JP2002031596A - Liquid concentration measuring device - Google Patents

Liquid concentration measuring device

Info

Publication number
JP2002031596A
JP2002031596A JP2000215916A JP2000215916A JP2002031596A JP 2002031596 A JP2002031596 A JP 2002031596A JP 2000215916 A JP2000215916 A JP 2000215916A JP 2000215916 A JP2000215916 A JP 2000215916A JP 2002031596 A JP2002031596 A JP 2002031596A
Authority
JP
Japan
Prior art keywords
liquid
measuring
cleaning
concentration
measurement
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2000215916A
Other languages
Japanese (ja)
Inventor
Daisuke Matsushima
大輔 松嶋
Naoya Hayamizu
直哉 速水
Mitsuru Goto
満 後藤
Makoto Kidai
誠 希代
Yasushi Noguchi
恭 野口
Hitoshi Okazaki
仁 岡崎
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
APURIKUSU KK
Toshiba Corp
Original Assignee
APURIKUSU KK
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by APURIKUSU KK, Toshiba Corp filed Critical APURIKUSU KK
Priority to JP2000215916A priority Critical patent/JP2002031596A/en
Publication of JP2002031596A publication Critical patent/JP2002031596A/en
Pending legal-status Critical Current

Links

Landscapes

  • Investigating Or Analyzing Materials By The Use Of Ultrasonic Waves (AREA)
  • Sampling And Sample Adjustment (AREA)
  • Optical Measuring Cells (AREA)
  • Investigating Or Analysing Materials By Optical Means (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a liquid concentration measuring device capable of measuring the concentration accurately even in the case of wash liquid mixed with air bubbles. SOLUTION: The sizes of the air bubbles are adjusted beforehand by air bubble adjusting means 16, 21 in a measuring liquid flowing into a measuring cell 1.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、液体の濃度や液体
中に含まれている組成物量を測定する液濃度測定装置に
関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a liquid concentration measuring device for measuring the concentration of a liquid and the amount of a composition contained in the liquid.

【0002】[0002]

【従来の技術】半導体ウエハや液晶基板の洗浄工程で
は、洗浄液やすすぎ液の酸化還元電位が重要であること
から、超純水に水素ガスを溶解してなる負の酸化還元電
位を有する洗浄液によって電子部品類を洗浄する方法
や、超純水にオゾンガスを溶解させて正の酸化還元電位
を有する洗浄液によって洗浄する方法が用いられること
がある。
2. Description of the Related Art In a cleaning process of a semiconductor wafer or a liquid crystal substrate, since the oxidation-reduction potential of a cleaning solution and a rinsing solution is important, a cleaning solution having a negative oxidation-reduction potential obtained by dissolving hydrogen gas in ultrapure water is used. A method of cleaning electronic components or a method of dissolving ozone gas in ultrapure water and cleaning with a cleaning liquid having a positive oxidation-reduction potential may be used.

【0003】このような水素ガスやオゾン等のガスを溶
解した液を洗浄液として用いる方法では、洗浄時に超音
波を照射することにより更に洗浄効果を高めることがで
きる。
In the method using a liquid in which a gas such as hydrogen gas or ozone is dissolved as a cleaning liquid, the cleaning effect can be further enhanced by irradiating ultrasonic waves during cleaning.

【0004】ところで、超純水に水素ガスやオゾン等の
洗浄機能ガスを溶解した洗浄液を用いて洗浄を行う際
に、超音波照射を併用した場合、超音波照射量が多すぎ
ると洗浄液中に溶解している洗浄機能ガスが発泡化(ガ
ス化して気泡を生じる。)してしまい、洗浄液中の洗浄
機能ガスの溶解量が滅少すると洗浄効果が低下してくる
という問題を生じる。また、超音波照射量が適量であっ
ても、洗浄液中の洗浄機能ガスの溶解量が十分でないと
良好な洗浄効果が得られない。いずれにしろ、良好な洗
浄効果を得るには、洗浄液中の洗浄機能ガスの溶存量
(洗浄液の濃度)を適正に管理する必要がある。これら
の管理は、光学式の分光光度方式による測定方法により
洗浄液の濃度を計測して管理している。
When cleaning is performed using a cleaning solution in which a cleaning function gas such as hydrogen gas or ozone is dissolved in ultrapure water, ultrasonic irradiation is also used. The dissolved cleaning function gas foams (gasifies to generate air bubbles), and if the amount of the cleaning function gas dissolved in the cleaning liquid is reduced, the cleaning effect is reduced. In addition, even if the ultrasonic irradiation amount is appropriate, a good cleaning effect cannot be obtained unless the amount of the cleaning function gas dissolved in the cleaning liquid is sufficient. In any case, in order to obtain a good cleaning effect, it is necessary to appropriately manage the dissolved amount of the cleaning function gas (the concentration of the cleaning liquid) in the cleaning liquid. These controls are performed by measuring the concentration of the cleaning liquid by a measuring method based on an optical spectrophotometric method.

