JPS5851218B2 - Yubun-no-do-sokutei-souchi - Google Patents

Yubun-no-do-sokutei-souchi

Info

Publication number
JPS5851218B2
JPS5851218B2 JP50125877A JP12587775A JPS5851218B2 JP S5851218 B2 JPS5851218 B2 JP S5851218B2 JP 50125877 A JP50125877 A JP 50125877A JP 12587775 A JP12587775 A JP 12587775A JP S5851218 B2 JPS5851218 B2 JP S5851218B2
Authority
JP
Japan
Prior art keywords
oil
emulsification
white liquid
optical cell
degree
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP50125877A
Other languages
Japanese (ja)
Other versions
JPS5250293A (en
Inventor
光由 岡田
武彦 佐藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Azbil Corp
Original Assignee
Azbil Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Azbil Corp filed Critical Azbil Corp
Priority to JP50125877A priority Critical patent/JPS5851218B2/en
Publication of JPS5250293A publication Critical patent/JPS5250293A/en
Publication of JPS5851218B2 publication Critical patent/JPS5851218B2/en
Expired legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N15/00Investigating characteristics of particles; Investigating permeability, pore-volume, or surface-area of porous materials
    • G01N15/06Investigating concentration of particle suspensions

Description

【発明の詳細な説明】 本発明は油分含有排水中の油分濃度を測定する濃度測定
装置において、油分以外の懸濁物の影響を摩り除き、油
分濃度のみを連続的に測定する油分濃度測定装置に関す
る。
DETAILED DESCRIPTION OF THE INVENTION The present invention provides an oil concentration measuring device for measuring oil concentration in oil-containing wastewater, which removes the influence of suspended matter other than oil and continuously measures only the oil concentration. Regarding.

光学セル内の試料に光を照射し、この透過光または散乱
光を利用する濁度方式の油分濃度別]定力式においては
、ゴミ、塵芥などの円型浮遊物(Suspended
5olid以下SSと呼ぶ)による濁度成分が油分濃度
の出力信号に影響するため、これによる誤差を防止する
ことが要請されていた。
The turbidity method, which irradiates light onto the sample in an optical cell and uses the transmitted light or scattered light, determines oil concentration.
Since the turbidity component caused by the turbidity (less than 5 solids referred to as SS) affects the output signal of the oil concentration, it has been required to prevent errors caused by this.

従来、この一つの解決方法として特公昭43−3754
および特公昭47−26859号公報に示されるごとく
、試料水の非乳化時の濁度と乳化後の濁度を求め両者の
差を検知する方法が知られている。
Conventionally, one solution to this problem was the
As shown in Japanese Patent Publication No. 47-26859, a method is known in which the turbidity of a sample water before emulsification and the turbidity after emulsification are determined and the difference between the two is detected.

しかしながら、検出される濁度活量は指数関数的に変化
するため単に差の演算のみではSSの影響を除斥するこ
とは困難である。
However, since the detected turbidity activity changes exponentially, it is difficult to exclude the influence of SS by simply calculating the difference.

本発明は、油分含有排水から時間差をおいて乳化状態の
異なる二種の乳化液を作り、それぞれの透過光強度を測
定し、両透過光強度の比を演算することにより、浮遊物
SSに影響されない油分濃度に対応する信号を計量する
測定装置を供給するものである。
The present invention creates two types of emulsions with different emulsification states with a time lag from oil-containing wastewater, measures the transmitted light intensity of each, and calculates the ratio of both transmitted light intensities, thereby affecting floating solids SS. The purpose of the present invention is to provide a measuring device that measures a signal corresponding to the oil concentration that is not detected.

以下図面とともに本発明の一実施例を説明する。An embodiment of the present invention will be described below with reference to the drawings.

第1図は、本発明の一実施例装置の測光部の構成を示す
図である。
FIG. 1 is a diagram showing the configuration of a photometry section of an apparatus according to an embodiment of the present invention.

同図中、1は透明ガラスから成る円筒状光学セルであり
、その内部を乳化された試料液AまたはBが通過する。
In the figure, 1 is a cylindrical optical cell made of transparent glass, through which emulsified sample liquid A or B passes.

