JP2002031579A - Method for obtaining resistivity distribution and damaged position detection method of water barrier layer - Google Patents

Method for obtaining resistivity distribution and damaged position detection method of water barrier layer

Info

Publication number
JP2002031579A
JP2002031579A JP2000216458A JP2000216458A JP2002031579A JP 2002031579 A JP2002031579 A JP 2002031579A JP 2000216458 A JP2000216458 A JP 2000216458A JP 2000216458 A JP2000216458 A JP 2000216458A JP 2002031579 A JP2002031579 A JP 2002031579A
Authority
JP
Japan
Prior art keywords
distribution
potential distribution
landfill
potential
water
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2000216458A
Other languages
Japanese (ja)
Other versions
JP4469066B2 (en
Inventor
Masaaki Ebihara
正明 海老原
Hiromitsu Ishii
弘允 石井
Takashi Ono
▲隆▼ 小野
Toshiro Oshikata
利郎 押方
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Taisei Corp
Nihon University
Original Assignee
Taisei Corp
Nihon University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Taisei Corp, Nihon University filed Critical Taisei Corp
Priority to JP2000216458A priority Critical patent/JP4469066B2/en
Publication of JP2002031579A publication Critical patent/JP2002031579A/en
Application granted granted Critical
Publication of JP4469066B2 publication Critical patent/JP4469066B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Abstract

PROBLEM TO BE SOLVED: To obtain accurately a resistivity distribution of the ground or a reclaimed land. SOLUTION: This method for obtaining the resistivity distribution of the ground or the reclaimed land is characterized by comprising a preliminary measuring process for measuring a potential distribution of the ground or the reclaimed land and a calculation process for calculating the resistivity distribution of the ground or the reclaimed land based on the potential distribution measured in the preliminary measuring process.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、地盤又は埋立地の
比抵抗分布及び遮水構造物の遮水層の損傷位置検知方法
に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for detecting a specific resistance distribution on a ground or a landfill and a method for detecting a damaged position of a water impermeable layer of a water impermeable structure.

【0002】[0002]

【従来の技術】地盤又は埋立地の比抵抗分布を求める方
法には、測定電極を密に配置して、四電極法などにより直
接測定する方法、密に配置した各測定電極の接地抵抗を
測定して測定電極周辺の比抵抗を求めることにより得る
方法がある。 また、遮水構造物である埋立地の遮水層を例にとると、従
来の遮水層の損傷位置検知方法は、電気的に高抵抗の遮
水層を挟んで設置した給電電極間(例えば、埋立地内外
間)に電流を流し、遮水層の上又は下、あるいは2重遮
水層構造の場合の遮水層間に発生する電位分布を測定す
る。そして、損傷位置を中心に発生する電位歪から遮水層
の損傷位置を検知するものであった。
2. Description of the Related Art A method of determining a specific resistance distribution of a ground or a landfill includes a method in which measurement electrodes are densely arranged and a direct measurement is performed by a four-electrode method or the like. Then, there is a method of obtaining the specific resistance around the measurement electrode. In addition, taking the impermeable layer of a landfill, which is a impermeable structure, as an example, the conventional method for detecting the damage position of the impermeable layer is a method for detecting the damage between the power supply electrodes installed between the electrically high-impedance impermeable layers. For example, a current is caused to flow between the inside and outside of the landfill, and the potential distribution generated above or below the impermeable layer or between the impermeable layers in the case of a double impermeable layer structure is measured. Then, the damaged position of the impermeable layer is detected from the potential strain generated around the damaged position.

【0003】[0003]

【本発明が解決しようとする課題】前記した従来の比抵
抗分布を求める方法にあっては、次のような問題点があ
る。 <イ>比抵抗分布を正確に直接求めるためには、測定電
極を密に配置する必要がある。このため、測定電極の設置
に費用と時間がかかる。 <ロ>測定電極を配置した範囲の端の部分の誤差が大き
くなるため、特に端の部分の電極密度を高くする必要が
ある。埋立地に適用する場合は、埋立の進行に伴い測定範
囲が広くなるため、常に端になる部分の電極が密になる
ような電極配置にするには、広い範囲で電極を密に配置
するする必要がある。 <ハ>測定範囲の形状が複雑な場合(最終処分場な
ど)、測定誤差が大きくなる問題がある。
The above-mentioned conventional method for obtaining the resistivity distribution has the following problems. <a> In order to directly obtain the specific resistance distribution accurately, the measurement electrodes need to be densely arranged. For this reason, installation of the measuring electrode requires cost and time. <B> Since the error at the end of the range where the measurement electrodes are arranged increases, it is necessary to increase the electrode density particularly at the end. When applied to landfills, the measurement range becomes wider as the landfill progresses.To arrange the electrodes so that the electrodes at the ends are always dense, arrange the electrodes densely over a wide area. There is a need. <C> When the shape of the measurement range is complicated (such as a final disposal site), there is a problem that a measurement error increases.

