11を覆うように
固定された例えばアルミニウムからなる弁膜ラブチャ1
3と、前記封口板12の周縁に配置されたリング状のP
TC(Positive temperature Coefficient)14と、複
数のガス抜き孔15が開口された帽子形の正極端子16
とから構成されている。前記封口板12の下面には、正
極リードタブ17が接続され、かつこのリードタブ17
の他端は前記上部絶縁板8のリード取出穴を通して前記
電極3の正極6に接続されている。
A sealing member 9 having stomatal pores also serves as a positive electrode terminal.
It is swaged and fixed through 0. This sealing member 9
Dish-shaped sealing plate 12 with vent hole 11 opened near the center
And a valve membrane latch 1 made of, for example, aluminum fixed to the sealing plate 12 so as to cover the gas vent hole 11.
3 and a ring-shaped P disposed on the periphery of the sealing plate 12.
TC (Positive Temperature Coefficient) 14 and hat-shaped positive electrode terminal 16 having a plurality of vent holes 15
It is composed of A positive electrode lead tab 17 is connected to the lower surface of the sealing plate 12 and
Is connected to the positive electrode 6 of the electrode 3 through a lead extraction hole of the upper insulating plate 8.

【0033】(2)角型非水系電解液二次電池 図2に示す有底矩形筒状をなす金属、例えばアルミニウ
ムから作られる外装缶21は、例えば正極端子を兼ね、
底部内面に絶縁フィルム22が配置されている。発電要
素である電極体23は、前記外装缶21内に収納されて
いる。なお、外装缶がステンレスまたは鉄からなる場合
には負極端子を兼ねる。前記電極体23は、負極24と
セパレータ25と正極26とを前記正極26が最外周に
位置するように渦巻状に捲回した後、扁平状にプレス成
形することにより作製したものである。中心付近にリー
ド取出穴を有する例えば合成樹脂からなるスペーサ27
は、前記外装缶21内の前記電極体23上に配置されて
いる。
(2) Prismatic Nonaqueous Electrolyte Secondary Battery An outer can 21 made of metal having a bottomed rectangular cylindrical shape, for example, aluminum as shown in FIG. 2 also serves as, for example, a positive electrode terminal.
An insulating film 22 is disposed on the inner surface of the bottom. The electrode body 23 as a power generation element is housed in the outer can 21. When the outer can is made of stainless steel or iron, it also serves as the negative electrode terminal. The electrode body 23 is formed by spirally winding the negative electrode 24, the separator 25, and the positive electrode 26 such that the positive electrode 26 is located at the outermost periphery, and then press-molding the flat electrode into a flat shape. Spacer 27 made of, for example, synthetic resin and having a lead extraction hole near the center
Is disposed on the electrode body 23 in the outer can 21.

【0034】金属製蓋体28は、前記外装缶1の上端開
口部に例えばレーザ溶接により気密に接合されている。
前記蓋体28の中心付近には、負極端子の取出穴29が
開口されている。負極端子30は、前記蓋体28の穴2
9にガラス製または樹脂製の絶縁材31を介してハーメ
ティックシールされている。前記負極端子30の下端面
には、リード32が接続され、かつこのリード32の他
端は前記電極体23の負極24に接続されている。
The metal lid 28 is hermetically joined to the upper end opening of the outer can 1 by, for example, laser welding.
In the vicinity of the center of the lid 28, an extraction hole 29 for a negative electrode terminal is opened. The negative electrode terminal 30 is connected to the hole 2 of the lid 28.
9 is hermetically sealed via an insulating material 31 made of glass or resin. A lead 32 is connected to the lower end surface of the negative electrode terminal 30, and the other end of the lead 32 is connected to the negative electrode 24 of the electrode body 23.

【0035】上部側絶縁紙33は、前記蓋体28の外表
面全体に被覆されている。スリット34を有する下部側
絶縁紙35は、前記外装缶21の底面に配置されてい
る。二つ折りされたPTC素子(Positive Temperatur
e Coefficient)36は、一方の面が前記外装缶21の
底面と前記下部側絶縁紙35の間に介装され、かつ他方
の面が前記スリット34を通して前記絶縁紙35の外側
に延出されている。外装チューブ37は、前記外装缶2
1の側面から上下面の絶縁紙33、35の周辺まで延出
するように配置され、前記上部側絶縁紙33および下部
側絶縁紙35を前記外装缶21に固定している。このよ
うな外装チューブ37の配置により、外部に延出された
前記PTC素子36の他方の面が前記下部側絶縁紙35
の底面に向けて折り曲げられる。
The upper insulating paper 33 covers the entire outer surface of the lid 28. The lower insulating paper 35 having the slit 34 is disposed on the bottom surface of the outer can 21. PTC element (Positive Temperatur)
e Coefficient) 36, one surface is interposed between the bottom surface of the outer can 21 and the lower insulating paper 35, and the other surface is extended outside the insulating paper 35 through the slit 34. I have. The outer tube 37 is made of the outer can 2.
The upper insulating paper 33 and the lower insulating paper 35 are fixed to the outer can 21 so as to extend from the side surface 1 to the periphery of the insulating papers 33 and 35 on the upper and lower surfaces. Due to such an arrangement of the outer tube 37, the other surface of the PTC element 36 extended to the outside is connected to the lower insulating paper 35.
It is bent toward the bottom of.

【0036】(3)薄型非水系電解液二次電池 図3,図4に示すように発電要素41は、例えば活物質
および結着剤を含む正極材料である正極活物質層42が
集電体43の両面に担持された正極44とセパレータ4
5と活物質および結着剤を含む負極材料である負極活物
質層46が集電体47の両面に担持された負極48とセ
パレータ45とを渦巻状に捲回し、さらに成形した扁平
で矩形状をなす。前記正極44,負極48に接続された
外部リード端子49,50は、それぞれ前記発電要素4
1の同一側面から外部に延出されている。
(3) Thin Non-Aqueous Electrolyte Secondary Battery As shown in FIGS. 3 and 4, the power generating element 41 includes a current collector, for example, a positive electrode active material layer 42 which is a positive electrode material containing an active material and a binder. The positive electrode 44 and the separator 4 supported on both surfaces of the negative electrode 43
5, a negative electrode active material layer 46, which is a negative electrode material containing an active material and a binder, spirally winds a negative electrode 48 supported on both surfaces of a current collector 47 and a separator 45, and further forms a flat and rectangular shape. Make External lead terminals 49 and 50 connected to the positive electrode 44 and the negative electrode 48 are connected to the power generating element 4 respectively.
1 extend outside from the same side.

【0037】前記発電要素41は、図3に示すように例
えば2つ折りのカップ型外装フィルム51のカップ52
内にその折曲げ部が前記発電要素41の前記外部リード
端子49,50が延出された側面と反対側の側面側に位
置するように包み込まれている。この外装フィルム51
は、図4に示すように内面側に位置するシーラントフィ
ルム53、アルミニウムまたはアルミニウム合金の箔5
4および剛性を有する有機樹脂フィルム55をこの順序
で積層した構造を有する。前記外装フィルム51におけ
る前記折り曲げ部を除く前記発電要素1の2つの長側面
および1つの短側面に対応する3つの側部は、前記シー
ラントフィルム53同士を熱シールして水平方向に延出
したシール部56a,56b,56cが形成され、これ
らのシール部56a,56b,56cにより前記発電要素
41を封口している。前記発電要素41の正極44、負
極48に接続された外部端子49,50は、前記折り曲
げ部と反対側のシール部56bを通して外部に延出され
ている。前記発電要素41内部および前記シール部56
a,56b,56cで封口された前記外装フィルム51内
には、非水系電解液が含浸・収容されている。
As shown in FIG. 3, the power generating element 41 includes a cup 52 of a two-fold cup-shaped exterior film 51, for example.
The bent portion is enclosed so as to be located on the side surface opposite to the side surface on which the external lead terminals 49 and 50 of the power generation element 41 extend. This exterior film 51
Is a sealant film 53 located on the inner side as shown in FIG.
4 and a rigid organic resin film 55 laminated in this order. Three side portions corresponding to two long side surfaces and one short side surface of the power generation element 1 excluding the bent portion in the exterior film 51 are seals extending in the horizontal direction by heat sealing the sealant films 53 to each other. Parts 56a, 56b, 56c are formed, and the power generating element 41 is sealed by these seal parts 56a, 56b, 56c. External terminals 49 and 50 connected to the positive electrode 44 and the negative electrode 48 of the power generation element 41 extend to the outside through a seal portion 56b on the opposite side to the bent portion. Inside the power generating element 41 and the seal portion 56
A non-aqueous electrolytic solution is impregnated and contained in the exterior film 51 sealed by a, 56b, and 56c.