2は光源であって、光学セル1内の試料液AまたはBに
照射され、その対抗する位置に光電管3が配置され、透
過光強度を感知する。
A light source 2 irradiates the sample liquid A or B in the optical cell 1, and a phototube 3 is placed opposite the light source to sense the intensity of the transmitted light.

4は超音波乳化器であって、電源P1またはP2からの
電力によって駆動される。
4 is an ultrasonic emulsifier, which is driven by power from power source P1 or P2.

この電源は周期的に高電力P1および低電力P’2を交
互に供給できるように構成される。
This power supply is configured to periodically alternately supply high power P1 and low power P'2.

この電源によって磁歪振動子5が励振され、伝達体7に
よって排水試料中の油分が微細に粒子化される。
The magnetostrictive vibrator 5 is excited by this power supply, and the oil in the wastewater sample is made into fine particles by the transmitter 7.

傾斜管17は試料を集中するためのもので、配管13に
入った試料はこの傾斜管17と伝達体7の間隙を通って
空胴7に送られ、再び二次乳化されたあと光学セル1に
連続的に送られる。
The inclined tube 17 is for concentrating the sample, and the sample that has entered the pipe 13 is sent to the cavity 7 through the gap between the inclined tube 17 and the transmitter 7, and after being secondary emulsified again, it is sent to the optical cell 1. are sent continuously.

10は薄膜であって、直接空胴9に連通させないように
するものである。
10 is a thin film that prevents direct communication with the cavity 9.

12はポンプであって、配管11から入る排水試料を一
定圧で乳化器4に配送するために用いられる。
A pump 12 is used to deliver the wastewater sample entering from the pipe 11 to the emulsifier 4 at a constant pressure.

このように構成される測光の動作を第2図および第3図
とともに説明する。
The operation of photometry configured in this way will be explained with reference to FIGS. 2 and 3.

第2図は、電源P1およびP2と油分の乳化度を示す’
!図である。
Figure 2 shows power sources P1 and P2 and the degree of emulsification of oil.
! It is a diagram.

ポンプ12によって一定圧で送られてくる油分含有排水
は、初めの一定期間を電源の低電力P2によって駆動さ
れる。
The oil-containing waste water sent at a constant pressure by the pump 12 is driven by the low power P2 of the power source for an initial fixed period.

試料は所定の過渡(transient)時間を経て乳
化状態Bの定常(static)状態に移る。
The sample moves to the static state of emulsification state B after a predetermined transient time.

その後短時間を経て、電源は高電力P1を供給されるよ
うに構成されているので、試料液の乳化度は高められ、
油分は低電力P2が供給されている時に比し、さらに微
細粒子化される。
After a short period of time, the power source is configured to supply high power P1, so that the degree of emulsification of the sample liquid is increased,
The oil content is made into finer particles than when the low power P2 is supplied.

この高電力P1が供給されてから所定の過渡時間を経て
乳化状態Aの定常状態に移る。
After this high power P1 is supplied, a predetermined transition time passes and the emulsification state A shifts to a steady state.

このように電源電力の高低によって試料中の油分はその
乳化度合に変化を受け、第2図に示すように起伏を生ず
る。
In this way, the degree of emulsification of the oil in the sample changes depending on the level of power supply, causing undulations as shown in FIG.

さらにこの起伏は排水試料液中の油分の濃度によっても
大きな起伏をの影響を受ける。
Furthermore, this undulation is greatly affected by the concentration of oil in the wastewater sample.

このように作られた二種類の乳化状態AおよびBは電源
電力の高低を周期的に繰り返すことにより、それに応じ
て交互に表われる。
The two types of emulsified states A and B thus created appear alternately by periodically repeating the high and low levels of the power supply.

このような油分の乳化度の変化は、夫々の乳化試料Aお
よびBを透過する透過光強度にも影響を与え、試料Aお
よびBに対応する光信号Saおよびsbも形態の異なる
透過光強度を示す。
Such a change in the degree of emulsification of oil also affects the intensity of transmitted light passing through each emulsified sample A and B, and the optical signals Sa and sb corresponding to samples A and B also have different forms of transmitted light intensity. show.