【0005】この分光光度方式による測定の一例は、測
定部にプリズムや回析格子を介して発光部からの光を単
色光として照射し、測定部内の測定液である洗浄液が通
過するときの光の吸収量を光電管・光電子増倍管等の受
光部で光量を測定し、洗浄液の濃度を測定している。
[0005] One example of the measurement by the spectrophotometric method is to irradiate the light from the light emitting section as monochromatic light to the measuring section via a prism or a diffraction grating, and to measure the light when the cleaning liquid as the measuring liquid in the measuring section passes. The amount of absorption is measured by a light receiving unit such as a photoelectric tube or a photomultiplier tube to measure the concentration of the cleaning liquid.

【0006】[0006]

【発明が解決しようとする課題】しかしながら、洗浄液
の濃度測定に光学方式を用いた場合、洗浄液中に泡が混
入していると、正確な測定は困難である。例えば、オゾ
ンが溶解した洗浄液を分光光度方式で測定すると、洗浄
液中にオゾンガスの気泡が混入している為に、実際の洗
浄液の濃度よりも高い数値が検出されることがある。こ
れは、粒径の大きな気泡が影響していることを確認して
いる。
However, when the optical method is used for measuring the concentration of the cleaning liquid, accurate measurement is difficult if bubbles are mixed in the cleaning liquid. For example, when a cleaning liquid in which ozone is dissolved is measured by a spectrophotometric method, a numerical value higher than the actual concentration of the cleaning liquid may be detected because bubbles of ozone gas are mixed in the cleaning liquid. This confirms that bubbles having a large particle size have an effect.

【0007】本発明はそれらの事情にもとづきなされた
もので、気泡が混入している洗浄液でも正確に濃度を測
定できる濃度測定装置を提供することを目的としてい
る。
The present invention has been made based on these circumstances, and an object of the present invention is to provide a concentration measuring device capable of accurately measuring the concentration of a cleaning liquid containing air bubbles.

【0008】[0008]

【課題を解決するための手段】請求項1の発明による手
段によれば、測定液を測定セル内に流入させて、流入し
た前記測定液に光又超音波を照射し、その透過した光又
は超音波を検出して前記測定液の濃度を測定する液濃度
測定装置において、前記測定セルへ測定液を流入させ前
記測定液に混入されている気泡を細かく粉砕する気泡調
整手段が設けられていることを特徴とする液濃度測定装
置である。
According to the first aspect of the present invention, a measuring solution is caused to flow into a measuring cell, and the flowing measuring solution is irradiated with light or ultrasonic waves, and the transmitted light or In a liquid concentration measuring device that detects an ultrasonic wave and measures the concentration of the measurement liquid, a bubble adjustment unit is provided for flowing the measurement liquid into the measurement cell and finely pulverizing bubbles mixed in the measurement liquid. It is a liquid concentration measuring device characterized by the above-mentioned.

【0009】また請求項2の発明による手段によれば、
前記気泡調整手段は、プレッシャレギュレータに接続し
た気液分離塔であることを特徴とする液濃度測定装置で
ある。
According to the second aspect of the present invention,
The bubble concentration adjusting means is a gas-liquid separation tower connected to a pressure regulator.

【0010】また請求項3の発明による手段によれば、
前記気泡調整手段は、前記管路内に設けられた気泡攪拌
部であることを特徴とする液濃度測定装置である。
According to the third aspect of the present invention,
The said bubble adjustment means is the liquid concentration measuring apparatus characterized by being the bubble stirring part provided in the said channel.