【0004】前記した従来の遮水層の損傷位置検知方法
にあっては、次のような問題点がある。 <イ>埋立地内に廃棄物が埋め立てられている場合は、
埋立破棄物の物質及びその分布等の不均一性によって電
位分布が影響を受ける。この結果、損傷位置を中心に発生
する電位歪も影響を受け、誤差が大きくなる場合もある。 <ロ>上記の問題は、給電電極の位置、埋立地の形状の違
いによっても生じる。 <ハ>埋立中の埋立地では、埋立の進行に伴い、埋立地内
の電気的条件(例えば比抵抗分布)が日々変化するた
め、固定したモデルで解くと、埋立の進行に伴い誤差が大
きくなり、精度良く遮水層の損傷位置を検知できなくな
る可能性がある。
[0004] The above-mentioned conventional method for detecting a damaged location of a water-impervious layer has the following problems. <B> When waste is landfilled in the landfill,
Potential distribution is affected by the non-uniformity of landfill waste and its distribution. As a result, the potential distortion generated around the damaged position is also affected, and the error may increase. <B> The above problems also occur due to differences in the position of the power supply electrode and the shape of the landfill. <C> In a landfill that is being reclaimed, the electrical conditions (eg, resistivity distribution) in the landfill change daily with the progress of the landfill, so if you solve with a fixed model, errors will increase with the progress of the landfill. However, there is a possibility that the damaged position of the impermeable layer cannot be detected accurately.

【0005】[0005]

【本発明の目的】本発明は上記したような従来の問題を
解決するためになされたもので、地盤又は埋立地の比抵
抗分布を精度良く求めることを目的とする。 または、精度良く求めた比抵抗分布を使用して遮水構造
物の遮水層の損傷位置を精度良く検知することを目的と
する。 または、内外の導電性の不均一性、給電電極の位置による
電位分布の影響、遮水構造物の形状による電位分布の影
響などの背景電位分布による影響を受けずに精度良く遮
水層の損傷位置を検知することを目的とする。または、
埋立中の埋立地の場合、埋立の進行に伴い、埋立地内の電
気的条件が日々変化する。これによる電位分布の影響を
受けずに精度良く遮水層の損傷位置を検知することを目
的とする。 本発明は、これらの目的の少なくとも一つを達成するも
のである。
SUMMARY OF THE INVENTION The present invention has been made to solve the above-mentioned conventional problems, and an object of the present invention is to accurately obtain a resistivity distribution of a ground or a landfill. Alternatively, it is another object of the present invention to accurately detect a damaged position of a water-blocking layer of a water-blocking structure using a specific resistance distribution obtained with high accuracy. Alternatively, damage to the impermeable layer accurately without being affected by background potential distribution such as unevenness of conductivity inside and outside, influence of electric potential distribution by the position of the feeding electrode, influence of electric potential distribution by the shape of the impermeable structure The purpose is to detect the position. Or
In the case of a landfill that is being reclaimed, the electrical conditions in the landfill change daily as the reclamation progresses. It is an object of the present invention to accurately detect a damaged position of a water barrier layer without being affected by a potential distribution due to this. The present invention achieves at least one of these objects.

【0006】[0006]

【課題を解決するための手段】上記のような目的を達成
するために、本発明の比抵抗分布を求める方法は、地盤
又は埋立地の比抵抗分布を求める方法において、地盤又
は埋立地の電位分布を測定する予備測定工程と、予備測
定工程で測定した電位分布を基に地盤又は埋立地の比抵
抗分布を算出する算出工程からなることを特徴とするも
のである。 ここで、前記算出工程は、地盤又は埋立地の比抵抗分布の
初期値を仮定し、この比抵抗分布に前記予備測定工程時
の地盤又は埋立地の電流を与えて算出される電位分布
と、前記予備測定工程で測定した電位分布と、を比較し、
比較した結果を基に比抵抗分布の初期値を変更し、算出
した電位分布が予備測定工程で測定した電位分布とほぼ
同一の分布となるような比抵抗分布を算出することがで
きる。 また、前記予備測定工程は、地盤又は埋立地の少なくとも
2箇所に給電電極を設置し、給電電極間に電流を流して
電位分布を測定することもできる。 更に、本発明の遮水層の損傷位置検知方法は、電気的に高
抵抗の遮水層の損傷位置検知方法において、遮水層を境
にして一方の側の少なくとも2箇所に給電電極を設置
し、遮水層近傍の比抵抗分布を本発明の比抵抗分布を求
める方法で求め、遮水層間に電流を流したと仮定して、前
記比抵抗分布から遮水層近傍の電位分布を算出する解析
工程と、解析工程と順序を問わない本測定工程であって、
遮水層間に電流を流して遮水層近傍に発生する電位分布
を測定する本測定工程と、解析工程で算出した電位分布
と、本測定工程で測定した電位分布との差から差分電位
分布を作成する比較工程と、差分電位分布から損傷の有
無ならびにその位置を推定する推定工程とからなるもの
である。 ここで、遮水層が二層からなる2重構造を有している場
合において、遮水層の少なくとも一層の損傷位置を検知
することも可能である。
In order to achieve the above object, a method of determining a resistivity distribution according to the present invention is a method of determining a resistivity distribution of a ground or a landfill, comprising the steps of: The method is characterized by comprising a preliminary measurement step of measuring the distribution and a calculation step of calculating a resistivity distribution of the ground or the landfill based on the potential distribution measured in the preliminary measurement step. Here, the calculation step assumes an initial value of the resistivity distribution of the ground or landfill, and a potential distribution calculated by giving the current of the ground or the landfill at the time of the preliminary measurement step to the resistivity distribution, Compare with the potential distribution measured in the preliminary measurement step,
By changing the initial value of the specific resistance distribution based on the comparison result, it is possible to calculate the specific resistance distribution such that the calculated potential distribution becomes substantially the same as the potential distribution measured in the preliminary measurement step. In the preliminary measurement step, a power supply electrode may be installed at at least two places on the ground or in a landfill, and a current may flow between the power supply electrodes to measure a potential distribution. Further, in the method for detecting a damaged position of a water impervious layer according to the present invention, in the method for detecting a damaged position of a water impervious layer having high electrical resistance, a power supply electrode is provided at at least two places on one side of the water impervious layer. Then, the specific resistance distribution in the vicinity of the impermeable layer is obtained by the method for obtaining a specific resistance distribution of the present invention, and the potential distribution in the vicinity of the impermeable layer is calculated from the specific resistance distribution, assuming that a current flows between the impermeable layers. Analysis step, and the main measurement step regardless of the order of the analysis step,
A difference potential distribution is obtained from the difference between the main measurement step of measuring the potential distribution generated near the water impervious layer by flowing a current between the water impervious layers, the potential distribution calculated in the analysis step, and the potential distribution measured in the main measurement step. It comprises a comparison step to be created and an estimation step to estimate the presence or absence of damage and its position from the difference potential distribution. Here, when the water impermeable layer has a double structure composed of two layers, it is also possible to detect at least one damaged position of the water impermeable layer.

