JP2002031520A - Calibration member for three-dimensional shape analyzer and method for three-dimensional shape analysis - Google Patents

Calibration member for three-dimensional shape analyzer and method for three-dimensional shape analysis

Info

Publication number
JP2002031520A
JP2002031520A JP2000303379A JP2000303379A JP2002031520A JP 2002031520 A JP2002031520 A JP 2002031520A JP 2000303379 A JP2000303379 A JP 2000303379A JP 2000303379 A JP2000303379 A JP 2000303379A JP 2002031520 A JP2002031520 A JP 2002031520A
Authority
JP
Japan
Prior art keywords
dimensional shape
sample
calibration
electron beam
calibration member
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2000303379A
Other languages
Japanese (ja)
Inventor
Junichi Yoshinari
淳一 吉成
Ryuichiro Tamochi
隆一郎 多持
Mine Nakagawa
美音 中川
Atsushi Muto
篤 武藤
Kaname Takahashi
要 高橋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Hitachi Science Systems Ltd
Original Assignee
Hitachi Ltd
Hitachi Science Systems Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd, Hitachi Science Systems Ltd filed Critical Hitachi Ltd
Priority to JP2000303379A priority Critical patent/JP2002031520A/en
Publication of JP2002031520A publication Critical patent/JP2002031520A/en
Pending legal-status Critical Current

Links

Landscapes

  • Length-Measuring Devices Using Wave Or Particle Radiation (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a Z standard calibration specimen for accurately performing a Z calibration in a scanning electron microscope having a three- dimensional shape analyzing means. SOLUTION: When a silicon substrate is etched, a chemical difference in etching rate is produced by the difference of arrangement of atoms in crystals and a pyramid-shaped structure (micro pyramid) having slopes with accurate angles (54 and 74 deg.) is manufactured. The angles of the slopes of the micro pyramid are utilized for the Z calibration.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、走査電子顕微鏡を
用いた三次元形状解析装置にて試料表面の三次元形状解
析を行なう三次元形状解析方法に関し、特に深さ(z)
方向の測定精度を向上させるために用いられる校正部材
に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a three-dimensional shape analysis method for performing a three-dimensional shape analysis of a sample surface with a three-dimensional shape analysis device using a scanning electron microscope, and particularly to a depth (z).
The present invention relates to a calibration member used for improving the measurement accuracy of a direction.

【0002】[0002]

【従来の技術】走査電子顕微鏡を用いて試料の三次元形
状解析を行なうには縦横方向(以下、xy方向という)
及び深さ方向(以下、z方向という)の校正が必要とな
る。xy方向については、絶対寸法が保証された標準マ
イクロスケールなどによる高精度な校正が可能である。
z方向の校正は、従来は30゜の角度に機械的に加工さ
れた試料台を使用していたため、その精度は機械の加工
精度に依存している。
2. Description of the Related Art A three-dimensional shape analysis of a sample using a scanning electron microscope is performed in the vertical and horizontal directions (hereinafter referred to as xy directions).
Calibration in the depth direction (hereinafter, referred to as the z direction) is required. In the xy directions, high-precision calibration using a standard microscale or the like whose absolute dimensions are guaranteed can be performed.
Conventionally, the calibration in the z-direction uses a sample stage mechanically machined at an angle of 30 °, and the accuracy depends on the machining accuracy of the machine.

【0003】[0003]

【発明が解決しようとする課題】従来のz方向校正にお
ける校正値の正確さは試料台の加工精度に依存している
ため、10%以上の深さ測定誤差が存在していた。そこ
で、深さ測定誤差5%以内の高精度深さ測定を可能とす
るための、正確な角度を有する標準試料が求められてい
た。本発明は、走査電子顕微鏡を用いる三次元形状解析
装置によって高精度な深さ測定を可能にするためのZ校
正用標準試料及び校正方法を提供することを目的とす
る。
Since the accuracy of the calibration value in the conventional z-direction calibration depends on the processing accuracy of the sample stage, there is a depth measurement error of 10% or more. Therefore, a standard sample having an accurate angle for enabling high-accuracy depth measurement with a depth measurement error of 5% or less has been required. An object of the present invention is to provide a standard sample for Z calibration and a calibration method for enabling highly accurate depth measurement by a three-dimensional shape analyzer using a scanning electron microscope.

【0004】[0004]

【課題を解決するための手段】結晶表面を異方性エッチ
ングしたとき、結晶内部の原子配列の違いにより化学的
なエッチング速度に差が生じる。そして、傾斜面と底面
の交点の角度は物理定数として求まる。例えばシリコン
結晶基板の表面(100)面を異方性エッチングする際
に生じる四角錘状の構造物(以下、マイクロピラミッド
という)の斜面部は(111)面の面方位を有する。こ
のとき、底面部と斜面部のなす角度は物理定数として5
4.74゜と算出される。本発明においては、この点に
注目し、異方性エッチングにより生じた結晶傾斜面の角
度情報をもとにZ校正を行うことにより、高精度な深さ
測定を可能にする。
Means for Solving the Problems When anisotropically etching a crystal surface, a difference occurs in a chemical etching rate due to a difference in atomic arrangement inside the crystal. Then, the angle of the intersection between the inclined surface and the bottom surface is obtained as a physical constant. For example, a slope portion of a quadrangular pyramid-shaped structure (hereinafter referred to as a micropyramid) generated when anisotropically etching the surface (100) of a silicon crystal substrate has a (111) plane orientation. At this time, the angle between the bottom surface and the slope is 5 as a physical constant.
It is calculated as 4.74 °. In the present invention, attention is paid to this point, and a Z-calibration is performed based on angle information of a crystal inclined surface generated by anisotropic etching, thereby enabling highly accurate depth measurement.