【0038】なお、前記薄型非水系電解液二次電池にお
いて外装フィルムはカップ型に限らず、ピロー型、パウ
チ型にしてもよい。
In the above-mentioned thin non-aqueous electrolyte secondary battery, the exterior film is not limited to the cup type, but may be a pillow type or a pouch type.

【0039】以上説明したように本発明に係る非水系電
解液二次電池は、リチウムを吸蔵・放出可能な正極、リ
チウムを吸蔵・放出可能な負極、セパレータおよび非水
系電解液を備え、前記正極および前記負極が集電体にそ
れぞれ正極材料および負極材料を塗布した構造を有し、
かつ前記負極材料が繊維状炭素質材(a),(b)と鱗
片状または球塊状の黒鉛(c)とを含有し、前記繊維状
炭素質材(a)が40〜60nmのc軸方向の結晶子の
大きさ(Lc)を有し、前記繊維状炭素質材(b)が1
00nm以上のc軸方向の結晶子の大きさ(Lc)を有
する。
As described above, the non-aqueous electrolyte secondary battery according to the present invention comprises a positive electrode capable of occluding and releasing lithium, a negative electrode capable of occluding and releasing lithium, a separator, and a non-aqueous electrolyte. And the negative electrode has a structure in which a positive electrode material and a negative electrode material are applied to a current collector, respectively.
And the negative electrode material contains fibrous carbonaceous materials (a) and (b) and flaky or spherical mass graphite (c), and the fibrous carbonaceous material (a) has a c-axis direction of 40 to 60 nm. And the fibrous carbonaceous material (b) has a crystallite size (Lc) of 1
It has a crystallite size (Lc) in the c-axis direction of at least 00 nm.

【0040】このように結晶子の異なる、つまり黒鉛化
度の異なる繊維状炭素質材(a),(b)と鱗片状また
は球塊状の黒鉛(c)とを有する負極材料を集電体に塗
布した改良された負極を備えることによって、高容量
で、充放電サイクル寿命を向上した非水電解二次電池を
得ることができる。
As described above, the negative electrode material having the fibrous carbonaceous materials (a) and (b) having different crystallites, that is, having different degrees of graphitization, and the flaky or spherical lumpy graphite (c) is used as a current collector. By providing the coated and improved negative electrode, a nonaqueous electrolytic secondary battery having a high capacity and an improved charge / discharge cycle life can be obtained.

【0041】特に、前記繊維状炭素質材(a)として、
平均繊維径8〜18μm、平均繊維長10〜50μm、
真密度2.24g/cc以上、Cu−KαによるX線回
折法での(101)回折ピークP101と(100)回折
ピークP100の強度比(P101/P100)が1.2〜1.
8であるものを用い、かつ前記繊維状炭素質材(b)と
して平均繊維径8〜18μm、平均繊維長10〜50μ
m、真密度2.24g/cc以上、Cu−KαによるX
線回折法での(101)回折ピークP101と(100)
回折ピークP100の強度比(P101/P100)が1.8を
超える値のものを用いることによって、より高容量で、
充放電サイクル寿命を向上した非水系電解液二次電池を
得ることができる。
In particular, as the fibrous carbonaceous material (a),
Average fiber diameter 8 ~ 18μm, average fiber length 10 ~ 50μm,
With a true density of 2.24 g / cc or more, the intensity ratio (P 101 / P 100 ) of the (101) diffraction peak P 101 and the (100) diffraction peak P 100 in the X-ray diffraction method using Cu-Kα is 1.2 to 1 .
8 and the fibrous carbonaceous material (b) has an average fiber diameter of 8 to 18 μm and an average fiber length of 10 to 50 μm.
m, true density 2.24 g / cc or more, X by Cu-Kα
(101) diffraction peaks P101 and (100)
By the intensity ratio of the diffraction peak P 100 (P 101 / P 100 ) is used as a value greater than 1.8, a higher capacity,
A nonaqueous electrolyte secondary battery with improved charge / discharge cycle life can be obtained.

【0042】さらに、前記繊維状炭素質材(a),
(b)を繊維状炭素質材(a)の平均繊維径(da)と
前記繊維状炭素質材(b)の平均繊維径(db)とがdb
=1.15da〜1.35daの関係を満たすように前記
繊維状炭素質材(a),(b)を選択したり、前記繊維
状炭素質材(b)の配合割合を前記繊維状炭素質材
(a),(b)の合量に対して10〜90重量%の範囲
にしたりすることによって、より高容量で、充放電サイ
クル寿命を向上した非水電解二次電池を得ることができ
る。
Further, the fibrous carbonaceous material (a),
The average fiber diameter of (b) a fibrous carbonaceous material having an average fiber diameter of (a) (d a) and the fibrous carbonaceous material (b) (d b) and is d b
= 1.15d a ~1.35d a the fibrous carbonaceous material so as to satisfy the relation of (a), (b) or select, the fibrous the blending ratio of the fibrous carbonaceous material (b) To obtain a non-aqueous electrolytic secondary battery having a higher capacity and an improved charge / discharge cycle life by adjusting the range of 10 to 90% by weight based on the total amount of the carbonaceous materials (a) and (b). Can be.

【0043】[0043]

【実施例】以下、本発明の実施例を円筒形リチウムイオ
ン二次電池を例にして詳細に説明する。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS Hereinafter, embodiments of the present invention will be described in detail using a cylindrical lithium ion secondary battery as an example.

【0044】「繊維状炭素質材(a)の作製」メソフェ
ーズピッチを紡糸、不融化し、アルゴン雰囲気下、65
0℃で炭化し、適度に粉砕した後、窒素雰囲気下で30
00℃にて黒鉛化することにより繊維状炭素質材を得
た。
[Preparation of fibrous carbonaceous material (a)] A mesophase pitch was spun and made infusible, and the mesophase pitch was spun at 65 ° C. under an argon atmosphere.
After carbonization at 0 ° C and pulverization to an appropriate degree, 30
By graphitizing at 00 ° C., a fibrous carbonaceous material was obtained.

【0045】得られた繊維状炭素質材は、c軸方向の結
晶子(Lc)の大きさ55nm、平均繊維径8.2μ
m、平均繊維長17.2μm、真密度2.24g/c
c、面間隔(d002)0.3360nm、Cu−Kαに
よるX線回折法での(101)回折ピークP101と(1
00)回折ピークP100の強度比(P101/P100)が
1.42であった。
The obtained fibrous carbonaceous material had a crystallite (Lc) size of 55 nm in the c-axis direction and an average fiber diameter of 8.2 μm.
m, average fiber length 17.2 μm, true density 2.24 g / c
c, spacing (d 002 ) 0.3360 nm, (101) diffraction peak P 101 and (1)
00) The intensity ratio (P 101 / P 100 ) of the diffraction peak P 100 was 1.42.