【0007】[0007]

【本発明の実施の形態】以下図1を参照しながら本発明
の比抵抗分布を求める方法の実施の形態について説明す
る。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS An embodiment of a method for obtaining a resistivity distribution according to the present invention will be described below with reference to FIG.

【0008】<イ>予備測定工程 予備測定工程は、地盤又は埋立地の電位分布を測定する
工程である。電位分布の測定は、例えば地盤又は埋立地に
所定の間隔で設置した電位測定電極4で行う。電位測定
電極4は、例えば縦横等間隔の格子状であって、深度方向
に間隔をおいて複数段設置する。 ここで、電位分布の測定時の地盤又は埋立地の電流を把
握しておく必要がある。このため、例えば給電電極2間に
既知の電流を流して、電位測定電極4で電位分布の測定
をする。また、地盤又は埋立地に存在する自然電流等を利
用してもよい。 電位分布の測定は、例えば給電電極2の間に電流を流し、
電位測定電極4と基準電極8との電位差として測定する
ことによりおこなう。給電電極2の間に流す電流として
は、例えば交番電流、交流電流等を使用する。
<A> Preliminary measurement step The preliminary measurement step is a step of measuring the potential distribution on the ground or landfill. The potential distribution is measured, for example, with a potential measuring electrode 4 installed at a predetermined interval on the ground or a landfill. The potential measuring electrodes 4 are, for example, in the form of a grid at equal intervals in the vertical and horizontal directions, and are arranged in a plurality of stages at intervals in the depth direction. Here, it is necessary to grasp the current of the ground or landfill at the time of measuring the potential distribution. For this purpose, for example, a known current is passed between the power supply electrodes 2, and the potential distribution is measured by the potential measurement electrode 4. Further, natural current or the like existing in the ground or landfill may be used. The potential distribution is measured by, for example, passing a current between the power supply electrodes 2 and
This is performed by measuring as a potential difference between the potential measurement electrode 4 and the reference electrode 8. As a current flowing between the power supply electrodes 2, for example, an alternating current, an alternating current, or the like is used.

【0009】<ロ>算出工程 算出工程は、予備測定工程時の電位分布を基に地盤又は
埋立地の比抵抗の分布(以下、比抵抗分布という)を算
出する工程である。 最初に、地盤70と同一形状の解析モデルを作成する。そ
して、解析モデル上に比抵抗分布の初期値を与える。 次に、比抵抗分布の初期値を与えた解析モデルにおいて、
例えば給電電極間に電流を流したと仮定して地盤70の
電位分布を算出する。 この算出した電位分布と前記予備測定工程時に測定した
電位分布とを比較して、電位分布が異なる部分の比抵抗
の初期値を補正する。 そして、算出した電位分布が予備測定工程時の電位分布
とほぼ同一の分布となるような比抵抗分布を算出する。
<B> Calculation Step The calculation step is a step of calculating the distribution of the specific resistance of the ground or landfill (hereinafter referred to as the specific resistance distribution) based on the potential distribution at the time of the preliminary measurement step. First, an analysis model having the same shape as the ground 70 is created. Then, an initial value of the specific resistance distribution is given on the analysis model. Next, in the analysis model given the initial value of the resistivity distribution,
For example, the potential distribution of the ground 70 is calculated on the assumption that a current has flowed between the power supply electrodes. The calculated potential distribution is compared with the potential distribution measured in the preliminary measurement step, and the initial value of the specific resistance of the portion where the potential distribution is different is corrected. Then, a resistivity distribution is calculated such that the calculated potential distribution becomes substantially the same as the potential distribution in the preliminary measurement step.

【0010】以下図面を参照しながら本発明の遮水層の
損傷位置検知方法の実施の形態について説明する。
An embodiment of a method for detecting a damaged position of a water barrier layer according to the present invention will be described below with reference to the drawings.