排水試料液中に、油分以外の浮遊物SSが混入した状態
で、試料液AおよびBの濁度を測定すると、光学セル1
を通過した透過光強度JIA(X)およびIB(X)は
、油分濃度をX、浮遊物SSの濃度をYとして、IA(
X)=に−IC−Y−10−(αX+βY) −−−−
−−(1)IB(X)=に’、l0−Y−10(α″+
β’ Y) −−−−−−(2)と表わせる。
When measuring the turbidity of sample liquids A and B with suspended matter SS other than oil mixed in the wastewater sample liquid, optical cell 1
The transmitted light intensities JIA (X) and IB (X) that have passed through are expressed as IA (
X) = -IC-Y-10-(αX+βY) -----
--(1) IB(X) = ni', l0-Y-10(α″+
β′ Y) −−−−−−(2).

ここでαおよびα′:試料試料上びBの乳化度を示す比
例係数 におよびに′:セルの汚れ、試料液着色によるパラメー
タ βおよびβ’:ssの形態によって決る比例係数Y :
受光素子の感度 ■o二人射光強度 パラメータにおよびに′は試料液AおよびBを1つの光
学セル1によって、また比例係数βおよびβ′は固型浮
遊物であり乳化器自体には影響されない量であり、短期
間内では実質的に等価な量と看做せる。
Here, α and α′ are proportional coefficients indicating the degree of emulsification of the sample samples A and B, and N′: parameters due to cell contamination and sample liquid coloring β and β′: proportional coefficient Y determined by the form of ss:
Sensitivity of the light-receiving element ■ o and ' are the two incoming light intensity parameters, and the proportional coefficients β and β' are solid suspensions and are not affected by the emulsifier itself. It can be regarded as a substantially equivalent amount within a short period of time.

測定しているので実質的に等価と看做せる。Since they are measured, they can be considered substantially equivalent.

比例係数αおよびα′は、それぞれ電源電力P1および
P2に対応して表わされる乳化能力の差を示すので、設
計の必要に応じて電力レベルを任意に変化し得るもので
ある。
Since the proportionality coefficients α and α' indicate the difference in emulsifying ability corresponding to the power supplies P1 and P2, respectively, the power levels can be changed arbitrarily according to the needs of the design.

ここで、この二つの光信号Saおよびsbに相当する透
過光強9度IA(x)およびIB(x)の比Itを演算
すると、式(1)および式(2)より と表わせる。
Here, when the ratio It of the transmitted light intensities 9 degrees IA(x) and IB(x) corresponding to these two optical signals Sa and sb is calculated, it can be expressed as follows from equations (1) and (2).

したがって、もし乳化器4の供給電力による油分の乳化
度合を予め較正しておけば、比例係数αおよびα′は既
知量として把握できる。
Therefore, if the degree of emulsification of oil based on the power supplied to the emulsifier 4 is calibrated in advance, the proportional coefficients α and α' can be grasped as known quantities.

すなわち式(3)からも明らかなように、乳化状態の異
なる二種類の試料を作り、夫々の透過光強度の比を演算
しさえすれは、浮遊物SSによる誤差分を除去した油分
濃度の測定が容易にできる。
In other words, as is clear from equation (3), as long as two types of samples with different emulsification states are prepared and the ratio of their respective transmitted light intensities is calculated, the oil concentration can be measured with the error caused by suspended solids SS removed. can be easily done.

第3図はこの演算の過程を示す回路ブロック図である。FIG. 3 is a circuit block diagram showing the process of this calculation.

第1図の光電管16の出力から与えられる光信号Saお
よびsbは時間差をもって増巾器20で増巾され、弁別
器21によって信号Saか信号sbかを判別する。
Optical signals Sa and sb given from the output of the phototube 16 in FIG. 1 are amplified by an amplifier 20 with a time difference, and a discriminator 21 discriminates whether the signal Sa or the signal sb.

すなわち、電源の高電力P1が乳化器4に供給されてい
るときは光信号Saが、また低電力P2が供給されてい
るときは光信号sbが対応するように電源の電力切換信
号が同期信号22として弁別器21に供給して行う。
That is, the power switching signal of the power source is a synchronization signal so that when the high power P1 of the power source is supplied to the emulsifier 4, the optical signal Sa corresponds to the optical signal Sa, and when the low power P2 is supplied, the optical signal sb corresponds. 22 to the discriminator 21.