【0046】「繊維状炭素質材(b)の作製」メソフェ
ーズピッチを径を大きくして紡糸、不融化し、アルゴン
雰囲気下、600℃で炭化し、適度に粉砕した後、窒素
雰囲気下で3000℃にて黒鉛化することにより繊維状
炭素質材を得た。
[Preparation of fibrous carbonaceous material (b)] The mesophase pitch was spun with a large diameter, made infusible, carbonized at 600 ° C in an argon atmosphere, pulverized appropriately, and then 3,000 in a nitrogen atmosphere. By graphitizing at ℃, a fibrous carbonaceous material was obtained.

【0047】得られた繊維状炭素質材は、c軸方向の結
晶子(Lc)の大きさ>100nm、平均繊維径9.8
μm、平均繊維長16.5μm、真密度2.25g/c
c、面間隔(d002)0.3356nm、Cu−Kαに
よるX線回折法での(101)回折ピークP101と(1
00)回折ピークP100の強度比(P101/P100)が
2.1あった。
The obtained fibrous carbonaceous material had a crystallite (Lc) size in the c-axis direction> 100 nm and an average fiber diameter of 9.8.
μm, average fiber length 16.5 μm, true density 2.25 g / c
c, spacing (d 002 ) 0.3356 nm, (101) diffraction peak P 101 and (1) in X-ray diffraction method by Cu-Kα
00) the intensity ratio of the diffraction peak P 100 (P 101 / P 100 ) had 2.1.

【0048】「黒鉛の作製」天然系黒鉛を疑似球状に解
扮して所定の黒鉛を得た。この黒鉛は、平均粒径21μ
m、比表面積3.1m2/g、面間隔(d002)0.33
56nmであった。
[Preparation of graphite] Natural graphite was disguised into a pseudospherical shape to obtain predetermined graphite. This graphite has an average particle size of 21μ.
m, specific surface area 3.1 m 2 / g, spacing between planes (d 002 ) 0.33
It was 56 nm.

【0049】(実施例1) <負極の作製>まず、カルボキシメチルセルロースの
0.74重量%濃度の粘調水溶液177重量部に前記繊
維状炭素質材(a)65重量部、前記繊維状炭素質材
(b)7重量部および前記球状黒鉛(c)28重量部を
添加した後、せん断分散した。つづいて、この混合物に
SBRラテックス3.6重量部を添加し、均一の混合攪
拌して負極塗工スラリーを調製した。この塗工スラリー
は、固形分が58重量%であった。
Example 1 <Preparation of Negative Electrode> First, 65 parts by weight of the fibrous carbonaceous material (a) were added to 177 parts by weight of a viscous aqueous solution of carboxymethylcellulose having a concentration of 0.74% by weight. After adding 7 parts by weight of the material (b) and 28 parts by weight of the spheroidal graphite (c), the mixture was shear-dispersed. Subsequently, 3.6 parts by weight of SBR latex was added to this mixture, and the mixture was uniformly mixed and stirred to prepare a negative electrode coating slurry. This coating slurry had a solid content of 58% by weight.

【0050】次いで、前記塗工スラリーをナイフエッジ
コータにより厚さ15μmの銅箔(集電体)の両面に1
05g/m2、114g/m2になるように塗工し、乾燥
した。この時の銅箔上の負極材料の密度は、1.23g
/ccであった。その後、プレス、スリット加工を施し
て厚さ158μm(負極材料の密度;1.5g/c
c)、幅56.5mmの負極を作製した。
Next, the coating slurry was applied to both sides of a copper foil (current collector) having a thickness of 15 μm using a knife edge coater.
05g / m 2, was coated so as to 114 g / m 2, and dried. At this time, the density of the negative electrode material on the copper foil was 1.23 g.
/ Cc. Then, it is pressed and slit to give a thickness of 158 μm (density of negative electrode material: 1.5 g / c
c) A negative electrode having a width of 56.5 mm was produced.

【0051】<正極の作製>まず、12重量%濃度のポ
リフッ化ビニリデン樹脂(PVdF)のN−メチルピロ
リドン溶液41.7重量部に活物質としてのLiCoO
2粉末100重量部、導電フィラーとしてのグラファイ
ト粉末(ロンザ社製商品名;KS4)5重量部を混合
し、混練した。つづいて、この混合物にN−メチルピロ
リドン15重量部をさらに添加し、デイゾルバーおよび
ビーズミルを用いて前記固形物を分散させて正極塗工ス
ラリーを調製した。
<Preparation of Positive Electrode> First, LiCoO as an active material was added to 41.7 parts by weight of a 12% by weight solution of polyvinylidene fluoride resin (PVdF) in N-methylpyrrolidone.
2 100 parts by weight of powder and 5 parts by weight of graphite powder (trade name: KS4, manufactured by Lonza) as a conductive filler were mixed and kneaded. Subsequently, 15 parts by weight of N-methylpyrrolidone was further added to this mixture, and the solid was dispersed using a dissolver and a bead mill to prepare a positive electrode coating slurry.

【0052】次いで、前記正極塗工スラリーを厚さ15
μmのAl箔(集電体)の両面にそれそれ280g/m
2になるように塗工し、乾燥した後、プレス、スリット
加工を施すことにより厚さ180μm、幅54.5mm
の正極を作製した。
Next, the positive electrode coating slurry was applied to a thickness of 15
280 g / m on both sides of μm Al foil (current collector)
2 and dried, then pressed and slit to give a thickness of 180 μm and a width of 54.5 mm
Was produced.

【0053】次いで、前記正負極の集電体にリードタブ
をそれぞ接合し、自動捲回機を用いてポリエチレン製多
孔膜を2枚介してスパイラル状に巻き上げ、電極体を作
製した。得られた電極体に直流電源から100Vの電圧
を5秒間印加し、10μV以上流れるものを不良と判定
して除外した。
Next, lead tabs were joined to the positive and negative electrode current collectors, respectively, and spirally wound through two polyethylene porous membranes using an automatic winding machine to produce an electrode body. A voltage of 100 V was applied from a DC power supply to the obtained electrode body for 5 seconds, and a current flowing at 10 μV or more was judged to be defective and excluded.

【0054】次いで、良品として判定された電極体を直
径18mm、高さ65mmの有底円筒形外装缶に挿入
し、非水系電解液を注入した後、前記外装缶の開口部に
封口体で封口することにより図1に示す構造の円筒形非
リチウムイオン二次電池を組立てた。なお、前記非水系
電解液はエチレンカーボネートとメチルエチルカーボネ
ートを1:2の重量比で混合した混合非水溶媒に六フッ
化リン酸リチウム(LiPF6)を1モル/Lの濃度で
溶解した組成を有する。
Next, the electrode assembly determined as a non-defective product was inserted into a bottomed cylindrical outer can having a diameter of 18 mm and a height of 65 mm, a non-aqueous electrolyte was injected, and the opening of the outer can was sealed with a sealing body. As a result, a cylindrical non-lithium ion secondary battery having the structure shown in FIG. 1 was assembled. The non-aqueous electrolyte solution was prepared by dissolving lithium hexafluorophosphate (LiPF 6 ) at a concentration of 1 mol / L in a mixed non-aqueous solvent in which ethylene carbonate and methyl ethyl carbonate were mixed at a weight ratio of 1: 2. Having.

【0055】(実施例2)負極として、以下に説明する
方法で作製したものを用いた以外、実施例1と同様な構
造の円筒形リチウムイオン二次電池を組立てた。なお、
正負極、セパレータを有する電極体の作製後は、実施例
1と同様な良・不良の判定を行ない、良品として判定さ
れた電極体のみを使用した。
(Example 2) A cylindrical lithium ion secondary battery having the same structure as in Example 1 was assembled except that a negative electrode produced by the method described below was used. In addition,
After the production of the electrode body having the positive and negative electrodes and the separator, the same good / bad judgment as in Example 1 was performed, and only the electrode body judged as good was used.