【0011】<イ>給電電極及び電位測定電極の設置 以下、図2を参照して説明する。 遮水構造物は、一般廃棄物あるいは産業廃棄物の埋立地、
貯水池などの遮水構造を有するものであれば良く、実施
例では埋立地を例にとる。 埋立予定地の地盤を掘削して、その底面と側面に電気的
に高抵抗の遮水層1を敷設する。遮水層には例えばゴム
シート等を使用する。 遮水層1の近傍には所定の間隔で電位測定電極4を設置
する。ここで、遮水層近傍とは遮水層1の近くであればよ
く、遮水層1に接していてもよい。例えば、縦横等間隔の
格子状に設置する。 遮水層1の電位測定電極4を設置した側に、少なくとも
2個の内部給電電極(21、22)を設置する。 そして、例えば埋立地7の外部には外部給電電極31を
設置する。 また、埋立地7の内部と外部にはそれぞれ内部基準電極
20と外部基準電極30を設置するのが望ましい。 なお、図2では遮水層1の上面に電位測定電極4を設置
してあるが、遮水層1の下面に設置しても良い。
<A> Installation of Feeding Electrode and Potential Measurement Electrode Hereinafter, description will be made with reference to FIG. The impermeable structure is a landfill for general or industrial waste,
What is necessary is just to have a water-blocking structure, such as a reservoir, and a landfill is taken as an example in the embodiment. The ground at the landfill site is excavated, and a water-resistant impermeable layer 1 is laid on the bottom and side surfaces thereof. For example, a rubber sheet or the like is used for the water blocking layer. Potential measurement electrodes 4 are provided at predetermined intervals in the vicinity of the impermeable layer 1. Here, the vicinity of the impermeable layer only needs to be near the impermeable layer 1 and may be in contact with the impermeable layer 1. For example, they are arranged in a grid at equal intervals in the vertical and horizontal directions. At least two internal power supply electrodes (21, 22) are installed on the side of the impermeable layer 1 where the potential measurement electrodes 4 are installed. Then, for example, an external power supply electrode 31 is provided outside the landfill 7. Further, it is desirable to install an internal reference electrode 20 and an external reference electrode 30 inside and outside the landfill 7, respectively. In FIG. 2, the potential measurement electrode 4 is provided on the upper surface of the impermeable layer 1, but may be installed on the lower surface of the impermeable layer 1.

【0012】<ロ>比抵抗分布 遮水層近傍の比抵抗分布を求める。 例えば、最初に遮水層1を境にして一方の側に電流を流
し、遮水層1の近傍に発生する電位分布を測定する。 電位分布の測定は、例えば内部給電電極(21、22)
の間に電流を流し、遮水層1の近傍に発生する電位分布
を、電位測定電極4と内部基準電極20との電位差とし
て測定することによりおこなう。ここで、外部基準電極
30を内部基準電極20に替えて用いても、基準電極を
使わず電位測定電極間の電位差として電位分布を測定し
てもよい。 内部給電電極(21、22)の間に流す電流としては、
例えば交互に極性が替る交番電流、交流電流等を使用す
る。 遮水層を境にして一方の側のみに設置した給電電極間
(例えば、内部給電電極間)に給電した場合、遮水層の損
傷の有無に影響されずに電位分布を求めることができ
る。これは、損傷部を通過する電流が埋立地7内を流れる
電流に比べて非常に小さいためである。
<B> Specific resistance distribution A specific resistance distribution near the impermeable layer is obtained. For example, first, a current is applied to one side of the impermeable layer 1 as a boundary, and a potential distribution generated near the impermeable layer 1 is measured. The potential distribution is measured, for example, by using the internal power supply electrodes (21, 22).
Is conducted by measuring a potential distribution generated in the vicinity of the impermeable layer 1 as a potential difference between the potential measuring electrode 4 and the internal reference electrode 20. Here, the external reference electrode 30 may be used in place of the internal reference electrode 20, or the potential distribution may be measured as the potential difference between the potential measurement electrodes without using the reference electrode. As a current flowing between the internal power supply electrodes (21, 22),
For example, an alternating current, an alternating current, or the like, whose polarity alternates, is used. When power is supplied between the power supply electrodes (for example, between the internal power supply electrodes) provided only on one side of the water impermeable layer, the potential distribution can be obtained without being affected by the presence or absence of damage to the water impermeable layer. This is because the current passing through the damaged portion is much smaller than the current flowing in the landfill 7.

【0013】上記の方法で測定した電位分布に一致する
ように遮水層近傍の比抵抗分布を求める。 比抵抗分布の算出方法は、例えば埋立地7と同一形状の
埋立地(以下、解析モデルという)を想定し、上記の電位
分布を測定したと同様に内部給電電極間に電流を流した
と仮定し、測定した電位分布とほぼ同一の電位分布を示
すように比抵抗分布を求める。
The specific resistance distribution near the impermeable layer is determined so as to match the potential distribution measured by the above method. The method of calculating the resistivity distribution assumes that, for example, a landfill having the same shape as the landfill 7 (hereinafter referred to as an analysis model) is used, and that a current flows between the internal power supply electrodes in the same manner as the above-described potential distribution is measured. Then, a specific resistance distribution is obtained so as to show a potential distribution substantially the same as the measured potential distribution.

【0014】<ハ>解析工程 解析工程は、上記のようにして算出した比抵抗分布を持
った解析モデルを使用して遮水層1の近傍の電位分布を
算出する工程である。 例えば解析モデル上で、図3に示すような内部給電電極
21と外部給電電極31間に電流を流したと仮定し、遮
水層近傍の比抵抗分布によって発生する電位分布を算出
する。
<C> Analysis Step The analysis step is a step of calculating the potential distribution in the vicinity of the impermeable layer 1 using the analysis model having the specific resistance distribution calculated as described above. For example, assuming that a current has flowed between the internal power supply electrode 21 and the external power supply electrode 31 as shown in FIG. 3 on the analysis model, the potential distribution generated by the specific resistance distribution near the impermeable layer is calculated.