【0005】また、結晶表面を異方性エッチングして生
じた正確な角度を有する傾斜面に、その結晶とは異なる
材料を均一に成膜、被膜する、もしくはその成膜、被膜
を利用して作成したレプリカ又は、それを鋳型として用
いて異なる材料の傾斜面を成形することにより、元の結
晶とは反射電子発生効率の異なるZ校正用試料を得る。
表面形状を測定する試料物質と同一、もしくは近似元素
の校正試料を作成することにより、反射電子発生効率の
違いに起因する測定誤差を低減することができ、より高
精度な深さ測定が可能になる。
Further, a material different from the crystal is uniformly formed or coated on the inclined surface having an accurate angle generated by anisotropically etching the crystal surface. By forming the created replica or an inclined surface of a different material by using the replica as a mold, a Z calibration sample having a different reflected electron generation efficiency from the original crystal is obtained.
By preparing a calibration sample of the same or similar element as the sample material whose surface shape is to be measured, measurement errors due to differences in backscattered electron generation efficiency can be reduced, and more accurate depth measurement is possible. Become.

【0006】すなわち、本発明による三次元形状解析装
置用校正部材は、電子線を発生する電子銃と、電子線を
集束し照射する手段と、電子線を試料上に走査するため
の偏向手段と、試料表面から発生した反射電子を検出す
る四分割環状検出器と、四分割環状検出器で検出された
信号を演算処理して試料表面の三次元形状解析を行う処
理部とを備える三次元形状解析装置の校正に使用され三
次元形状解析装置用校正部材において、当該校正部材は
結晶表面を異方性エッチングすることにより生じた角度
既知の傾斜面を有することを特徴とする。校正部材は、
シリコン結晶基板の表面を異方性エッチングすることに
より生じた四角錘状の構造物(マイクロピラミッド)を
含むものとすることができる。
That is, a calibration member for a three-dimensional shape analyzer according to the present invention includes an electron gun for generating an electron beam, a unit for focusing and irradiating the electron beam, and a deflecting unit for scanning the electron beam on a sample. , A three-dimensional annular detector that detects reflected electrons generated from the sample surface, and a processing unit that performs a three-dimensional shape analysis of the sample surface by performing arithmetic processing on signals detected by the four-part annular detector In a calibration member for a three-dimensional shape analysis device used for calibration of an analysis device, the calibration member has an inclined surface with a known angle generated by anisotropically etching a crystal surface. The calibration member is
It can include a quadrangular pyramid-shaped structure (micro pyramid) generated by anisotropically etching the surface of the silicon crystal substrate.

【0007】また、本発明による三次元形状解析装置用
校正部材は、結晶表面を異方性エッチングすることによ
り生じた角度既知の傾斜面に前記結晶とは異なる材料の
被膜を形成したものとすることができる。また、本発明
による三次元形状解析装置用校正部材は、結晶表面を異
方性エッチングすることにより生じた角度既知の傾斜面
に前記結晶とは異なる材料の被膜を形成した後、それを
剥離してレプリカとしたものとすることができる。ま
た、本発明による三次元形状解析装置用校正部材は、結
晶表面を異方性エッチングすることにより生じた角度既
知の傾斜面を有する表面を鋳型として前記結晶とは異な
る材料を充填あるいは被覆して形成したものとしてもよ
い。
Further, the calibration member for a three-dimensional shape analyzer according to the present invention is such that a film made of a material different from the crystal is formed on an inclined surface having a known angle generated by anisotropically etching the crystal surface. be able to. Further, the calibration member for a three-dimensional shape analysis device according to the present invention, after forming a film of a material different from the crystal on the inclined surface having a known angle generated by anisotropically etching the crystal surface, peeling it off. To be a replica. Further, the calibration member for a three-dimensional shape analysis apparatus according to the present invention is a material having a slope having a known angle formed by anisotropically etching the crystal surface, and filling or covering a material different from the crystal with a mold as a template. It may be formed.

【0008】本発明による三次元形状解析方法は、試料
表面を集束した電子線で照射し、試料表面から反射され
た反射電子を四分割環状反射電子検出器で検出し、四分
割環状反射電子検出器の検出信号を二次元的に積分して
試料表面の高さ分布を測定する三次元形状解析方法にお
いて、前述の三次元形状解析装置用校正部材を用いて測
定結果を校正することを特徴とする。
In the three-dimensional shape analysis method according to the present invention, a sample surface is irradiated with a focused electron beam, and reflected electrons reflected from the sample surface are detected by a four-segment annular reflected electron detector. In the three-dimensional shape analysis method for two-dimensionally integrating the detection signal of the detector and measuring the height distribution of the sample surface, the measurement result is calibrated using the calibration member for the three-dimensional shape analyzer described above. I do.