【0011】[0011]

【発明の実施の形態】以下、本発明の液濃度測定装置に
ついての実施の形態を図面を参照して説明する。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS An embodiment of a liquid concentration measuring device according to the present invention will be described below with reference to the drawings.

【0012】まず、本発明に用いる液濃度の測定セルに
ついて説明する。図1は測定セルの一実施の形態の概略
説明図、図2は図1のA−A´線拡大断面説明図であ
る。
First, a liquid concentration measuring cell used in the present invention will be described. FIG. 1 is a schematic explanatory view of one embodiment of a measuring cell, and FIG. 2 is an enlarged sectional explanatory view taken along line AA ′ of FIG.

【0013】測定セル1はセル本体1aの中央部に測定
液(洗浄液等)を連続的に通過させる測定部2を形成し
ている。このセル本体1aは測定液を連続的に流通させ
るための測定液流路11を、横断面が四角形又は長円形
もしくは楕円形に成るように形成されている。このセル
本体1aの中央部分において、測定液流路11を挟んで
向かい合う面に、それぞれ凸形の石英ガラス等の透光部
材3がOリング10を介して水密的に嵌め込まれてあ
る。
The measuring cell 1 has a measuring section 2 at the center of the cell body 1a for continuously passing a measuring liquid (such as a cleaning liquid). In the cell body 1a, a measurement liquid flow path 11 for continuously flowing the measurement liquid is formed such that the cross section is a square, an oval, or an ellipse. In a central portion of the cell main body 1a, a translucent member 3 such as a quartz glass or the like is fitted in a water-tight manner via an O-ring 10 on surfaces facing each other across the measurement liquid flow path 11.

【0014】4は測定部2に接続した測定液流路11の
流入部で、この流入部4から測定液を連続的に流入させ
て反対側の排出部5から排出させる。測定部2を挟ん
で、一方の外側に水銀ランプ等の光源を備えた発光部6
を設置し、反対側の外側には光学フィルタ7、受光部8
を設置してある。この発光部6からの単色光は、透光部
材3及び光学フィルタ7を介して受光部8で受光され
る。9は測定部2の両側に嵌め込んだ石英ガラスの押え
板である。
Reference numeral 4 denotes an inflow section of the measurement liquid flow path 11 connected to the measurement section 2. The measurement liquid flows continuously from the inflow section 4 and is discharged from the discharge section 5 on the opposite side. A light emitting unit 6 provided with a light source such as a mercury lamp on one side outside of the measuring unit 2
And an optical filter 7 and a light receiving section 8 on the outside on the opposite side.
Is installed. The monochromatic light from the light emitting unit 6 is received by the light receiving unit 8 via the light transmitting member 3 and the optical filter 7. Reference numeral 9 denotes a quartz glass pressing plate fitted on both sides of the measuring section 2.

【0015】測定セル1は、計測する液体が腐食性の強
いものである場合は耐食性のある樹脂で少なくとも表面
成形した管路および測定部を形成ることができる。例え
ば、一般的に知られる耐蝕性を有するフッ素樹脂とし
て、ポリエチレンテトラフルオロエチレンテトラフルオ
ロエチレンーパーフルオロアルキルビニルエーテル重合
体(PFA)、ポリフッ化ビニリデン(PVDF)、ポ
リテトラフルオロエチレン(PTFE)、ポリフッ化ビ
ニル(PVF)等を用いることができる。
When the liquid to be measured is highly corrosive, the measuring cell 1 can form at least a pipe and a measuring part whose surface is formed of a corrosion-resistant resin. For example, generally known fluororesins having corrosion resistance include polyethylene tetrafluoroethylene tetrafluoroethylene-perfluoroalkyl vinyl ether polymer (PFA), polyvinylidene fluoride (PVDF), polytetrafluoroethylene (PTFE), and polyfluoride. Vinyl (PVF) or the like can be used.