【0015】<ニ>本測定工程 本測定工程は、遮水層1の間に電流を流し、遮水層1の近
傍に発生した電位分布を測定する工程である。 例えば図3のように内部給電電極21(又は22)と外
部給電電極31間に給電して電位測定電極4にて電位分
布を測定する。図4に本測定工程時の測定した電位分布
の等電位線図の一例を示す。
<D> Main Measurement Step The main measurement step is a step of passing a current between the water-blocking layers 1 and measuring the potential distribution generated near the water-blocking layer 1. For example, as shown in FIG. 3, power is supplied between the internal power supply electrode 21 (or 22) and the external power supply electrode 31, and the potential distribution is measured by the potential measurement electrode 4. FIG. 4 shows an example of an equipotential diagram of the measured potential distribution in the main measurement step.

【0016】<ホ>損傷位置の推定 上記の解析工程時の算出した電位分布と本測定工程時の
測定した電位分布を使用して損傷位置の推定をおこな
う。なお、解析工程と本測定工程の順序は、どちらが先で
あっても、同時であってもよい。 上記の解析工程時の電位分布と本測定工程時の電位分布
の差を差分電位分布とする。 図5に差分電位分布の等電位線図の一例を示す。 ここで、差分電位分布の等電位線が密に図示される位置
が損傷位置と推定される。例えば、差分電位分布の等電位
線図を作成して、くぼみ状(又は凸状)となる部分が存
在すればくぼみの最も低い位置(又は高い位置)が損傷
位置と推定される。
<E> Estimation of Damage Position The damage position is estimated using the potential distribution calculated in the above analysis step and the potential distribution measured in the main measurement step. The order of the analysis step and the main measurement step may be either first or simultaneous. The difference between the potential distribution in the analysis step and the potential distribution in the main measurement step is referred to as a differential potential distribution. FIG. 5 shows an example of an equipotential diagram of the differential potential distribution. Here, a position where equipotential lines of the differential potential distribution are densely illustrated is estimated as a damaged position. For example, an equipotential diagram of the differential potential distribution is created, and if there is a concave (or convex) portion, the lowest position (or the highest position) of the concave is estimated as the damaged position.

【0017】[0017]

【実施例1】Embodiment 1

【0018】<イ>電位分布の測定 電位分布の測定は、地盤又は埋立地に例えば5〜30m
のピッチで格子状に設置した電位測定電極4でおこな
う。 給電電極間には、例えば一定間隔で一定時間電流が流れ
ない状態が現れ、極性が替る波形を有する交番電流を流
す。
<A> Measurement of electric potential distribution The electric potential distribution is measured, for example, at 5 to 30 m on the ground or landfill.
With the potential measuring electrodes 4 arranged in a grid at a pitch of. For example, a state in which no current flows for a certain period of time at a certain interval appears between the power supply electrodes, and an alternating current having a waveform whose polarity is changed flows.

【0019】<ロ>比抵抗分布の算出 最初に、地盤70又は埋立地7と同一形状の解析モデル
を作成する。そして、解析モデル上の例えば遮水層1に該
当する近傍の埋立地内部に比抵抗分布の初期値を与え
る。 次に、比抵抗分布の初期値を与えた解析モデルにおいて、
給電電極間に電流を流したと仮定して、遮水層近傍の電
位分布を算出する。この結果を解析結果による電位とす
る。 この解析結果による電位と、本測定工程時の電位分布の
電位とを比較して、以下の式で比抵抗分布の初期値を補
正する。
<B> Calculation of resistivity distribution First, an analysis model having the same shape as the ground 70 or the landfill 7 is created. Then, an initial value of the specific resistance distribution is given to, for example, the inside of the landfill near the water-blocking layer 1 on the analysis model. Next, in the analysis model given the initial value of the resistivity distribution,
Assuming that a current has flowed between the power supply electrodes, the potential distribution near the impermeable layer is calculated. This result is defined as the potential based on the analysis result. The potential based on the analysis result is compared with the potential of the potential distribution at the time of the main measurement step, and the initial value of the specific resistance distribution is corrected by the following equation.

【0020】[0020]

【式1】 (Equation 1)

【0021】この比抵抗の補正は地盤又は埋立地の複数
の点に対して行う。また、解析結果の電位分布と本測定工
程時の電位分布が一致するまで、必要に応じて繰り返し
行う。 こうして算出した比抵抗分布を設定した解析モデルによ
って例えば遮水層近傍の電位分布を算出する。
The correction of the specific resistance is performed for a plurality of points on the ground or landfill. The process is repeated as necessary until the potential distribution in the analysis result matches the potential distribution in the main measurement step. The potential distribution in the vicinity of the impermeable layer, for example, is calculated by an analysis model in which the calculated specific resistance distribution is set.

【0022】<ハ>損傷位置の推定 遮水層1の間に電流を流し、遮水層1の近傍に発生した
電位分布を測定する。 本測定工程時の電位分布から解析工程時の電位分布を引
いて差分電位分布とする。 内部給電電極を+とし、外部給電電極を−とした差分電
位分布図上で最も電位が低い位置が損傷の中心位置と推
定できる。 この最も電位が低い位置を推定する方法として、以下の
方法が使用できる。 第1の方法として、損傷位置と仮定して損傷周辺の電位
変化を示す理論式に当てはめて求めた理論値と、前記差
分電位分布との平均二乗誤差を求め、この誤差が最も小
さくなる損傷位置を特定する方法が利用できる。 ここで、理論式を以下に示す。
<C> Estimation of Damage Position An electric current is applied between the impermeable layers 1 and the potential distribution generated near the impermeable layers 1 is measured. The potential distribution at the time of the analysis step is subtracted from the potential distribution at the time of the main measurement step to obtain a differential potential distribution. A position having the lowest potential on the differential potential distribution diagram with the internal power supply electrode set to + and the external power supply electrode set to-can be estimated as the damage center position. The following method can be used as a method for estimating the position with the lowest potential. As a first method, a mean square error between a theoretical value obtained by applying a theoretical expression indicating a potential change around the damage assuming the damage position and the difference potential distribution is obtained, and the damage position at which this error is minimized is calculated. Is available. Here, the theoretical formula is shown below.