【0009】[0009]

【発明の実施の形態】以下、図面を参照して本発明の実
施の形態を説明する。図1は、試料表面の三次元形状解
析を行う手段を備えた走査電子顕微鏡(三次元形状解析
装置)の概略図である。電子銃2より発生した電子線3
は集束レンズ4により集束され、試料ステージ5上に固
定された試料6上に照射される。電子線3は、偏向コイ
ル7により試料6上を走査され、試料6より発生した反
射電子信号8は四分割環状反射電子検出器13によって
検出され、また試料6より発生した二次電子信号9は二
次電子検出器11で検出される。二次電子検出器11か
らの信号は偏向コイル7の偏向信号と同期を取ってCR
T等の表示装置に入力され、表示装置に試料像を表示す
る。一方、四分割環状反射電子検出器13からの信号は
三次元形状解析部12で後述するように演算処理され
て、試料6の表面の三次元情報に変換される。
Embodiments of the present invention will be described below with reference to the drawings. FIG. 1 is a schematic diagram of a scanning electron microscope (three-dimensional shape analyzer) provided with means for performing three-dimensional shape analysis of a sample surface. Electron beam 3 generated from electron gun 2
Is focused by a focusing lens 4 and is irradiated onto a sample 6 fixed on a sample stage 5. The electron beam 3 is scanned over the sample 6 by the deflection coil 7, a reflected electron signal 8 generated from the sample 6 is detected by a four-part annular backscattered electron detector 13, and a secondary electron signal 9 generated from the sample 6 is It is detected by the secondary electron detector 11. The signal from the secondary electron detector 11 is synchronized with the deflection signal of the deflection coil 7 and
The image is input to a display device such as T, and a sample image is displayed on the display device. On the other hand, the signal from the four-piece annular backscattered electron detector 13 is subjected to arithmetic processing by the three-dimensional shape analyzer 12 as described later, and is converted into three-dimensional information on the surface of the sample 6.

【0010】図2は、四分割環状反射電子検出器13か
らの検出信号に基づく試料表面の三次元形状解析方法を
説明する概略図である。図2(a)に示すように、四分
割環状反射電子検出器13は、円周方向に区画された4
個の検出素子13a,13b,13c,13dを備えて
いる。試料から反射された反射電子は、反射電子の放出
方向ごとに異なる検出素子に捕集される。検出素子13
aで検出された反射電子信号をA、検出素子13bで検
出された反射電子信号をB、検出素子13cで検出され
た反射電子信号をC、検出素子13dで検出された反射
電子信号をDとするとき、各検出素子で検出された反射
電子信号A,B,C,Dを用いてx,y方向で図2
(b)に示すように二次元的な積分を行い、〔数1〕に
よりP1点に対する位置P3の高さZ(P3)を求め
る。
FIG. 2 is a schematic diagram for explaining a method for analyzing the three-dimensional shape of the sample surface based on the detection signal from the four-section annular backscattered electron detector 13. As shown in FIG. 2A, the four-part annular backscattered electron detector 13 has four circumferentially divided four-electron detectors.
There are provided three detection elements 13a, 13b, 13c, 13d. The reflected electrons reflected from the sample are collected by different detection elements for each emission direction of the reflected electrons. Detection element 13
A is a backscattered electron signal detected by a, B is a backscattered electron signal detected by the detection element 13b, C is a backscattered electron signal detected by the detection element 13c, and D is a backscattered electron signal detected by the detection element 13d. 2, the reflected electron signals A, B, C, and D detected by the respective detection elements are used in FIG.
As shown in (b), two-dimensional integration is performed, and the height Z (P3) of the position P3 with respect to the point P1 is obtained by [Equation 1].

【0011】[0011]

【数1】 (Equation 1)

【0012】このように、四分割環状反射電子検出器1
3によって検出された信号をx,y各方向に積分演算す
ることにより、試料表面上の各点におけるz方向の情報
が得られる。試料に照射する電子線を走査しながら〔数
1〕の演算を連続して行うことにより試料表面の高さ分
布が求められる。従って、走査電子顕微鏡の表示画面上
の任意の位置における断面プロファイルの作成、粗さパ
ラメータの測定や鳥瞰図作成が可能となる。いま、簡単
のため、図3に示すように、試料上x方向の微小区間P
1からP2における角度をθとすると、高さ変化量Δ
Zは〔数2〕で表される。
As described above, the four-split annular backscattered electron detector 1
The information detected in step 3 is integrated in the x and y directions to obtain information in the z direction at each point on the sample surface. The height distribution of the sample surface is obtained by continuously performing the calculation of [Equation 1] while scanning the electron beam irradiated on the sample. Therefore, it is possible to create a cross-sectional profile at an arbitrary position on the display screen of the scanning electron microscope, measure a roughness parameter, and create a bird's eye view. Now, for the sake of simplicity, as shown in FIG.
When the angle of 1 from P2 to theta x, height change amount Δ
Z is represented by [Equation 2].