【0016】なお、上述の測定セルは、光源と受光部の
受光素子との組み合わせにより、光学的に測定液の濃度
を検出しているが、光源の代わりに超音波発振装置(不
図示)を設け、受光部を超音波センサ(不図示)で形成
すれば、超音波方式による測定液の液濃度を測定するこ
とができる。
Although the above-mentioned measuring cell optically detects the concentration of the measuring liquid by a combination of a light source and a light receiving element of a light receiving section, an ultrasonic oscillator (not shown) is used instead of the light source. If the light receiving unit is provided with an ultrasonic sensor (not shown), the liquid concentration of the measurement liquid can be measured by an ultrasonic method.

【0017】次に、上記の測定セルを用いた本発明の液
濃度測定装置について説明する。
Next, a liquid concentration measuring apparatus of the present invention using the above-mentioned measuring cell will be described.

【0018】本発明の液濃度検出では、実験により、測
定セルで液濃度を測定する際に、大きな気泡が測定誤差
の発生の原因になり、小さな気泡は測定誤差への影響は
無いことを確認しているので、測定液に混入している大
きな気泡を気泡調整手段により除去している。
In the liquid concentration detection of the present invention, it was confirmed by experiments that large bubbles caused measurement errors when measuring the liquid concentration in the measuring cell, and small bubbles had no effect on the measurement errors. Therefore, large bubbles mixed in the measurement liquid are removed by the bubble adjusting means.

【0019】図3は、第1の実施の形態を示す洗浄装置
に接続した液濃度測定装置の構成を示すブロック図であ
り、図4は同気液分離塔の模式図である。
FIG. 3 is a block diagram showing a configuration of a liquid concentration measuring device connected to the cleaning device according to the first embodiment, and FIG. 4 is a schematic diagram of the gas-liquid separation column.

【0020】すなわち、濃度測定装置30aは洗浄装置
15へ洗浄液(測定液)を供給する管路pの途中に気泡
調整手段として気液分離塔16が設けられている。ま
た、気液分離塔16は、図4に示すように上下に出力側
の管路pが設けられており、上方の管路pがプレッシャ
レギュレータ17と接続し、下方の管路pが測定セル1
の入力側に接続している。測定セル1の出力側は管路p
により洗浄装置15に接続している。
That is, in the concentration measuring device 30a, a gas-liquid separation tower 16 is provided as a bubble adjusting means in the middle of a pipe p for supplying a cleaning liquid (measurement liquid) to the cleaning device 15. As shown in FIG. 4, the gas-liquid separation tower 16 is provided with upper and lower output pipes p, the upper pipe p is connected to the pressure regulator 17, and the lower pipe p is connected to the measurement cell. 1
Connected to the input side of The output side of the measuring cell 1 is a pipe p
Is connected to the cleaning device 15 by means of.

【0021】これらの構成により、洗浄装置15に供給
するために管路pを流れてきた大小の気泡が混入してい
る洗浄液は気液分離塔16に流入する。この場合、気液
分離塔16内での液位は流入口18より下方に設けられ
ているので、気液分離塔16内に流入した洗浄液は気液
分離塔16内で矢印Aで示すように空中(気体中)から
落下する経路を通る。
With these configurations, the cleaning liquid mixed with large and small bubbles flowing through the pipe p to be supplied to the cleaning device 15 flows into the gas-liquid separation tower 16. In this case, since the liquid level in the gas-liquid separation tower 16 is provided below the inflow port 18, the cleaning liquid flowing into the gas-liquid separation tower 16 is, as shown by an arrow A, in the gas-liquid separation tower 16. It passes through a path that falls from the air (in the gas).

【0022】気液分離塔16の塔内は、プレッシャレギ
ュレータ17により圧力が所定圧力に制御されているの
で、塔内の気体は一定の高圧環境であるので、気体中を
落下している洗浄液に混入している大きな気泡は高圧に
より破裂して小さな気泡に分解し、洗浄液に混入してい
た大きな気泡が消滅する。その状態の洗浄液が測定セル
1に入力される。
Since the pressure inside the gas-liquid separation tower 16 is controlled to a predetermined pressure by the pressure regulator 17, the gas in the tower is in a constant high-pressure environment. The large air bubbles that have entered are ruptured by high pressure and decomposed into small air bubbles, and the large air bubbles that have entered the cleaning liquid disappear. The cleaning liquid in that state is input to the measurement cell 1.