【0023】[0023]

【式2】 (Equation 2)

【0024】第2の方法として、数値シミュレーション
解析から求めた電位分布と、前記差分電位分布との一致
性から損傷位置を特定する方法が利用できる。
As a second method, it is possible to use a method of specifying the damage position from the coincidence between the potential distribution obtained from the numerical simulation analysis and the difference potential distribution.

【0025】[0025]

【実施例2】遮水層を2重構造にする場合の実施例につ
いて以下に説明する。 <イ>外部給電電極を遮水層の内部に設置する場合 図6に概要図を示す。 この場合、外部給電電極31と外部基準電極30を上部
遮水層11と下部遮水層12に囲まれた範囲に設置す
る。 こうする事によって、上部遮水層11が損傷した場合に
その位置を検知することが可能となる。 なお、内部給電電極と電位測定電極を下部遮水層12の
下方に設置した場合は、下部遮水層12の損傷位置を検
知することができる。
[Embodiment 2] An embodiment in which the water barrier layer has a double structure will be described below. <A> When the external power supply electrode is installed inside the impermeable layer FIG. 6 is a schematic diagram. In this case, the external power supply electrode 31 and the external reference electrode 30 are provided in a range surrounded by the upper water-impervious layer 11 and the lower water-impervious layer 12. This makes it possible to detect the position of the upper impermeable layer 11 when it is damaged. In addition, when the internal power supply electrode and the potential measurement electrode are installed below the lower impermeable layer 12, the damaged position of the lower impermeable layer 12 can be detected.

【0026】<ロ>給電電極と電位測定電極を遮水層の
内部に設置する場合 図7に概要図を示す。 この場合、埋立地7の内側と外側の両方に給電電極(3
3、35)と基準電極(32、34)を設置する。 この場合は、上部遮水層11の損傷位置も下部遮水層1
2の損傷位置も別々に検知することができる。
<B> When the power supply electrode and the potential measurement electrode are installed inside the water blocking layer. FIG. 7 is a schematic diagram. In this case, the feeding electrodes (3
3, 35) and reference electrodes (32, 34). In this case, the damage position of the upper impermeable layer 11 is also changed to the lower impermeable layer 1.
The two damaged locations can also be separately detected.

【0027】<ハ>その他の場合 図2に示す遮水層を2重構造にすることも当然可能であ
る。こうする事によって、上部遮水層11と下部遮水層1
2の両方が破損した場合に、上部遮水層11の損傷位置
を検知することができる。 また、図2に示す遮水層を2重構造とし、外部給電電極3
1を埋立地内部に、内部給電電極(21、22)及び電位
測定電極4を埋立地外部の下部遮水層12の近傍に設置
することもできる。こうする事によって、上部遮水層11
と下部遮水層12の両方が破損した場合に、下部遮水層
12の損傷位置を検知することができる。
<C> Other Cases It is of course possible to form the water barrier layer shown in FIG. 2 into a double structure. By doing so, the upper impermeable layer 11 and the lower impermeable layer 1
When both of them are damaged, the damaged position of the upper impermeable layer 11 can be detected. In addition, the water impermeable layer shown in FIG.
1 can be installed inside the landfill, and the internal power supply electrodes (21, 22) and the potential measurement electrode 4 can be installed near the lower impermeable layer 12 outside the landfill. By doing so, the upper impermeable layer 11
When both the lower water-impervious layer 12 and the lower water-impervious layer 12 are damaged, the damaged position of the lower water-impervious layer 12 can be detected.

【0028】[0028]

【本発明の効果】本発明の比抵抗分布を求める方法は以
上説明したようになるから次のような効果を得ることが
できる。 <イ>測定した電位分布と算出する電位分布が一致する
ような比抵抗分布を求める。このため、地盤又は埋立地の
比抵抗分布を精度良く求めることができる。 <ロ>従来の方法に比べて測定電極の数を増やしたりし
なくても、精度良く比抵抗分布を求めることができる。従
って、精度を向上させるための測定器の設置に、費用と時
間をかけなくてもよい。
As described above, the method for obtaining the resistivity distribution of the present invention has the following effects. <A> A specific resistance distribution is determined such that the measured potential distribution matches the calculated potential distribution. Therefore, the specific resistance distribution of the ground or the landfill can be obtained with high accuracy. <B> A specific resistance distribution can be obtained with high accuracy without increasing the number of measurement electrodes as compared with the conventional method. Therefore, it is not necessary to spend cost and time to install a measuring instrument for improving accuracy.