【0013】[0013]

【数2】 (Equation 2)

【0014】一方、走査電子顕微鏡を用いた三次元形状
解析においては、四分割環状反射電子検出器13の対向
する検出素子、この場合は検出素子13a,13bの検
出信号A,Bにより、次の〔数3〕のように高さ変化量
ΔZが求まる。
On the other hand, in the three-dimensional shape analysis using a scanning electron microscope, the following detection signals are detected by the detection signals A and B of the four-segment annular reflected electron detector 13 facing each other, in this case, the detection elements 13a and 13b. The height change amount ΔZ is obtained as in [Equation 3].

【0015】[0015]

【数3】 (Equation 3)

【0016】上記〔数2〕のΔZと〔数3〕のΔZは一
致すべきものであるが、実際には、四分割環状反射電子
検出器13の各検出素子13a〜13dの検出効率が異
なるため、三次元形状解析によって求められたΔZと実
際の高さ変化量とは一致せず、校正する必要がある。装
置校正に当たって必要なパラメータはX,Y及びZを測
定するための角度θである。前述のように、従来は斜面
の角度が既知の校正用試料として30゜の傾斜加工をし
た試料台を用いていたが、その測定精度は加工精度に依
存し、10%程度の深さ測定誤差が存在していた。
Although ΔZ in the above equation (2) and ΔZ in the above equation (3) should match, actually, the detection efficiencies of the respective detection elements 13a to 13d of the four-part annular backscattered electron detector 13 are different. In addition, ΔZ obtained by the three-dimensional shape analysis does not match the actual height change amount, and needs to be calibrated. A parameter required for device calibration is an angle θ for measuring X, Y, and Z. As described above, in the past, a 30 ° inclined sample stage was used as a calibration sample having a known slope angle, but the measurement accuracy depends on the processing accuracy, and the depth measurement error is about 10%. Existed.

【0017】本発明では、高精度な既知角度を有する三
次元形状解析装置用の校正試料として、結晶の異方性エ
ッチングによって固有の角度を有する斜面となって出現
した結晶面を用いる。図4は、本発明による角度既知の
校正試料の一例であるシリコンのマイクロピラミッドを
示す図である。図4(a)はマイクロピラミッドを上方
から見た走査電子顕微鏡像であり、図4(b)は断面の
走査電子顕微鏡像である。
In the present invention, as a calibration sample for a three-dimensional shape analyzer having a high-precision known angle, a crystal plane that appears as a slope having a specific angle due to anisotropic etching of the crystal is used. FIG. 4 is a diagram showing a silicon micropyramid which is an example of a calibration sample with a known angle according to the present invention. FIG. 4A is a scanning electron microscope image of the micropyramid viewed from above, and FIG. 4B is a scanning electron microscope image of a cross section.

【0018】シリコン結晶は、その結晶構造から(11
1)面は(100)面よりエッチングされにくい。シリ
コン基板の(100)面上にウエットエッチングによ
り、異方性エッチングを行うことにより、面方位(11
1)の四角錐状のマイクロピラミッドが得られる。エッ
チング液としては、KOH、ヒドラジン、EPW(エチ
レンジアミン−ピロカテコール−水)、TMAH(水酸
化テトラメチルアンモニウム)等を用いることができ
る。
The silicon crystal has (11)
1) The plane is less likely to be etched than the (100) plane. By performing anisotropic etching by wet etching on the (100) plane of the silicon substrate, the plane orientation (11) is obtained.
The quadrangular pyramid-shaped micro pyramid of 1) is obtained. As an etching solution, KOH, hydrazine, EPW (ethylenediamine-pyrocatechol-water), TMAH (tetramethylammonium hydroxide), or the like can be used.

【0019】作成した校正試料は、図4(a)の平面図
及び図4(b)の断面図に示されるように四角錘状の構
造(マイクロピラミッド)となっている。このマイクロ
ピラミッドの斜面部の角度は、結晶内部の原子配列の違
いによる化学的なエッチング速度の差により物理定数と
して算出され、54.74゜と求められる。そのため、
マイクロピラミッド斜面を三次元形状解析部により積分
演算することにより求められた、斜面部のz方向の情報
を、マイクロピラミッド斜面の既知角度より算出したz
方向変化量に補正することにより、正確なZ方向の校正
が行なえる。
The prepared calibration sample has a quadrangular pyramid-shaped structure (micropyramid) as shown in the plan view of FIG. 4A and the cross-sectional view of FIG. 4B. The angle of the slope of the micropyramid is calculated as a physical constant based on the difference in chemical etching rate due to the difference in the atomic arrangement inside the crystal, and is found to be 54.74 °. for that reason,
The information of the z-direction of the slope obtained by integrating the micro-pyramid slope by the three-dimensional shape analyzer is calculated from the known angle of the micro-pyramid slope.
Correction to the direction change amount enables accurate calibration in the Z direction.