【0023】測定セル1に入力された大きな気泡が除去
された洗浄液は、図2に構成を示したように、セル本体
1の測定部2に流入部4から流入し、反対側の排出部5
より排出する。この測定部2を通過するとき発光部6か
らの単色光の光束が洗浄液を通過して光学フィルタ7を
通過して受光部8に受光され、検出回路に入力される。
それにより洗浄液の液濃度が測定される。
The cleaning liquid from which large air bubbles have been removed, which has been input into the measuring cell 1, flows into the measuring section 2 of the cell body 1 from the inflow section 4 and is discharged to the opposite discharge section 5 as shown in FIG.
Discharge more. When passing through the measuring section 2, the light flux of monochromatic light from the light emitting section 6 passes through the cleaning liquid, passes through the optical filter 7, is received by the light receiving section 8, and is input to the detection circuit.
Thereby, the concentration of the cleaning liquid is measured.

【0024】次に、本発明の液濃度測定装置の第2の実
施の形態について説明する。
Next, a description will be given of a second embodiment of the liquid concentration measuring apparatus according to the present invention.

【0025】図5は第2の実施の形態を示す洗浄装置に
接続した液濃度測定装置の構成を示すブロック図であ
り、図6(a)および(b)は気泡攪拌部の断面図であ
り、図6(c)はその模式断面斜視図である。すなわ
ち、濃度測定装置30bは洗浄装置15へ洗浄液を供給
する管路pの測定セル1の手前に気泡調整手段として気
泡攪拌部21が設けられている。
FIG. 5 is a block diagram showing a configuration of a liquid concentration measuring device connected to a cleaning device according to a second embodiment, and FIGS. 6A and 6B are cross-sectional views of a bubble stirring section. FIG. 6C is a schematic cross-sectional perspective view thereof. That is, the concentration measuring device 30b is provided with the bubble agitating section 21 as a bubble adjusting means in front of the measuring cell 1 in the conduit p for supplying the cleaning liquid to the cleaning device 15.

【0026】また、気泡攪拌部21は、図6(a)、
(b)および(c)に示すように、スターティックミキ
サ方式で、洗浄水が流れる管路p内に、仕切り板22
a、22bが相互に90度位相で洗浄液の流れの方向に
沿って隣接して設けられている。この仕切り板22a、
22bの断面形状は、図6(a)に示したように、緩や
かなS字状の捩れた曲面に形成されており、仕切り板2
2a、22bは、相互に90度位相がずれた組合わせが
一対になっている。図6(b)に示したものはその変形
例で、仕切り板22a、22cはS字状の捩れた曲面の
捩れ方向が、相互に反対に形成されている。
In addition, the bubble stirring section 21 is provided in FIG.
As shown in (b) and (c), in a static mixer system, a partition plate 22 is provided in a pipe p through which washing water flows.
a and 22b are provided adjacent to each other along the direction of the flow of the cleaning liquid at a phase of 90 degrees. This partition plate 22a,
As shown in FIG. 6A, the sectional shape of the partition plate 22b is a gentle S-shaped twisted curved surface.
As for 2a and 22b, a combination in which the phases are shifted from each other by 90 degrees is a pair. FIG. 6 (b) shows a modification thereof, in which the partition plates 22a and 22c are formed so that the twisted directions of the S-shaped twisted curved surfaces are opposite to each other.

【0027】気泡攪拌部21は、これらの仕切り板22
a、22bを何対か用いて、洗浄液の流れの方向に連続
的に並べ、2〜5段程度の多段にして形成している。ま
た、仕切り板22a、22b、22cの材質は、ポリテ
トラフルオロエチレン(PTFE)等が用いられてい
る。
The bubble stirring section 21 is provided with these partition plates 22
Using a plurality of pairs of a and 22b, they are continuously arranged in the flow direction of the cleaning liquid, and are formed in multiple stages of about 2 to 5 stages. Further, polytetrafluoroethylene (PTFE) or the like is used as a material of the partition plates 22a, 22b, and 22c.

【0028】この気泡攪拌部21の出力側は測定セル1
の入力側に接続している。測定セル1の出力側は管路p
により洗浄装置15に接続している。
The output side of the bubble stirrer 21 is connected to the measuring cell 1
Connected to the input side of The output side of the measuring cell 1 is a pipe p
Is connected to the cleaning device 15 by means of.