【0029】また、本発明の遮水層の損傷位置検知方法
は以上説明したようになるから次のような効果を得るこ
とができる。 <イ>遮水構造物の遮水層の損傷位置を精度良く検知す
ることができる。 <ロ>損傷位置を推定する前に、内外の導電性の不均一
性、給電電極の位置による電位分布の影響、遮水構造物の
形状による電位分布の影響などの背景電位分布による影
響を取り除く。このため、精度よく遮水層の損傷位置を検
知できる。 <ハ>従来の方法に比べて測定電極の数を増やしたりし
なくても、精度良く遮水層の損傷位置を検知できる。従っ
て、精度を向上させるために、埋立地の建設費を増加させ
ることがない。 <ニ>形状が複雑な埋立地に適用した場合でも測定電極
を増やすことなく精度良く遮水層の損傷位置を検知でき
る。 <ホ>埋立中の埋立地に適用した場合でも、埋立の進行
に伴う電気的な特性変化に影響されずに精度良く遮水層
の損傷位置を検知できる。
Further, since the method for detecting a damaged position of a water barrier layer of the present invention is as described above, the following effects can be obtained. <B> It is possible to accurately detect the damage position of the impermeable layer of the impermeable structure. <B> Before estimating the damage location, remove the effects of background potential distribution such as non-uniformity of conductivity inside and outside, the influence of potential distribution by the position of the feeding electrode, and the influence of potential distribution by the shape of the impermeable structure. . For this reason, the damaged position of the impermeable layer can be accurately detected. <C> The damaged position of the impermeable layer can be detected accurately without increasing the number of measurement electrodes as compared with the conventional method. Therefore, the construction cost of the landfill is not increased to improve the accuracy. <D> Even when applied to a landfill having a complicated shape, the damaged position of the impermeable layer can be accurately detected without increasing the number of measurement electrodes. <E> Even when the method is applied to a landfill that is being reclaimed, the damaged position of the impermeable layer can be accurately detected without being affected by changes in electrical characteristics accompanying the progress of the landfill.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の比抵抗分布を求める場合の概要図FIG. 1 is a schematic diagram of a case of obtaining a specific resistance distribution according to the present invention.

【図2】本発明の内部給電電極間に給電する場合の概要
FIG. 2 is a schematic diagram of a case where power is supplied between internal power supply electrodes according to the present invention.

【図3】内部給電電極と外部給電電極間に給電する場合
の概要図
FIG. 3 is a schematic diagram of a case where power is supplied between an internal power supply electrode and an external power supply electrode.

【図4】測定した電位分布の等電位線図の一表示例FIG. 4 is a display example of an equipotential diagram of a measured potential distribution.

【図5】差分電位分布の等電位線図の一表示例FIG. 5 is a display example of an equipotential diagram of a differential potential distribution.

【図6】遮水層が2重構造で外部給電電極を遮水層の内
部に設置する場合の実施例の概要図
FIG. 6 is a schematic view of an embodiment in which the water impermeable layer has a double structure and an external power supply electrode is installed inside the water impermeable layer.

【図7】遮水層が2重構造で給電電極と電位測定電極を
遮水層の内部に設置する場合の実施例の概要図
FIG. 7 is a schematic diagram of an embodiment in which a water impermeable layer has a double structure and a power supply electrode and a potential measurement electrode are installed inside the water impermeable layer.

───────────────────────────────────────────────────── フロントページの続き (72)発明者 小野 ▲隆▼ 千葉県柏市大室1499番地31号 (72)発明者 押方 利郎 東京都新宿区西新宿一丁目25番1号 大成 建設株式会社内 Fターム(参考) 2G067 AA01 AA19 BB11 CC02 DD23 EE08 4D004 AA46 BB06 DA01 DA20  ──────────────────────────────────────────────────の Continuing on the front page (72) Inventor Takashi Ono 1499-31, Omuro, Kashiwa City, Chiba Prefecture (72) Inventor Toshiro Oshigata 1-25-1, Nishishinjuku, Shinjuku-ku, Tokyo Taisei Corporation F term (reference) 2G067 AA01 AA19 BB11 CC02 DD23 EE08 4D004 AA46 BB06 DA01 DA20

Claims (5)