【0020】校正試料は、異方性エッチングする結晶基
板として大きな基板を用いた場合には、それをそのまま
校正試料とすればよい。異方性エッチングした基板の大
きさが小さく、それだけでは取り扱い上問題がある場合
には、適当な大きさの部材表面に貼り付けて校正試料と
して使用すればよい。
When a large substrate is used as a crystal substrate for anisotropic etching, the calibration sample may be used as it is as a calibration sample. If the size of the anisotropically etched substrate is small and there is a problem in handling by itself, it may be used as a calibration sample by attaching it to a member surface of an appropriate size.

【0021】図5に、マイクロピラミッドの結晶面の概
略図及びEBSP(Electron Backscattered Diffracti
on Pattern)法による結晶面解析結果を示す。図5
(a)はマイクロピラミッドの結晶面の概略図、図5
(b)は(111)面のEBSP測定結果、図5(c)
は(100)面のEBSP測定結果である。底面部の面
方位(100)と、斜面部の面方位(111)を確認す
ることができれば、その2面の交線に生じる角度(5
5.74゜)を立証できる。図5(b)、図5(c)に
示すように、マイクロピラミッドの斜面部と底面部の結
晶面方位は、EBSPによる解析結果によりそれぞれ
(111)、(100)となり、理論値と一致した。そ
のため、マイクロピラミッドの斜面部は、55.74゜
という正確な角度情報を持つことが検証された。
FIG. 5 is a schematic view of a crystal plane of a micropyramid and an EBSP (Electron Backscattered Diffracti
4 shows the results of crystal plane analysis by the on-pattern method. FIG.
(A) is a schematic diagram of the crystal plane of the micropyramid, FIG.
(B) is the EBSP measurement result of the (111) plane, and FIG.
Is the EBSP measurement result of the (100) plane. If the plane orientation (100) of the bottom surface and the plane orientation (111) of the slope can be confirmed, the angle (5
5.74 ゜). As shown in FIGS. 5 (b) and 5 (c), the crystal plane orientations of the slope portion and the bottom portion of the micropyramid were (111) and (100), respectively, according to the result of analysis by the EBSP, which coincided with the theoretical values. . Therefore, it was verified that the slope portion of the micropyramid had accurate angle information of 55.74 °.

【0022】四分割環状反射電子検出器を用いた三次元
形状解析におけるZ校正の作業は、以下の手順で実行さ
れる。まず既知の角度情報を持つZ校正用試料を観察装
置内に挿入し、電子線を照射すると像が表示される。こ
の時、傾斜面が表示された状態で反射電子信号を取り込
む。なお、電子線照射により反射電子と共に二次電子も
放出されているので、二次電子信号を検出すれば二次電
子像を取り込むことも可能である。検出された反射電子
信号はxy方向で2次元的な積分を行うことにより、高
さ分布が求められる。信号取り込終了後、同時に取り込
んだSEM像をもとに傾斜位置での断面プロファイルを
表示し、プロファイル上の任意の2点間を測定すること
により傾斜角度が求められる。測定により得られた角度
を既知の角度にて校正することにより、Z校正が完了す
る。
The operation of Z calibration in the three-dimensional shape analysis using the four-part annular backscattered electron detector is performed in the following procedure. First, a Z-calibration sample having known angle information is inserted into the observation device, and an image is displayed when the sample is irradiated with an electron beam. At this time, the reflected electron signal is taken in a state where the inclined surface is displayed. Since secondary electrons are emitted together with reflected electrons by electron beam irradiation, a secondary electron image can be captured by detecting a secondary electron signal. The height distribution is obtained by performing a two-dimensional integration on the detected reflected electron signal in the xy directions. After the signal acquisition is completed, the cross-sectional profile at the inclined position is displayed based on the simultaneously acquired SEM images, and the inclination angle is obtained by measuring any two points on the profile. By calibrating the angle obtained by the measurement at a known angle, the Z calibration is completed.

【0023】図6は、本発明によるZ校正の処理手順を
示すフローチャートである。まず、校正試料を作成する
(S11)。校正試料がマイクロピラミッドである場
合、マイクロピラミッドはシリコン基板の異方性エッチ
ングにより作製される。その後、マイクロピラミッドは
試料台に固定された後、走査電子顕微鏡内に挿入され
(S12)、三次元形状解析により斜面部の角度を測定
する(S13)。そして、測定により得られた角度を、
異方性エッチングにより物理定数として求められる角度
(54.74゜)に校正する(S14)。その後、試料
を三次元形状解析することにより、正確な角度情報を持
つ校正データが作成される(S15)。なお、測定のた
びに作成する必要はないため、次の測定時からはステッ
プ11を省略することができる。また、同じ測定条件に
て試料を測定する際には、以前に作成した校正データを
適用することが可能となるため、ステップ11から14
までを省略することが可能である。
FIG. 6 is a flowchart showing the processing procedure of the Z calibration according to the present invention. First, a calibration sample is created (S11). When the calibration sample is a micro pyramid, the micro pyramid is created by anisotropic etching of a silicon substrate. After that, the micropyramid is fixed to the sample stage and then inserted into the scanning electron microscope (S12), and the angle of the slope is measured by three-dimensional shape analysis (S13). Then, the angle obtained by the measurement is
Calibration is performed to an angle (54.74 °) obtained as a physical constant by anisotropic etching (S14). Thereafter, calibration data having accurate angle information is created by three-dimensionally analyzing the sample (S15). Step 11 can be omitted from the next measurement because it is not necessary to create the measurement every time the measurement is performed. In addition, when measuring a sample under the same measurement conditions, the calibration data created before can be applied.
Can be omitted.