【0029】これらの構成により、洗浄装置15に供給
するために管路pを流れてきた大小の気泡が混入してい
る洗浄液は気泡攪拌部21に流入する。この場合、気泡
攪拌部21では、まず、洗浄液は管路p内の仕切り板2
2a、で仕切られた一方側に流入するため、管路pの断
面積が狭くなり、また、仕切り板22a、22bは、断
面が緩やかなS字状であるので、流れる洗浄液はそれに
沿って流動する際に攪拌されて洗浄液に圧力がかかる。
この動作が仕切り板22a、22b、22cの位相のず
れにより繰り返される。それらによる圧力により、洗浄
液に混入している大きな気泡は破裂して小さな気泡に分
解し、洗浄液に混入していた大きな気泡が消滅する。そ
の状態の洗浄液が測定セル1に入力される。
With these configurations, the cleaning liquid containing large and small bubbles flowing through the pipe p to be supplied to the cleaning device 15 flows into the bubble stirring section 21. In this case, in the bubble stirring section 21, first, the cleaning liquid is supplied to the partition plate 2 in the pipe p.
2a), the cross-sectional area of the conduit p is reduced, and the partition plates 22a and 22b have a gentle S-shaped cross section. When the cleaning is performed, pressure is applied to the cleaning liquid.
This operation is repeated due to the phase shift of the partition plates 22a, 22b, 22c. Due to these pressures, large air bubbles mixed in the cleaning liquid burst and break down into small air bubbles, and the large air bubbles mixed in the cleaning liquid disappear. The cleaning liquid in that state is input to the measurement cell 1.

【0030】測定セル1に入力された大きな気泡が除去
された洗浄液は、図2に構成を示したように、セル本体1
の測定部2に流入部4から洗浄液を流入させ、反対側の
排出部5より排出する。この測定部2を通過するとき発
光部6からの単色光の光束が洗浄液を通過して光学フィ
ルタ7を通過して受光部8に受光され、検出回路に入力
される。それにより洗浄液の液濃度が測定される。
The cleaning liquid from which large air bubbles have been removed and which has been input into the measuring cell 1 is, as shown in FIG.
The cleaning liquid flows into the measuring section 2 from the inflow section 4 and is discharged from the discharge section 5 on the opposite side. When passing through the measuring section 2, the light flux of monochromatic light from the light emitting section 6 passes through the cleaning liquid, passes through the optical filter 7, is received by the light receiving section 8, and is input to the detection circuit. Thereby, the concentration of the cleaning liquid is measured.

【0031】なお、上述の第1および第2の実施の形態
では、いずれも液濃度測定装置を洗浄装置の入力側(洗
浄液の流入側)に設けたが、洗浄装置の出力側(洗浄液
の排出側)に設けて、排出液の濃度の測定による洗浄装
置の管理を行なうこともできる。また、この場合、洗浄
装置からの廃水処理の管理にも適用することができる。
In the first and second embodiments described above, the liquid concentration measuring device is provided on the input side (inflow side of the cleaning liquid) of the cleaning apparatus, but the output side of the cleaning apparatus (discharge of the cleaning liquid). Side) to control the cleaning device by measuring the concentration of the discharged liquid. In this case, the present invention can also be applied to the management of wastewater treatment from a cleaning device.

【0032】また、洗浄装置の洗浄槽に測定用の管路を
設けて、それに液濃度測定装置を接続することにより液
濃度を測定することもできる。
Further, it is also possible to measure the liquid concentration by providing a measuring conduit in the cleaning tank of the cleaning device and connecting a liquid concentration measuring device thereto.

【0033】また、上述の各実施の形態では、洗浄装置
における洗浄液を測定対象としたが、その他の装置で
も、また、液体であればどのような液体であっても同様
に液濃度を測定することができる。
Further, in each of the above-described embodiments, the cleaning liquid in the cleaning apparatus is measured. However, the liquid concentration is similarly measured in other apparatuses and in the case of any liquid. be able to.

【0034】また、気泡調整手段としては、上述の各実
施の形態に用いたもの以外のものでも、大きな気泡を除
去できるものであれば、その他の脱泡手段等を用いるこ
ともできる。
As the bubble adjusting means, other than those used in the above-described embodiments, other defoaming means can be used as long as large air bubbles can be removed.