【0056】カルボキシメチルセルロースの0.74重
量%濃度の粘調水溶液177重量部に前記繊維状炭素質
材(a)8重量部、前記繊維状炭素質材(b)70重量
部および前記球状黒鉛(c)22重量部を添加した後、
せん断分散した。つづいて、この混合物にSBRラテッ
クス3.6重量部を添加し、均一の混合攪拌して負極塗
工スラリーを調製した。この塗工スラリーは、固形分が
58重量%であった。次いで、前記塗工スラリーをナイ
フエッジコータにより厚さ15μmの銅箔(集電体)の
両面に105g/m2、114g/m2になるように塗工
し、乾燥した。この時の銅箔上の負極材料の密度は、
1.24g/ccであった。その後、プレス、スリット
加工を施して厚さ158μm(負極材料の密度;1.5
g/cc)、幅56.5mmの負極を作製した。
8 parts by weight of the fibrous carbonaceous material (a), 70 parts by weight of the fibrous carbonaceous material (b) and spheroidal graphite (177 parts by weight) of a 0.74% by weight viscous aqueous solution of carboxymethylcellulose were used. c) After adding 22 parts by weight,
Shear dispersed. Subsequently, 3.6 parts by weight of SBR latex was added to this mixture, and the mixture was uniformly mixed and stirred to prepare a negative electrode coating slurry. This coating slurry had a solid content of 58% by weight. Then, the coating slurry was coated so as to 105g / m 2, 114g / m 2 on both surfaces of a copper foil with a thickness of 15μm by a knife edge coater (current collector) and dried. At this time, the density of the negative electrode material on the copper foil is
1.24 g / cc. After that, it is pressed and slit to a thickness of 158 μm (density of negative electrode material: 1.5
g / cc) and a negative electrode having a width of 56.5 mm was produced.

【0057】(実施例3)負極として、以下に説明する
方法で作製したものを用いた以外、実施例1と同様な構
造の円筒形リチウムイオン二次電池を組立てた。なお、
正負極、セパレータを有する電極体の作製後は、実施例
1と同様な良・不良の判定を行ない、良品として判定さ
れた電極体のみを使用した。
Example 3 A cylindrical lithium ion secondary battery having the same structure as in Example 1 was assembled except that a negative electrode produced by the method described below was used. In addition,
After the production of the electrode body having the positive and negative electrodes and the separator, the same good / bad judgment as in Example 1 was performed, and only the electrode body judged as good was used.

【0058】カルボキシメチルセルロースの0.74重
量%濃度の粘調水溶液177重量部に前記繊維状炭素質
材(a)40重量部、前記繊維状炭素質材(b)40重
量部および前記球状黒鉛(c)20重量部を添加した
後、せん断分散した。つづいて、この混合物にSBRラ
テックス3.6重量部を添加し、均一の混合攪拌して負
極塗工スラリーを調製した。この塗工スラリーは、固形
分が58重量%であった。次いで、前記塗工スラリーを
ナイフエッジコータにより厚さ15μmの銅箔(集電
体)の両面に105g/m2、114g/m2になるよう
に塗工し、乾燥した。この時の銅箔上の負極材料の密度
は、1.24g/ccであった。その後、プレス、スリ
ット加工を施して厚さ158μm(負極材料の密度;
1.5g/cc)、幅56.5mmの負極を作製した。
40 parts by weight of the fibrous carbonaceous material (a), 40 parts by weight of the fibrous carbonaceous material (b) and spheroidal graphite (177 parts by weight) of a viscous aqueous solution of carboxymethyl cellulose having a concentration of 0.74% by weight. c) After adding 20 parts by weight, the mixture was shear-dispersed. Subsequently, 3.6 parts by weight of SBR latex was added to this mixture, and the mixture was uniformly mixed and stirred to prepare a negative electrode coating slurry. This coating slurry had a solid content of 58% by weight. Then, the coating slurry was coated so as to 105g / m 2, 114g / m 2 on both surfaces of a copper foil with a thickness of 15μm by a knife edge coater (current collector) and dried. At this time, the density of the negative electrode material on the copper foil was 1.24 g / cc. Then, it is pressed and slit to a thickness of 158 μm (density of the negative electrode material;
1.5 g / cc) and a negative electrode having a width of 56.5 mm were produced.

【0059】(実施例4)負極として、以下に説明する
方法で作製したものを用いた以外、実施例1と同様な構
造の円筒形リチウムイオン二次電池を組立てた。なお、
正負極、セパレータを有する電極体の作製後は、実施例
1と同様な良・不良の判定を行ない、良品として判定さ
れた電極体のみを使用した。
(Example 4) A cylindrical lithium ion secondary battery having the same structure as in Example 1 was assembled except that a negative electrode produced by the method described below was used. In addition,
After the production of the electrode body having the positive and negative electrodes and the separator, the same good / bad judgment as in Example 1 was performed, and only the electrode body judged as good was used.

【0060】カルボキシメチルセルロースの0.74重
量%濃度の粘調水溶液177重量部に前記繊維状炭素質
材(a)45重量部、前記繊維状炭素質材(b)45重
量部および前記球状黒鉛(c)10重量部を添加した
後、せん断分散した。つづいて、この混合物にSBRラ
テックス3.6重量部を添加し、均一の混合攪拌して負
極塗工スラリーを調製した。この塗工スラリーは、固形
分が58重量%であった。次いで、前記塗工スラリーを
ナイフエッジコータにより厚さ15μmの銅箔(集電
体)の両面に105g/m2、114g/m2になるよう
に塗工し、乾燥した。この時の銅箔上の負極材料の密度
は、1.24g/ccであった。その後、プレス、スリ
ット加工を施して厚さ158μm(負極材料の密度;
1.5g/cc)、幅56.5mmの負極を作製した。
45 parts by weight of the fibrous carbonaceous material (a), 45 parts by weight of the fibrous carbonaceous material (b) and spheroidal graphite (177 parts by weight) of a viscous aqueous solution of carboxymethylcellulose having a concentration of 0.74% by weight. c) After adding 10 parts by weight, the mixture was sheared and dispersed. Subsequently, 3.6 parts by weight of SBR latex was added to this mixture, and the mixture was uniformly mixed and stirred to prepare a negative electrode coating slurry. This coating slurry had a solid content of 58% by weight. Then, the coating slurry was coated so as to 105g / m 2, 114g / m 2 on both surfaces of a copper foil with a thickness of 15μm by a knife edge coater (current collector) and dried. At this time, the density of the negative electrode material on the copper foil was 1.24 g / cc. Then, it is pressed and slit to a thickness of 158 μm (density of the negative electrode material;
1.5 g / cc) and a negative electrode having a width of 56.5 mm were produced.

【0061】(実施例5)負極として、以下に説明する
方法で作製したものを用いた以外、実施例1と同様な構
造の円筒形リチウムイオン二次電池を組立てた。なお、
正負極、セパレータを有する電極体の作製後は、実施例
1と同様な良・不良の判定を行ない、良品として判定さ
れた電極体のみを使用した。
Example 5 A cylindrical lithium ion secondary battery having the same structure as in Example 1 was assembled except that a negative electrode produced by the method described below was used. In addition,
After the production of the electrode body having the positive and negative electrodes and the separator, the same good / bad judgment as in Example 1 was performed, and only the electrode body judged as good was used.