【0024】以上、三次元形状解析装置の校正試料とし
て、シリコン結晶を異方性エッチングしてできた角度既
知の傾斜面を有するマイクロピラミッドを用いる例につ
いて説明した。しかし、本発明で用いる校正試料はシリ
コン結晶の異方性エッチングによるマイクロピラミッド
に限られず、結晶の異方性エッチングによって形成され
る角度既知の傾斜面であればどのようなものでも用いる
ことが可能である。例えば、(100)面のシリコン基
板上にSiO等でマスクパターンを形成し異方性エッ
チングすると、図1に示したマイクロピラミッドをひっ
くり返したようなV形の窪みが現れるが、この窪みを構
成する(111)面(角度54.74゜)を用いてもマ
イクロピラミッドを用いた場合と同様にZ校正を行うこ
とができる。その他、ガリウム砒素(GaAs)の結晶
をBrCHOH液で異方性エッチングすることで形
成される(111)面の角度54.74゜、石英結晶を
重フッ化アンモニウム液で異方性エッチングすることで
形成される面方位の、種々の角度(77.2゜、75.
1゜、68.9゜、65.6゜、55.7゜、51.9
゜、47.7゜、40.5゜、36.3゜、32.5
゜、28.8゜、22.9゜)等を用いることができ
る。
In the above, an example has been described in which a micropyramid having an inclined surface with a known angle formed by anisotropically etching a silicon crystal is used as a calibration sample of a three-dimensional shape analyzer. However, the calibration sample used in the present invention is not limited to a micropyramid formed by anisotropic etching of a silicon crystal, and any inclined surface with a known angle formed by anisotropic etching of a crystal can be used. It is. For example, when a mask pattern is formed on a (100) plane silicon substrate with SiO 2 or the like and anisotropically etched, a V-shaped dent appears as if the micropyramid shown in FIG. 1 is turned upside down. Even when the (111) plane (angle of 54.74 °) is used, the Z calibration can be performed as in the case of using the micro pyramid. In addition, the angle of the (111) plane formed by anisotropically etching a crystal of gallium arsenide (GaAs) with a Br 2 CH 3 OH solution is 54.74 °, and a quartz crystal is anisotropic with an ammonium bifluoride solution. Various angles of the plane orientation formed by etching (77.2 °, 75.
1 ゜, 68.9 ゜, 65.6 ゜, 55.7 ゜, 51.9
゜, 47.7 ゜, 40.5 ゜, 36.3 ゜, 32.5
{28.8}, 22.9}) can be used.

【0025】図7は、電子の後方散乱係数の原子番号依
存性を示す図である。図示するように、反射(後方散
乱)電子の信号発生効率は元素に依存して変化する。四
分割環状反射電子検出器13の各検出素子13a〜13
dの反射電子の検出及び信号変換効率は、反射電子放出
量が変化するとそれに伴って変化する可能性がある。従
って、測定試料と校正試料とが異なる元素で構成されて
いる場合、反射電子放出効率が変化することによる測定
誤差が発生するため、装置校正は試料観察と同じ条件で
行なう必要がある。具体的には、校正試料を測定試料と
同一又は近似元素によって作成する必要がある。以下
に、本発明による三次元形状解析装置用の校正試料の他
の例について説明する。ここに説明する校正試料は、反
射電子の信号発生効率を試料材料と同じ、あるいはほぼ
同じにしたものである。
FIG. 7 is a diagram showing the dependence of the backscattering coefficient of electrons on the atomic number. As shown, the signal generation efficiency of reflected (backscattered) electrons changes depending on the element. Each detection element 13a to 13 of the four-section annular backscattered electron detector 13
There is a possibility that the detection efficiency and the signal conversion efficiency of the backscattered electrons of d will change as the backscattered electron emission amount changes. Therefore, when the measurement sample and the calibration sample are composed of different elements, a measurement error occurs due to a change in the backscattered electron emission efficiency, so that the device calibration must be performed under the same conditions as the sample observation. Specifically, it is necessary to prepare a calibration sample using the same or similar element as the measurement sample. Hereinafter, another example of the calibration sample for the three-dimensional shape analyzer according to the present invention will be described. The calibration sample described here has the same or substantially the same signal generation efficiency of the reflected electrons as the sample material.