【0035】[0035]

【発明の効果】本発明によれば、測定液体中の大きな気
泡を除去し、液体の濃度を正確に測定することができ
る。
According to the present invention, large bubbles in the measurement liquid can be removed, and the concentration of the liquid can be accurately measured.

【図面の簡単な説明】[Brief description of the drawings]

【図1】測定セルの斜視図。FIG. 1 is a perspective view of a measurement cell.

【図2】測定セルの構成図。FIG. 2 is a configuration diagram of a measurement cell.

【図3】本発明の第1の実施の形態の液濃度測定装置の
模式図。
FIG. 3 is a schematic diagram of a liquid concentration measuring device according to the first embodiment of the present invention.

【図4】気液分離塔の断面図。FIG. 4 is a sectional view of a gas-liquid separation tower.

【図5】本発明の第2の実施の形態の液濃度測定装置の
ブロック図。
FIG. 5 is a block diagram of a liquid concentration measurement device according to a second embodiment of the present invention.

【図6】(a)から(c)は気泡攪拌部の説明図。FIGS. 6A to 6C are explanatory diagrams of a bubble stirring unit.

【符号の説明】[Explanation of symbols]

1…測定セル、2…測定部、11…測定流路、16…気
液分離塔、17…プレッシャレギュレータ、21…気泡
攪拌部、22a、22b…仕切り板、30a…濃度測定
装置、30b…濃度測定装置
DESCRIPTION OF SYMBOLS 1 ... Measurement cell, 2 ... Measurement part, 11 ... Measurement flow path, 16 ... Gas-liquid separation tower, 17 ... Pressure regulator, 21 ... Bubble stirring part, 22a, 22b ... Partition plate, 30a ... Concentration measuring device, 30b ... Concentration measuring device

───────────────────────────────────────────────────── フロントページの続き (72)発明者 速水 直哉 神奈川県横浜市磯子区新磯子町33番地 株 式会社東芝生産技術センター内 (72)発明者 後藤 満 東京都八王子市小宮町934−11 株式会社 アプリクス内 (72)発明者 希代 誠 東京都八王子市小宮町934−11 株式会社 アプリクス内 (72)発明者 野口 恭 東京都八王子市小宮町934−11 株式会社 アプリクス内 (72)発明者 岡崎 仁 東京都八王子市小宮町934−11 株式会社 アプリクス内 Fターム(参考) 2G047 AA01 AD05 BC15 2G057 AA01 AB06 AC01 AD02 AD17 BA05 BB06 DB05 DC07 2G059 AA01 BB04 DD02 DD05 DD12 EE01 JJ02 KK01 NN01  ──────────────────────────────────────────────────続 き Continued on the front page (72) Inventor Naoya Hayami 33, Shinisogo-cho, Isogo-ku, Yokohama-shi, Kanagawa Prefecture Inside the Toshiba Production Technology Center (72) Inventor Mitsuru Goto 934-11, Komiyacho, Hachioji-shi, Tokyo (72) Inventor Makoto Kiyo 934-11 Komiyacho, Hachioji-shi, Tokyo Aplix Inc. (72) Inventor Takashi Noguchi 934-11 Komiyacho, Hachioji-shi, Tokyo Aplix Inc. (72) Inventor Hitoshi Okazaki 934-11 Komiyacho, Hachioji-shi, Tokyo F-Terms in Aplix Corporation 2G047 AA01 AD05 BC15 2G057 AA01 AB06 AC01 AD02 AD17 BA05 BB06 DB05 DC07 2G059 AA01 BB04 DD02 DD05 DD12 EE01 JJ02 KK01 NN01