一方、光信号Saによる濁度信号はホールド回路23に
、また光信号sbによる濁度信号はホールド回路24に
それぞれ送られ保持される。
On the other hand, the turbidity signal based on the optical signal Sa is sent to the hold circuit 23, and the turbidity signal based on the optical signal sb is sent to the hold circuit 24 and held.

この二つの保持信号はさらに積分器25および26を経
てその出力を比演算回路27で演算され、式(3)に対
応した量の出力信号が送出される。
These two held signals further pass through integrators 25 and 26, and their outputs are calculated by a ratio calculation circuit 27, and an output signal of an amount corresponding to equation (3) is sent out.

油分濃exを直接記録し指示するため変換器28を経て
記録計29および指示計30で表示される。
In order to directly record and indicate the oil concentration EX, it is displayed on a recorder 29 and an indicator 30 via a converter 28.

第3図は、このように測定することによって得られる油
分濃度に対する濁度信号比Itの関係を示す特性図であ
る。
FIG. 3 is a characteristic diagram showing the relationship between the turbidity signal ratio It and the oil concentration obtained by measuring in this way.

この場合、乳化器3が乳化器4より乳化度が大きいとき
、すなわち、α〉α′であるときは、式(3)によれは
、対数変換量1ogItは正の傾きを持つ一次関数とな
る。
In this case, when emulsifier 3 has a higher degree of emulsification than emulsifier 4, that is, when α>α', according to equation (3), the logarithmic conversion amount 1ogIt becomes a linear function with a positive slope. .

したがって、浮遊物SSの量のいかんに拘らず、油分の
乳化度の異った二つの乳化試料AおよびBを作りさえす
れは、油分濃度の測定が可能となることが判る。
Therefore, it can be seen that regardless of the amount of suspended solids SS, the oil concentration can be measured as long as two emulsion samples A and B with different degrees of oil emulsification are prepared.

述上のごとく、本発明によれば、油分含有排水を試料と
し、この一つの試料から所定の時間間隔をおいて排水中
の油分の乳化状態の異なる二つの乳化白濁液を周期的に
生ぜしめ、この両試料の透過光強度の比を算出すること
により、固型浮遊物による濁度成分を除去した油分濃度
に対応する信号が直接得られる利点がある。
As described above, according to the present invention, oil-containing wastewater is taken as a sample, and two emulsified white liquids with different emulsification states of the oil in the wastewater are periodically produced from this single sample at predetermined time intervals. By calculating the ratio of the transmitted light intensities of these two samples, there is an advantage that a signal corresponding to the oil concentration from which turbidity components due to solid suspended matter have been removed can be directly obtained.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の一実施例装置の概略構成図で、第2図
で同装置で測定される試料液の変化状態を示す%性図を
示し、さらに第3図は同装置によって油分濃゛度を測定
するための回路構成を示すブロック図である。 1・・・・・・光学セル 2・・・・・・光源、3・・
・・・・光電管、4・・・・・・乳化器。
Fig. 1 is a schematic diagram of an apparatus according to an embodiment of the present invention, Fig. 2 shows a percentage diagram showing the state of change in a sample liquid measured by the apparatus, and Fig. 3 shows an oil concentration diagram using the same apparatus. FIG. 2 is a block diagram showing a circuit configuration for measuring degrees. 1... Optical cell 2... Light source, 3...
...Phototube, 4...Emulsifier.