【0026】図8は、測定試料と同じ又は近似する原子
番号の元素によって作製された校正試料の一例を説明す
る断面模式図である。この例の校正試料は、異方性エッ
チングによって作製した既知角度の斜面を有する結晶、
例えばシリコンのマイクロピラミッド1上にその結晶と
は異なる材料(試料と同じ又は近似した材料)の被膜1
4を均一に成膜して作製したものである。皮膜14は、
スパッタ法もしくはCVD法あるいはエピタキシャル成
長法によりマイクロピラミッド1上に成膜する。例え
ば、数十μm程度の大きさのマイクロピラミッドに、そ
の高さの十分の一程度の膜厚に均一に成膜する。そし
て、成膜したマイクロピラミッドの斜面部の角度を用い
て寸法校正を行う。この校正試料によると、形状解析を
行う物質と同一、もしくは近似元素で校正試料を作製で
きるため、反射電子発生効率の違いによる測定誤差を低
減できる。
FIG. 8 is a schematic cross-sectional view for explaining an example of a calibration sample made of an element having the same or similar atomic number as the measurement sample. The calibration sample of this example is a crystal having a slope of a known angle made by anisotropic etching,
For example, a coating 1 made of a material different from the crystal (the same or similar material as the sample) on a silicon micropyramid 1
4 was formed by uniformly forming a film. The coating 14
A film is formed on the micropyramid 1 by a sputtering method, a CVD method, or an epitaxial growth method. For example, a film is uniformly formed on a micropyramid having a size of about several tens of μm to a thickness of about one tenth of the height. Then, dimensional calibration is performed using the angle of the inclined surface of the formed micropyramid. According to this calibration sample, since the calibration sample can be prepared using the same or similar element as the substance to be subjected to shape analysis, the measurement error due to the difference in backscattered electron generation efficiency can be reduced.

【0027】図9は、測定試料と同じ又は近似する原子
番号の元素によって作製された校正試料の他の例の製作
工程を示す断面模式図である。この校正試料は、図9
(a)に示すように、異方性エッチングによって作製し
た既知角度の斜面を有する結晶、例えばシリコンのマイ
クロピラミッド1上にその結晶とは異なる材料(試料と
同じ又は近似した材料)の被膜14を均一に成膜し、そ
の後、図9(b)に示すように、エッチングにより元の
結晶を除去して作製した膜状の校正試料である。例え
ば、シリコンのエッチング液には、ふっ酸と硝酸に希釈
液として酢酸あるいは水を加えたふっ硝酸エッチング液
を用いることができる。この溶液は結晶方位依存性が無
いので、均一に基板部のシリコンを溶解することができ
る。成膜材料として、溶液に作用されない金、白金、ダ
イヤモンド等を用いれば、レプリカを作成することがで
きる。
FIG. 9 is a schematic cross-sectional view showing a manufacturing process of another example of a calibration sample made of an element having the same or similar atomic number as the measurement sample. This calibration sample is shown in FIG.
As shown in (a), a coating 14 made of a material different from the crystal (the same or similar material as the sample) is formed on a crystal having a slope having a known angle formed by anisotropic etching, for example, a silicon micropyramid 1. As shown in FIG. 9B, the film-shaped calibration sample is formed by removing the original crystal by etching. For example, as a silicon etchant, a nitric acid etchant obtained by adding acetic acid or water as a diluent to hydrofluoric acid and nitric acid can be used. Since this solution has no dependence on the crystal orientation, silicon in the substrate can be uniformly dissolved. When gold, platinum, diamond, or the like that is not affected by a solution is used as a film forming material, a replica can be formed.

【0028】図10は、測定試料と同じ又は近似する原
子番号の元素によって作製された校正試料の他の例の製
作工程を示す断面模式図である。この校正試料は、例え
ば、図9の方法で作製したレプリカ又はSiにSiO
をマスキングしたもののエッチングにより得られるマイ
クロピラミッドの雌型を鋳型として鋳型とは異なる材料
のマイクロピラミッドを作製したものである。図10
(a)(b)に示すように、鋳型14とは異なる材料1
5をエピタキシャル成長等により鋳型に充填し、図10
(c)に示すように、鋳型から剥離した充填材料15を
マイクロピラミッドとして使用する。鋳型は必ずしも薄
膜である必要はない。例えば樹脂状物質でマイクロピラ
ミッドの型取りをしてもよい。この場合、鋳型を繰り返
し使用することにより多数の校正試料を作製することが
でき、製造コストが低減される。図8,9,10で説明
した校正試料を用いることにより、校正試料の材料選択
性が増し、反射電子発生効率の違いに起因する測定誤差
を低減してより高精度な深さ測定が可能になる。
FIG. 10 is a schematic cross-sectional view showing a manufacturing process of another example of the calibration sample manufactured by the element having the same or similar atomic number as the measurement sample. This calibration sample is for example, SiO 2 on the replica or Si was prepared by the method of FIG. 9
The micropyramid made of a material different from that of the template was prepared by using the female mold of the micropyramid obtained by etching the mask after etching as a template. FIG.
(A) As shown in (b), a material 1 different from the mold 14 is used.
10 was filled into a mold by epitaxial growth or the like, and FIG.
As shown in (c), the filling material 15 peeled from the mold is used as a micro pyramid. The mold need not necessarily be a thin film. For example, a micro pyramid may be molded with a resinous material. In this case, a large number of calibration samples can be manufactured by repeatedly using the mold, and the manufacturing cost is reduced. By using the calibration sample described with reference to FIGS. 8, 9, and 10, the material selectivity of the calibration sample is increased, and a measurement error caused by a difference in backscattered electron generation efficiency is reduced to enable more accurate depth measurement. Become.