【0062】カルボキシメチルセルロースの1.1重量
%濃度の粘調水溶液193重量部に前記繊維状炭素質材
(a)25重量部、前記繊維状炭素質材(b)25重量
部および前記球状黒鉛(c)50重量部を添加した後、
せん断分散した。つづいて、この混合物にSBRラテッ
クス3.6重量部を添加し、均一の混合攪拌して負極塗
工スラリーを調製した。この塗工スラリーは、固形分が
58重量%であった。次いで、前記塗工スラリーをナイ
フエッジコータにより厚さ15μmの銅箔(集電体)の
両面に105g/m2、114g/m2になるように塗工
し、乾燥した。この時の銅箔上の負極材料の密度は、
1.21g/ccであった。その後、プレス、スリット
加工を施して厚さ158μm(負極材料の密度;1.5
g/cc)、幅56.5mmの負極を作製した。
In 193 parts by weight of a 1.1% by weight viscous aqueous solution of carboxymethyl cellulose, 25 parts by weight of the fibrous carbonaceous material (a), 25 parts by weight of the fibrous carbonaceous material (b) and the spherical graphite ( c) after adding 50 parts by weight,
Shear dispersed. Subsequently, 3.6 parts by weight of SBR latex was added to this mixture, and the mixture was uniformly mixed and stirred to prepare a negative electrode coating slurry. This coating slurry had a solid content of 58% by weight. Then, the coating slurry was coated so as to 105g / m 2, 114g / m 2 on both surfaces of a copper foil with a thickness of 15μm by a knife edge coater (current collector) and dried. At this time, the density of the negative electrode material on the copper foil is
1.21 g / cc. After that, it is pressed and slit to a thickness of 158 μm (density of negative electrode material: 1.5
g / cc) and a negative electrode having a width of 56.5 mm was produced.

【0063】(実施例6)負極として、以下に説明する
方法で作製したものを用いた以外、実施例1と同様な構
造の円筒形リチウムイオン二次電池を組立てた。なお、
正負極、セパレータを有する電極体の作製後は、実施例
1と同様な良・不良の判定を行ない、良品として判定さ
れた電極体のみを使用した。
Example 6 A cylindrical lithium ion secondary battery having the same structure as in Example 1 was assembled except that a negative electrode produced by the method described below was used. In addition,
After the production of the electrode body having the positive and negative electrodes and the separator, the same good / bad judgment as in Example 1 was performed, and only the electrode body judged as good was used.

【0064】カルボキシメチルセルロースの0.90重
量%濃度の粘調水溶液192重量部に前記繊維状炭素質
材(a)20重量部、前記繊維状炭素質材(b)40重
量部および前記球状黒鉛(c)40重量部を添加した
後、せん断分散した。つづいて、この混合物にSBRラ
テックス3.6重量部を添加し、均一の混合攪拌して負
極塗工スラリーを調製した。この塗工スラリーは、固形
分が58重量%であった。次いで、前記塗工スラリーを
ナイフエッジコータにより厚さ15μmの銅箔(集電
体)の両面に105g/m2、114g/m2になるよう
に塗工し、乾燥した。この時の銅箔上の負極材料の密度
は、1.21g/ccであった。その後、プレス、スリ
ット加工を施して厚さ158μm(負極材料の密度;
1.5g/cc)、幅56.5mmの負極を作製した。
20 parts by weight of the fibrous carbonaceous material (a), 40 parts by weight of the fibrous carbonaceous material (b) and spheroidal graphite (192 parts by weight) of a viscous aqueous solution of carboxymethylcellulose having a concentration of 0.90% by weight. c) After adding 40 parts by weight, the mixture was sheared and dispersed. Subsequently, 3.6 parts by weight of SBR latex was added to this mixture, and the mixture was uniformly mixed and stirred to prepare a negative electrode coating slurry. This coating slurry had a solid content of 58% by weight. Then, the coating slurry was coated so as to 105g / m 2, 114g / m 2 on both surfaces of a copper foil with a thickness of 15μm by a knife edge coater (current collector) and dried. At this time, the density of the negative electrode material on the copper foil was 1.21 g / cc. Then, it is pressed and slit to a thickness of 158 μm (density of the negative electrode material;
1.5 g / cc) and a negative electrode having a width of 56.5 mm were produced.

【0065】(比較例1)負極として、以下に説明する
方法で作製したものを用いた以外、実施例1と同様な構
造の円筒形リチウムイオン二次電池を組立てた。なお、
正負極、セパレータを有する電極体の作製後は、実施例
1と同様な良・不良の判定を行ない、良品として判定さ
れた電極体のみを使用した。
(Comparative Example 1) A cylindrical lithium ion secondary battery having the same structure as in Example 1 was assembled except that a negative electrode produced by the method described below was used. In addition,
After the production of the electrode body having the positive and negative electrodes and the separator, the same good / bad judgment as in Example 1 was performed, and only the electrode body judged as good was used.

【0066】カルボキシメチルセルロースの0.74重
量%濃度の粘調水溶液177重量部に前記繊維状炭素質
材(a)80重量部および前記球状黒鉛(c)20重量
部を添加した後、せん断分散した。つづいて、この混合
物にSBRラテックス3.6重量部を添加し、均一の混
合攪拌して負極塗工スラリーを調製した。この塗工スラ
リーは、固形分が58重量%であった。次いで、前記塗
工スラリーをナイフエッジコータにより厚さ15μmの
銅箔(集電体)の両面に105g/m2、114g/m2
になるように塗工し、乾燥した。この時の銅箔上の負極
材料の密度は、1.23g/ccであった。その後、プ
レス、スリット加工を施して厚さ158μm(負極材料
の密度;1.5g/cc)、幅56.5mmの負極を作
製した。
80 parts by weight of the fibrous carbonaceous material (a) and 20 parts by weight of the spheroidal graphite (c) were added to 177 parts by weight of a viscous aqueous solution of carboxymethylcellulose having a concentration of 0.74% by weight, followed by shear dispersion. . Subsequently, 3.6 parts by weight of SBR latex was added to this mixture, and the mixture was uniformly mixed and stirred to prepare a negative electrode coating slurry. This coating slurry had a solid content of 58% by weight. Then, the 105g coating slurry on both surfaces of a copper foil with a thickness of 15μm by a knife edge coater (current collector) / m 2, 114g / m 2
And dried. At this time, the density of the negative electrode material on the copper foil was 1.23 g / cc. Thereafter, pressing and slitting were performed to produce a negative electrode having a thickness of 158 μm (density of negative electrode material; 1.5 g / cc) and a width of 56.5 mm.

【0067】(比較例2)負極として、以下に説明する
方法で作製したものを用いた以外、実施例1と同様な構
造の円筒形リチウムイオン二次電池を組立てた。なお、
正負極、セパレータを有する電極体の作製後は、実施例
1と同様な良・不良の判定を行ない、良品として判定さ
れた電極体のみを使用した。
(Comparative Example 2) A cylindrical lithium ion secondary battery having the same structure as in Example 1 was assembled except that a negative electrode produced by the method described below was used. In addition,
After the production of the electrode body having the positive and negative electrodes and the separator, the same good / bad judgment as in Example 1 was performed, and only the electrode body judged as good was used.