Claims (1)

【特許請求の範囲】[Claims] 1 油分含有排水を乳化させて乳化白濁液となし、この
乳化白濁液の乳化度合に応じて変化する濁度の測定値に
もとづいて上記油分含有排水の油分濃度を測定する油分
濃度測定装置において、単一の光学セルと、この光学セ
ルに周期的に乳化度の異なる乳化白濁液を供給するため
の乳化装置と、上記光学セル内の乳化白濁液の透過光強
度を検出する受光素子と、上記光学セル内の乳化白濁液
が第1の乳化度にあるとき、および第2の乳化度にある
ときにそれぞれ上記受光素子の出力をホールドする2つ
のホールド回路と、各ホールド回路のホールド値の比を
演算する比率演算回路とを備えた油分濃度測定装置。
1. An oil concentration measuring device that emulsifies oil-containing wastewater to form an emulsified white liquid and measures the oil concentration of the oil-containing wastewater based on a measured value of turbidity that changes depending on the degree of emulsification of this emulsified white liquid, a single optical cell; an emulsifying device for periodically supplying emulsified white liquid having different degrees of emulsification to the optical cell; a light receiving element that detects the intensity of transmitted light of the emulsified white liquid in the optical cell; Two hold circuits that hold the output of the light receiving element when the emulsified white liquid in the optical cell is at a first degree of emulsification and a second degree of emulsification, respectively, and the ratio of the hold values of each hold circuit. An oil concentration measuring device equipped with a ratio calculation circuit that calculates.
JP50125877A 1975-10-21 1975-10-21 Yubun-no-do-sokutei-souchi Expired JPS5851218B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP50125877A JPS5851218B2 (en) 1975-10-21 1975-10-21 Yubun-no-do-sokutei-souchi

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP50125877A JPS5851218B2 (en) 1975-10-21 1975-10-21 Yubun-no-do-sokutei-souchi

Publications (2)

Publication Number Publication Date
JPS5250293A JPS5250293A (en) 1977-04-22
JPS5851218B2 true JPS5851218B2 (en) 1983-11-15

Family

ID=14921124

Family Applications (1)

Application Number Title Priority Date Filing Date
JP50125877A Expired JPS5851218B2 (en) 1975-10-21 1975-10-21 Yubun-no-do-sokutei-souchi

Country Status (1)

Country Link
JP (1) JPS5851218B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5491292A (en) * 1977-12-28 1979-07-19 Ferro Kogyo Oil densitometer
JPS56164944A (en) * 1980-05-24 1981-12-18 Toei Denshi Kogyo Kk Measuring device for concentration of oil content
JP3714679B2 (en) * 1994-07-22 2005-11-09 シエル・インターナシヨナル・リサーチ・マートスハツペイ・ベー・ヴエー Method and apparatus for determining the concentration of a first fluid finely separated in a second fluid

Also Published As

Publication number Publication date
JPS5250293A (en) 1977-04-22

Similar Documents

Publication Publication Date Title
US4102177A (en) Densitometer
US4265535A (en) Oil-in-water method and detector
Gregory et al. Monitoring of aggregates in flowing suspensions
US4303336A (en) Method and apparatus for making a rapid measurement of the hematocrit of blood
US3691391A (en) Optical testing apparatus comprising means for flowing liquids in free fall condition at constant flow rate
KR920006030B1 (en) Method for analyzing impurities in liquid and apparatus therefor
KR960018574A (en) Method and apparatus for measuring the concentration of insoluble substances in oil
JPS5851218B2 (en) Yubun-no-do-sokutei-souchi
US4113596A (en) Method of measuring the mobility of colloids in an electrical field
US3635564A (en) System for measuring organic content of water
JPH1183761A (en) Microwave concentration measuring device
JPS595857B2 (en) Oil concentration measuring device
US4348112A (en) Method of and apparatus for measuring the volume of material in suspension in a liquid
US2633472A (en) Reagent control method and apparatus
JPH0613482Y2 (en) Oil concentration measuring device
IE913249A1 (en) METHOD AND APPARATUS FOR DETERMINING THE pH of liquids
JPS6040936A (en) Method and device for monitoring dispersion of particle in suspension
JPS59170747A (en) Concentration meter of oil content
EP0772772B1 (en) A method and apparatus for determining the concentration of a first fluid which is finely divided in a second fluid
RU2037806C1 (en) Method and device for determining the number of submicrometer particles suspended in transparent liquids
SU789079A1 (en) Device for evaluating water toxicity by fish reaction
SU1100543A1 (en) Device for measuring suspension concentration in liquid
JPS588744B2 (en) Ammonia nitrogen analysis method in water
SU1624261A1 (en) Device for measuring liquid level
SU1666924A1 (en) Liquid flow rate monitor