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】 測定液を測定セル内に流入させて、流入
した前記測定液に光又は超音波を照射し、その透過した
光又は超音波を検出して前記測定液の濃度を測定する液
濃度測定装置において、 前記測定セルへ測定液を流入させ前記測定液に混入され
ている気泡を細かく粉砕する気泡調整手段が設けられて
いることを特徴とする液濃度測定装置。
1. A liquid for flowing a measuring liquid into a measuring cell, irradiating the flowing measuring liquid with light or ultrasonic waves, detecting the transmitted light or ultrasonic waves, and measuring the concentration of the measuring liquid. In a concentration measuring apparatus, a liquid concentration measuring apparatus is provided, wherein a bubble adjusting means for flowing a measuring liquid into the measuring cell and finely pulverizing bubbles mixed in the measuring liquid is provided.
【請求項2】 前記気泡調整手段は、プレッシャレギュ
レータに接続した気液分離塔であることを特徴とする請
求項1記載の液濃度測定装置。
2. The liquid concentration measuring device according to claim 1, wherein said bubble adjusting means is a gas-liquid separation tower connected to a pressure regulator.
【請求項3】 前記気泡調整手段は、前記管路内に設け
られた気泡攪拌部であることを特徴とする請求項1記載
の液濃度測定装置。
3. The liquid concentration measuring device according to claim 1, wherein said bubble adjusting means is a bubble stirring section provided in said conduit.
JP2000215916A 2000-07-17 2000-07-17 Liquid concentration measuring device Pending JP2002031596A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2000215916A JP2002031596A (en) 2000-07-17 2000-07-17 Liquid concentration measuring device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2000215916A JP2002031596A (en) 2000-07-17 2000-07-17 Liquid concentration measuring device

Publications (1)

Publication Number Publication Date
JP2002031596A true JP2002031596A (en) 2002-01-31

Family

ID=18711267

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000215916A Pending JP2002031596A (en) 2000-07-17 2000-07-17 Liquid concentration measuring device

Country Status (1)

Country Link
JP (1) JP2002031596A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104865393A (en) * 2014-02-26 2015-08-26 王军 Degassing on-line continuous liquid detection tank
CN106896155A (en) * 2017-04-14 2017-06-27 深圳市盛泽森科技有限公司 Concussion and degasification bubble structure and ultrasonic liquid concentration determination device

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104865393A (en) * 2014-02-26 2015-08-26 王军 Degassing on-line continuous liquid detection tank
CN106896155A (en) * 2017-04-14 2017-06-27 深圳市盛泽森科技有限公司 Concussion and degasification bubble structure and ultrasonic liquid concentration determination device
CN106896155B (en) * 2017-04-14 2023-09-12 广东正扬传感科技股份有限公司 Vibration and bubble removing structure and ultrasonic liquid concentration testing device

Similar Documents

Publication Publication Date Title
US5820823A (en) Method and apparatus for the measurement of dissolved carbon
KR20090071597A (en) Devices, systems, and methods for carbonation of deionized water
CA2970013C (en) Fluid distribution device for a gas-liquid contactor, gas-liquid contactor, and method for adding a gas to a liquid
CN102986008A (en) Devices, systems, and methods for carbonation of deionized water
WO2001051187A1 (en) Ozone treating apparatus
JPH0868746A (en) Flow cell for measuring transmitted light
JP2002031596A (en) Liquid concentration measuring device
TW200414343A (en) Wet etching chemical mixing system
JP2001153828A (en) Method and device for measuring organic carbon content
US6734021B1 (en) Method and apparatus for measuring organic carbon content
WO2022193641A1 (en) Microfluidic ion detection chip having bubble brightening structure, and ion detection method
JP4594788B2 (en) Disinfection water production equipment
JP2004089871A (en) Hydrogen water manufacturing apparatus and manufacturing method
Zhang et al. The effect of sharp-edge acoustic streaming on mixing in a microchannel
JP4253914B2 (en) Gas dissolution cleaning water evaluation device
JP2002071647A (en) Dissolved gas concentration meter, and washing device and method
Van Gauwbergen et al. Assessment of the design parameters for wastewater treatment by reverse osmosis
JP2000046728A (en) Corrosion-resistant cell for optical analysis
JP2701760B2 (en) Chemical composition monitor
JP2533460Y2 (en) Substrate cleaning device
JP2008224273A (en) Liquid sample flow cell
JP2005189207A (en) Substrate treatment device, and treating liquid concentration measuring instrument used therefor
JP2005055386A (en) Flow cell for biosensor
JPS5851218B2 (en) Yubun-no-do-sokutei-souchi
AU665907B2 (en) Device for measuring dissolved oxygen demand