【0068】カルボキシメチルセルロースの0.74重
量%濃度の粘調水溶液177重量部に前記繊維状炭素質
材(b)80重量部および前記球状黒鉛(c)20重量
部を添加した後、せん断分散した。つづいて、この混合
物にSBRラテックス3.6重量部を添加し、均一の混
合攪拌して負極塗工スラリーを調製した。この塗工スラ
リーは、固形分が58重量%であった。次いで、前記塗
工スラリーをナイフエッジコータにより厚さ15μmの
銅箔(集電体)の両面に105g/m2、114g/m2
になるように塗工し、乾燥した。この時の銅箔上の負極
材料の密度は、1.23g/ccであった。その後、プ
レス、スリット加工を施して厚さ158μm(負極材料
の密度;1.5g/cc)、幅56.5mmの負極を作
製した。
After adding 80 parts by weight of the fibrous carbonaceous material (b) and 20 parts by weight of the spheroidal graphite (c) to 177 parts by weight of a viscous aqueous solution of carboxymethyl cellulose having a concentration of 0.74% by weight, the mixture was shear-dispersed. . Subsequently, 3.6 parts by weight of SBR latex was added to this mixture, and the mixture was uniformly mixed and stirred to prepare a negative electrode coating slurry. This coating slurry had a solid content of 58% by weight. Then, the 105g coating slurry on both surfaces of a copper foil with a thickness of 15μm by a knife edge coater (current collector) / m 2, 114g / m 2
And dried. At this time, the density of the negative electrode material on the copper foil was 1.23 g / cc. Thereafter, pressing and slitting were performed to produce a negative electrode having a thickness of 158 μm (density of negative electrode material; 1.5 g / cc) and a width of 56.5 mm.

【0069】(比較例3)負極として、以下に説明する
方法で作製したものを用いた以外、実施例1と同様な構
造の円筒形リチウムイオン二次電池を組立てた。なお、
正負極、セパレータを有する電極体の作製後は、実施例
1と同様な良・不良の判定を行ない、良品として判定さ
れた電極体のみを使用した。
Comparative Example 3 A cylindrical lithium ion secondary battery having the same structure as in Example 1 was assembled except that a negative electrode produced by the method described below was used. In addition,
After the production of the electrode body having the positive and negative electrodes and the separator, the same good / bad judgment as in Example 1 was performed, and only the electrode body judged as good was used.

【0070】カルボキシメチルセルロースの0.73重
量%濃度の粘調水溶液166重量部に前記繊維状炭素質
材(a)100重量部を添加した後、せん断分散した。
つづいて、この混合物にSBRラテックス3.6重量部
を添加し、均一の混合攪拌して負極塗工スラリーを調製
した。この塗工スラリーは、固形分が62重量%であっ
た。次いで、前記塗工スラリーをナイフエッジコータに
より厚さ15μmの銅箔(集電体)の両面に105g/
2、114g/m2になるように塗工し、乾燥した。こ
の時の銅箔上の負極材料の密度は、1.24g/ccで
あった。その後、プレス、スリット加工を施して厚さ1
58μm(負極材料の密度;1.5g/cc)、幅5
6.5mmの負極を作製した。
100 parts by weight of the fibrous carbonaceous material (a) was added to 166 parts by weight of a viscous aqueous solution of carboxymethyl cellulose having a concentration of 0.73% by weight, followed by shearing dispersion.
Subsequently, 3.6 parts by weight of SBR latex was added to this mixture, and the mixture was uniformly mixed and stirred to prepare a negative electrode coating slurry. This coating slurry had a solid content of 62% by weight. Next, the coating slurry was applied to both sides of a copper foil (current collector) having a thickness of 15 μm with a knife edge coater at 105 g /
m 2 , 114 g / m 2 , and dried. At this time, the density of the negative electrode material on the copper foil was 1.24 g / cc. After that, press and slit processing is performed to make the thickness 1
58 μm (density of negative electrode material; 1.5 g / cc), width 5
A 6.5 mm negative electrode was produced.

【0071】(比較例4)負極として、以下に説明する
方法で作製したものを用いた以外、実施例1と同様な構
造の円筒形リチウムイオン二次電池を組立てた。なお、
正負極、セパレータを有する電極体の作製後は、実施例
1と同様な良・不良の判定を行ない、良品として判定さ
れた電極体のみを使用した。
(Comparative Example 4) A cylindrical lithium ion secondary battery having the same structure as in Example 1 was assembled except that a negative electrode produced by the method described below was used. In addition,
After the production of the electrode body having the positive and negative electrodes and the separator, the same good / bad judgment as in Example 1 was performed, and only the electrode body judged as good was used.

【0072】カルボキシメチルセルロースの0.73重
量%濃度の粘調水溶液166重量部に前記繊維状炭素質
材(b)100重量部を添加した後、せん断分散した。
つづいて、この混合物にSBRラテックス3.6重量部
を添加し、均一の混合攪拌して負極塗工スラリーを調製
した。この塗工スラリーは、固形分が62重量%であっ
た。次いで、前記塗工スラリーをナイフエッジコータに
より厚さ15μmの銅箔(集電体)の両面に105g/
2、114g/m2になるように塗工し、乾燥した。こ
の時の銅箔上の負極材料の密度は、1.23g/ccで
あった。その後、プレス、スリット加工を施して厚さ1
58μm(負極材料の密度;1.5g/cc)、幅5
6.5mmの負極を作製した。
100 parts by weight of the fibrous carbonaceous material (b) was added to 166 parts by weight of a 0.73% by weight viscous aqueous solution of carboxymethylcellulose, followed by shearing dispersion.
Subsequently, 3.6 parts by weight of SBR latex was added to this mixture, and the mixture was uniformly mixed and stirred to prepare a negative electrode coating slurry. This coating slurry had a solid content of 62% by weight. Next, the coating slurry was applied to both sides of a copper foil (current collector) having a thickness of 15 μm with a knife edge coater at 105 g /
m 2 , 114 g / m 2 , and dried. At this time, the density of the negative electrode material on the copper foil was 1.23 g / cc. After that, press and slit processing is performed to make the thickness 1
58 μm (density of negative electrode material; 1.5 g / cc), width 5
A 6.5 mm negative electrode was produced.

【0073】(比較例5)負極として、以下に説明する
方法で作製したものを用いた以外、実施例1と同様な構
造の円筒形リチウムイオン二次電池を組立てた。なお、
正負極、セパレータを有する電極体の作製後は、実施例
1と同様な良・不良の判定を行ない、良品として判定さ
れた電極体のみを使用した。
Comparative Example 5 A cylindrical lithium ion secondary battery having the same structure as in Example 1 was assembled except that a negative electrode produced by the method described below was used. In addition,
After the production of the electrode body having the positive and negative electrodes and the separator, the same good / bad judgment as in Example 1 was performed, and only the electrode body judged as good was used.

【0074】カルボキシメチルセルロースの1.11重
量%濃度の粘調水溶液302重量部に前記球状黒鉛
(c)100重量部を添加した後、せん断分散した。つ
づいて、この混合物にSBRラテックス3.6重量部を
添加し、均一の混合攪拌して負極塗工スラリーを調製し
た。この塗工スラリーは、固形分が35重量%であっ
た。次いで、前記塗工スラリーをナイフエッジコータに
より厚さ15μmの銅箔(集電体)の両面に105g/
2、114g/m2になるように塗工し、乾燥した。こ
の時の銅箔上の負極材料の密度は、1.18g/ccで
あった。その後、プレス、スリット加工を施して厚さ1
58μm(負極材料の密度;1.5g/cc)、幅5
6.5mmの負極を作製した。
100 parts by weight of the spheroidal graphite (c) was added to 302 parts by weight of a viscous aqueous solution having a concentration of 1.11% by weight of carboxymethylcellulose, followed by shear dispersion. Subsequently, 3.6 parts by weight of SBR latex was added to this mixture, and the mixture was uniformly mixed and stirred to prepare a negative electrode coating slurry. This coating slurry had a solid content of 35% by weight. Next, the coating slurry was applied to both sides of a copper foil (current collector) having a thickness of 15 μm with a knife edge coater at 105 g /
m 2 , 114 g / m 2 , and dried. At this time, the density of the negative electrode material on the copper foil was 1.18 g / cc. After that, press and slit processing is performed to make the thickness 1
58 μm (density of negative electrode material; 1.5 g / cc), width 5
A 6.5 mm negative electrode was produced.