【特許請求の範囲】[Claims] 【請求項1】地盤又は埋立地の比抵抗分布を求める方法
において、地盤又は埋立地の電位分布を測定する予備測
定工程と、予備測定工程で測定した電位分布を基に地盤
又は埋立地の比抵抗分布を算出する算出工程からなるこ
とを特徴とする、比抵抗分布を求める方法。
1. A method for determining the resistivity distribution of a ground or a landfill, comprising: a preliminary measurement step of measuring the potential distribution of the ground or the landfill; and a ratio of the ground or the landfill based on the potential distribution measured in the preliminary measurement step. A method for determining a resistivity distribution, comprising a calculating step of calculating a resistance distribution.
【請求項2】前記算出工程は、地盤又は埋立地の比抵抗
分布の初期値を仮定し、この比抵抗分布に前記予備測定
工程時の地盤又は埋立地の電流を与えて算出される電位
分布と、前記予備測定工程で測定した電位分布と、を比較
し、比較した結果を基に比抵抗分布の初期値を変更し、算
出した電位分布が予備測定工程で測定した電位分布とほ
ぼ同一の分布となるような比抵抗分布を算出することを
特徴とする、請求項1記載の比抵抗分布を求める方法。
2. The method according to claim 1, wherein the calculating step assumes an initial value of the resistivity distribution of the ground or the landfill, and calculates a potential distribution calculated by giving the current of the ground or the landfill at the time of the preliminary measurement step to the resistivity distribution. And, the potential distribution measured in the preliminary measurement step, and compared, the initial value of the specific resistance distribution is changed based on the comparison result, the calculated potential distribution is substantially the same as the potential distribution measured in the preliminary measurement step 2. The method according to claim 1, wherein a specific resistance distribution is calculated.
【請求項3】前記予備測定工程は、地盤又は埋立地の少
なくとも2箇所に給電電極を設置し、給電電極間に電流
を流して電位分布を測定することを特徴とする、請求項
1又は2記載の比抵抗分布を求める方法。
3. The pre-measurement step is characterized in that power supply electrodes are installed at at least two places on the ground or in a landfill, and a current is passed between the power supply electrodes to measure a potential distribution. A method for obtaining the specific resistance distribution described.
【請求項4】電気的に高抵抗の遮水層の損傷位置検知方
法において、 遮水層を境にして一方の側の少なくとも2箇所に給電電
極を設置し、遮水層近傍の比抵抗分布を請求項3記載の
比抵抗分布を求める方法で求め、遮水層間に電流を流し
たと仮定して、前記比抵抗分布から遮水層近傍の電位分
布を算出する解析工程と、解析工程と順序を問わない本
測定工程であって、遮水層間に電流を流して遮水層近傍
に発生する電位分布を測定する本測定工程と、 解析工程で算出した電位分布と、本測定工程で測定した
電位分布との差から差分電位分布を作成する比較工程
と、差分電位分布から損傷の有無ならびにその位置を推
定する推定工程とからなる、遮水層の損傷位置検知方法。
4. A method for detecting a damage position of a water-impervious layer having high electrical resistance, comprising: providing a power supply electrode at at least two places on one side of the water-impervious layer; An analysis step of calculating a potential distribution in the vicinity of the impermeable layer from the specific resistance distribution, assuming that a current has flowed between the impermeable layers, and an analyzing step. In this measurement step, regardless of the order, this measurement step measures the potential distribution generated near the water impermeable layer by passing current between the water impermeable layers, the potential distribution calculated in the analysis step, and the measurement in the main measurement step A method for detecting a damaged position of a water-impervious layer, comprising: a comparing step of creating a differential potential distribution based on a difference from the obtained potential distribution; and an estimating step of estimating the presence or absence of damage and its position from the differential potential distribution.
【請求項5】請求項4記載の遮水層の損傷位置検知方法
において、遮水層が二層からなる2重構造を有しており、
遮水層の少なくとも一層の損傷位置を検知することを特
徴とする、遮水層の損傷位置検知方法。
5. The method according to claim 4, wherein the water-impervious layer has a double structure consisting of two layers.
A method for detecting a damaged position of a water impermeable layer, comprising detecting a damaged position of at least one layer of the water impermeable layer.
JP2000216458A 2000-07-17 2000-07-17 Method for obtaining specific resistance distribution and method for detecting damage position of impermeable layer Expired - Lifetime JP4469066B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2000216458A JP4469066B2 (en) 2000-07-17 2000-07-17 Method for obtaining specific resistance distribution and method for detecting damage position of impermeable layer

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2000216458A JP4469066B2 (en) 2000-07-17 2000-07-17 Method for obtaining specific resistance distribution and method for detecting damage position of impermeable layer

Publications (2)

Publication Number Publication Date
JP2002031579A true JP2002031579A (en) 2002-01-31
JP4469066B2 JP4469066B2 (en) 2010-05-26

Family

ID=18711723

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000216458A Expired - Lifetime JP4469066B2 (en) 2000-07-17 2000-07-17 Method for obtaining specific resistance distribution and method for detecting damage position of impermeable layer

Country Status (1)

Country Link
JP (1) JP4469066B2 (en)

Also Published As

Publication number Publication date
JP4469066B2 (en) 2010-05-26

Similar Documents

Publication Publication Date Title
WO1996012177B1 (en) Detection and location system for monitoring changes in resistivity in three dimensions
EP1223631A3 (en) Arrangement and method for determining the electroconductivity of a coolant in a fuel cell stack by differential voltage measurements
JP3041426B1 (en) Fill dam management system by resistivity tomography and its management method
JP3622172B2 (en) Water leak occurrence position detection method
JP5565288B2 (en) Current density estimation method, apparatus, and anticorrosion management method, apparatus for coating damage part of underground pipe
JP2002031579A (en) Method for obtaining resistivity distribution and damaged position detection method of water barrier layer
CN208847636U (en) A kind of steel tower reinforced concrete foundation reinforcement corrosion degree detection device
JP3968297B2 (en) Reinforcement corrosion measurement method inside concrete
CN109813500A (en) Utilize the method for Fdtd Method principle positioning HDPE film leak location
JPS59187248A (en) Method and device for detecting state of permeation of water permeating in unsaturated soil
CN112816162A (en) Garbage landfill system and garbage leakage monitoring method
JP3236965B2 (en) Method and apparatus for detecting damaged portion of impermeable sheet in waste disposal site
JP4377800B2 (en) Water leakage detection method
CN115803501A (en) Leak detection system and method
JP3212294B2 (en) Water leak detection device and water leak detection method by potential method
RU2098845C1 (en) Method for detection of characteristics of two- layer medium which has slope dividing line
JP3384849B2 (en) Leakage location detection system for impermeable structures
CN112462432B (en) High-precision detection method and device for fire area cavity of coal field
JP4053864B2 (en) Water leakage detection system and water leakage detection method
JPH09189636A (en) Method for detecting leakage from dust collecting sheet
CN213985593U (en) Refuse landfill system
JPS62178689A (en) Method and device for detecting face disintegration of shielding type excavator
JP3068666B2 (en) Water leak position detection method based on current ratio
CN108981560B (en) Detection device for embedding depth of dam anti-seepage film and use method
JP3233398B2 (en) Water leak detection device and water leak detection method

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070710

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070918

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20090422

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090519

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090622

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090714

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090910

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20091027

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100125

A911 Transfer to examiner for re-examination before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20100129

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20100223

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20100226

R150 Certificate of patent or registration of utility model

Ref document number: 4469066

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130305

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140305

Year of fee payment: 4

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term