【0075】得られた実施例1〜6および比較例1〜5
の二次電池について、950mAhで6時間初充電し、
エージングを3日間施した後、20℃で0.5C相当で
放電した時の平均容量を測定した。その結果を下記表1
に示す。
The obtained Examples 1 to 6 and Comparative Examples 1 to 5
About 6 hours at 950 mAh,
After aging for 3 days, the average capacity was measured when the battery was discharged at 20 ° C. at 0.5C. The results are shown in Table 1 below.
Shown in

【0076】[0076]

【表1】 [Table 1]

【0077】また、実施例1〜6および比較例1〜5の
二次電池について、20℃において1C(1900mA
h)で充電、放電1C(カットオフ電圧3.0V)での
条件にて500回充放電を繰り返した時の初期放電容量
に対する放電容量維持率(サイクル特性)を測定した。
実施例1〜6の二次電池の結果を図5に、比較例1〜5
の二次電池の結果を図6にそれぞれ示す。
The secondary batteries of Examples 1 to 6 and Comparative Examples 1 to 5 were charged at 1 ° C. (1900 mA) at 20 ° C.
h), the discharge capacity retention ratio (cycle characteristics) with respect to the initial discharge capacity when charging and discharging were repeated 500 times under the conditions of charging and discharging 1 C (cutoff voltage 3.0 V) was measured.
FIG. 5 shows the results of the secondary batteries of Examples 1 to 6, and Comparative Examples 1 to 5.
6 shows the results of the secondary batteries.

【0078】前記表1から明らかなように実施例1〜6
の二次電池と比較例1〜5の二次電池とは容量の点で大
きな差異がないものの、図5、図6から明らかなように
比較例1〜5の二次電池が400サイクルでの容量維持
率が最大で65%であるのに対し、特定の炭素材料を含
む負極を備えた実施例1〜6の二次電池は約80〜87
%を示し優れたサイクル特性を有することがわかる。
As apparent from Table 1 above, Examples 1 to 6
Although the secondary batteries of Comparative Examples 1 to 5 and the secondary batteries of Comparative Examples 1 to 5 do not have a large difference in capacity, as is clear from FIGS. 5 and 6, the secondary batteries of Comparative Examples 1 to 5 While the capacity retention ratio is 65% at the maximum, the secondary batteries of Examples 1 to 6 including the negative electrode containing the specific carbon material have a capacity retention ratio of about 80 to 87.
%, Which indicates that it has excellent cycle characteristics.

【0079】なお、前述した実施例では図1に示す円筒
型リチウムイオン二次電池について説明したが、前述し
た図2に示す角型リチウムイオン二次電池、図3,図4
に示す薄型リチウムイオン二次電池に適用しても実施例
と同様、高容量化と充放電サイクル寿命の向上が図られ
る。
In the above-described embodiment, the cylindrical lithium ion secondary battery shown in FIG. 1 has been described. However, the rectangular lithium ion secondary battery shown in FIG.
Even when applied to the thin lithium ion secondary battery shown in (1), a high capacity and an improvement in charge / discharge cycle life can be achieved as in the embodiment.

【0080】[0080]

【発明の効果】以上詳述したように、本発明によれば負
極を改良することによって高容量化を達成しつつ、充放
電サイクル寿命を向上した非水系電解液二次電池を提供
することができる。
As described above in detail, according to the present invention, it is possible to provide a non-aqueous electrolyte secondary battery having improved charge / discharge cycle life while achieving high capacity by improving the negative electrode. it can.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明に係る非水系電解液二次電池の一形態あ
る円筒型非水系電解液二次電池(円筒型リチウムイオン
二次電池)を示す部分断面図。
FIG. 1 is a partial cross-sectional view showing a cylindrical nonaqueous electrolyte secondary battery (cylindrical lithium ion secondary battery), which is an embodiment of the nonaqueous electrolyte secondary battery according to the present invention.

【図2】本発明に係る非水系電解液二次電池の他の形態
ある角型非水系電解液二次電池(角型リチウムイオン二
次電池)を示す部分切欠斜視図。
FIG. 2 is a partially cutaway perspective view showing a prismatic nonaqueous electrolyte secondary battery (square lithium ion secondary battery) as another embodiment of the nonaqueous electrolyte secondary battery according to the present invention.

【図3】本発明に係る非水系電解液二次電池のさらに他
の形態ある薄型非水系電解液二次電池(薄型リチウムイ
オン二次電池)を示す斜視図。
FIG. 3 is a perspective view showing a thin non-aqueous electrolyte secondary battery (thin lithium ion secondary battery) as still another embodiment of the non-aqueous electrolyte secondary battery according to the present invention.

【図4】図3のIV−IV線に沿う断面図。FIG. 4 is a sectional view taken along the line IV-IV in FIG. 3;

【図5】本発明に係る実施例1〜6のリチウムイオン二
次電池のサイクル特性示す図。
FIG. 5 is a diagram showing cycle characteristics of the lithium ion secondary batteries of Examples 1 to 6 according to the present invention.

【図6】比較例1〜5のリチウムイオン二次電池のサイ
クル特性示す図。
FIG. 6 is a diagram showing cycle characteristics of the lithium ion secondary batteries of Comparative Examples 1 to 5.

【符号の説明】[Explanation of symbols]

1、21…外装缶、 3,23電極体、 4,24,48…負極、 5,25,45…セパレータ、 6,26,44…正極、 12…封口板、 28…蓋体、 41…発電要素、 43,46…集電体、 51…外装フィルム。 1, 21: outer can, 3,23 electrode body, 4, 24, 48 ... negative electrode, 5, 25, 45 ... separator, 6, 26, 44 ... positive electrode, 12 ... sealing plate, 28 ... lid, 41 ... power generation Elements, 43, 46: current collector, 51: exterior film.

───────────────────────────────────────────────────── フロントページの続き (72)発明者 中島 孝之 東京都品川区南品川3丁目4番10号 株式 会社エイ・ティーバッテリー内 (72)発明者 松本 浩一 東京都品川区南品川3丁目4番10号 株式 会社エイ・ティーバッテリー内 (72)発明者 上林 信一 神奈川県川崎市川崎区日進町7番地1 東 芝電子エンジニアリング株式会社内 Fターム(参考) 5H029 AJ03 AJ05 AK03 AL07 AM03 AM04 AM05 AM07 BJ02 BJ14 HJ01 HJ04 HJ13 5H050 AA07 AA08 CA08 CB08 EA09 EA24 FA16 FA17 FA19 HA01 HA04 HA08 HA13  ──────────────────────────────────────────────────続 き Continued on the front page (72) Takayuki Nakajima 3-4-10 Minamishinagawa, Shinagawa-ku, Tokyo Inside AT Battery Co., Ltd. (72) Koichi Matsumoto 3-4-1 Minamishinagawa, Shinagawa-ku, Tokyo No. 10 Inside A / T Battery Co., Ltd. (72) Shinichi Uebayashi 7-in-1 Nisshin-cho, Kawasaki-ku, Kawasaki-shi, Kanagawa Prefecture F-term (reference) 5H029 AJ03 AJ05 AK03 AL07 AM03 AM04 AM05 AM07 BJ02 BJ14 HJ01 HJ04 HJ13 5H050 AA07 AA08 CA08 CB08 EA09 EA24 FA16 FA17 FA19 HA01 HA04 HA08 HA13

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】 リチウムを吸蔵・放出可能な正極、リチ
ウムを吸蔵・放出可能な負極、セパレータおよび非水系
電解液を備え、 前記正極および前記負極は、集電体にそれぞれ正極材料
および負極材料を塗布した構造を有し、かつ前記負極材
料は、繊維状炭素質材(a),(b)と鱗片状または球
塊状の黒鉛(c)とを含有し、前記繊維状炭素質材
(a)は、c軸方向の結晶子の大きさ(Lc)が40〜
60nmで、前記繊維状炭素質材(b)はc軸方向の結
晶子の大きさ(Lc)が100nm以上であることを特
徴とする非水系電解液二次電池。
1. A positive electrode capable of occluding and releasing lithium, a negative electrode capable of occluding and releasing lithium, a separator, and a non-aqueous electrolyte. The positive electrode and the negative electrode each include a positive electrode material and a negative electrode material as a current collector. The negative electrode material contains fibrous carbonaceous materials (a) and (b) and flaky or spherical lumpy graphite (c), and the fibrous carbonaceous material (a) Indicates that the crystallite size (Lc) in the c-axis direction is 40 to
The non-aqueous electrolyte secondary battery according to claim 1, wherein the fibrous carbonaceous material (b) has a crystallite size (Lc) in the c-axis direction of 100 nm or more at 60 nm.
【請求項2】 前記繊維状炭素質材(a)は、平均繊維
径8〜18μm、平均繊維長10〜50μm、真密度
2.24g/cc以上、Cu−KαによるX線回折法で
の(101)回折ピークP101と(100)回折ピーク
100の強度比(P101/P100)が1.2〜1.8であ
り、かつ前記繊維状炭素質材(b)は、平均繊維径8〜
18μm、平均繊維長10〜50μm、真密度2.24
g/cc以上、Cu−KαによるX線回折法での(10
1)回折ピークP101と(100)回折ピークP100の強
度比(P101/P100)が1.8を超える値であることを
特徴とする請求項1記載の非水系電解液二次電池。
2. The fibrous carbonaceous material (a) has an average fiber diameter of 8 to 18 μm, an average fiber length of 10 to 50 μm, a true density of at least 2.24 g / cc, and an X-ray diffraction method using Cu-Kα. 101) and a diffraction peak P 101 (100) intensity ratio of the diffraction peak P 100 (P 101 / P 100 ) is 1.2 to 1.8, and wherein the fibrous carbonaceous material (b) has an average fiber diameter 8 ~
18 μm, average fiber length 10-50 μm, true density 2.24
g / cc or more, (10
2. The non-aqueous electrolyte secondary battery according to claim 1, wherein the intensity ratio (P 101 / P 100 ) between the diffraction peak P 101 and the (100) diffraction peak P 100 is a value exceeding 1.8. .
【請求項3】 前記繊維状炭素質材(a)の平均繊維径
(da)と前記繊維状炭素質材(b)の平均繊維径
(db)とがdb=1.15da〜1.35daの関係を満
たすことを特徴とする請求項1記載の非水系電解液二次
電池。
Wherein an average fiber diameter (d b) of the average fiber diameter of the fibrous carbonaceous material (a) (d a) and the fibrous carbonaceous material (b) and is d b = 1.15d a ~ 2. The non-aqueous electrolyte secondary battery according to claim 1, wherein a relationship of 1.35 da is satisfied.
【請求項4】 前記繊維状炭素質材(b)は、前記繊維
状炭素質材(a),(b)の合量に対して10〜90重
量%の割合を占めることを特徴とする請求項1記載の非
水系電解液二次電池。
4. The fibrous carbonaceous material (b) occupies a ratio of 10 to 90% by weight based on the total amount of the fibrous carbonaceous materials (a) and (b). Item 2. The non-aqueous electrolyte secondary battery according to Item 1.
JP2000217629A 2000-07-18 2000-07-18 Non-aqueous electrolyte secondary battery Expired - Fee Related JP4750929B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2000217629A JP4750929B2 (en) 2000-07-18 2000-07-18 Non-aqueous electrolyte secondary battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2000217629A JP4750929B2 (en) 2000-07-18 2000-07-18 Non-aqueous electrolyte secondary battery

Publications (2)

Publication Number Publication Date
JP2002033104A true JP2002033104A (en) 2002-01-31
JP4750929B2 JP4750929B2 (en) 2011-08-17

Family

ID=18712706

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000217629A Expired - Fee Related JP4750929B2 (en) 2000-07-18 2000-07-18 Non-aqueous electrolyte secondary battery

Country Status (1)

Country Link
JP (1) JP4750929B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002088256A (en) * 2000-09-18 2002-03-27 Polymatech Co Ltd Thermally conductive polymeric composition and thermally conductive molded product
US9923239B2 (en) 2011-07-14 2018-03-20 Nec Energy Devices, Ltd. Lithium ion battery
CN113054159A (en) * 2019-12-26 2021-06-29 松下电器产业株式会社 Negative electrode for nonaqueous electrolyte secondary battery and nonaqueous electrolyte secondary battery

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10261406A (en) * 1997-03-14 1998-09-29 Nikkiso Co Ltd Carbon electrode and nonaqueous electrolyte secondary battery using it for negative electrode

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10261406A (en) * 1997-03-14 1998-09-29 Nikkiso Co Ltd Carbon electrode and nonaqueous electrolyte secondary battery using it for negative electrode

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002088256A (en) * 2000-09-18 2002-03-27 Polymatech Co Ltd Thermally conductive polymeric composition and thermally conductive molded product
US9923239B2 (en) 2011-07-14 2018-03-20 Nec Energy Devices, Ltd. Lithium ion battery
CN113054159A (en) * 2019-12-26 2021-06-29 松下电器产业株式会社 Negative electrode for nonaqueous electrolyte secondary battery and nonaqueous electrolyte secondary battery

Also Published As

Publication number Publication date
JP4750929B2 (en) 2011-08-17

Similar Documents

Publication Publication Date Title
JP4061586B2 (en) Positive electrode active material for nonaqueous electrolyte secondary battery and nonaqueous electrolyte secondary battery using the same
US6156457A (en) Lithium secondary battery and method for manufacturing a negative electrode
US20020150820A1 (en) Positive electrode active material and lithium ion secondary battery
JP4746278B2 (en) Nonaqueous electrolyte secondary battery
JP4649113B2 (en) Nonaqueous electrolyte secondary battery
JP2000149997A (en) Nonaqueous electrolyte secondary battery and its manufacture
JP3641648B2 (en) Lithium secondary battery
JP3105204B2 (en) Non-aqueous electrolyte secondary battery
JP2000011991A (en) Organic electrolyte secondary battery
JP2006134758A (en) Secondary battery
JP2002110250A (en) Non-aqueous electrolyte secondary battery
JP2003272704A (en) Nonaqueous secondary battery
JPH09245830A (en) Nonaqueous electrolyte secondary battery
JP2004095306A (en) Non-aqueous electrolyte secondary battery
JP3530174B2 (en) Positive electrode active material and lithium ion secondary battery
JP2001196095A (en) Manufacturing method for non-aqueous electrolytic solvent secondary battery
JP4750929B2 (en) Non-aqueous electrolyte secondary battery
JP2005071712A (en) Manufacturing method of positive electrode
JP3568247B2 (en) Non-aqueous electrolyte secondary battery
JP4346395B2 (en) Nonaqueous electrolyte secondary battery
JP2002100410A (en) Nonaqueous electrolyte secondary battery
JP4828690B2 (en) Non-aqueous electrolyte secondary battery
JP2005019086A (en) Nonaqueous electrolyte secondary battery
JPH10214629A (en) Lithium secondary battery
JP4746275B2 (en) Nonaqueous electrolyte secondary battery

Legal Events

Date Code Title Description
A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A711

Effective date: 20060413

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070622

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20100707

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100803

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20101004

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20110426

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20110520

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140527

Year of fee payment: 3

LAPS Cancellation because of no payment of annual fees