【0029】[0029]

【発明の効果】本発明によれば、結晶の異方性エッチン
グの物理化学作用により生じる正確な角度を有する構造
物を用いてZ校正を行うことができるため、誤差5%以
内の高精度な深さ測定が可能となる。
According to the present invention, the Z-calibration can be performed using a structure having an accurate angle generated by the physicochemical action of the anisotropic etching of the crystal. Depth measurement becomes possible.

【図面の簡単な説明】[Brief description of the drawings]

【図1】三次元形状解析手段を備えた走査電子顕微鏡の
概略図。
FIG. 1 is a schematic diagram of a scanning electron microscope provided with a three-dimensional shape analysis unit.

【図2】四分割環状反射電子検出器からの検出信号に基
づく試料表面の三次元形状解析方法を説明する概略図。
FIG. 2 is a schematic diagram illustrating a method for analyzing a three-dimensional shape of a sample surface based on a detection signal from a four-piece annular backscattered electron detector.

【図3】試料上x方向の微小区間における角度をθ
高さ変化量ΔZの関係図。
FIG. 3 is a graph showing the relationship between an angle θ x and a height change ΔZ in a minute section in the x direction on a sample.

【図4】シリコン結晶を異方性エッチングした際に生じ
る構造物(マイクロピラミッド)の観察像。
FIG. 4 is an observation image of a structure (micro pyramid) generated when anisotropically etching a silicon crystal.

【図5】マイクロピラミッドの結晶面の概略図及び斜面
部の結晶面の測定結果を示す図。
FIGS. 5A and 5B are a schematic diagram of a crystal plane of a micropyramid and a diagram showing a measurement result of a crystal plane of a slope portion.

【図6】本発明によるZ校正の処理手順を示すフローチ
ャート。
FIG. 6 is a flowchart showing a Z calibration processing procedure according to the present invention.

【図7】電子の後方散乱係数の原子番号依存性を示す
図。
FIG. 7 is a diagram showing the dependence of the backscattering coefficient of electrons on the atomic number.

【図8】本発明によるZ校正試料の他の例を示す概略断
面図。
FIG. 8 is a schematic sectional view showing another example of the Z calibration sample according to the present invention.

【図9】本発明によるZ校正試料の他の例を示す概略断
面図。
FIG. 9 is a schematic sectional view showing another example of the Z calibration sample according to the present invention.

【図10】本発明によるZ校正試料の他の例の製作工程
を示す概略断面図。
FIG. 10 is a schematic sectional view showing a manufacturing process of another example of the Z calibration sample according to the present invention.

【符号の説明】[Explanation of symbols]

1…シリコン基板をエッチングした際に生じる構造物
(マイクロピラミッド)、2…電子銃、3…電子線、4
…集束レンズ、5…試料ステージ、6…試料、7…偏向
コイル、8…反射電子、9…二次電子、10…走査電子
顕微鏡、11…二次電子検出器、12…三次元形状解析
部、13…4分割環状反射電子検出器、14…被膜、1
5…異なる材料のマイクロピラミッド
DESCRIPTION OF SYMBOLS 1 ... Structure (micro pyramid) produced when silicon substrate is etched, 2 ... Electron gun, 3 ... Electron beam, 4
... focusing lens, 5 ... sample stage, 6 ... sample, 7 ... deflection coil, 8 ... reflected electron, 9 ... secondary electron, 10 ... scanning electron microscope, 11 ... secondary electron detector, 12 ... three-dimensional shape analysis unit , 13 ... 4-split annular backscattered electron detector, 14 ... Coating, 1
5. Micropyramid of different materials

───────────────────────────────────────────────────── フロントページの続き (72)発明者 多持 隆一郎 茨城県ひたちなか市大字市毛1040番地 株 式会社日立サイエンスシステムズ内 (72)発明者 中川 美音 茨城県ひたちなか市大字市毛1040番地 株 式会社日立サイエンスシステムズ内 (72)発明者 武藤 篤 茨城県ひたちなか市大字市毛1040番地 株 式会社日立サイエンスシステムズ内 (72)発明者 高橋 要 茨城県ひたちなか市大字市毛882番地 株 式会社日立製作所計測器グループ内 Fターム(参考) 2F067 AA04 AA24 AA32 EE04 FF14 GG01 HH06 JJ05 KK04 KK08 LL00 QQ02 RR19  ──────────────────────────────────────────────────続 き Continuing on the front page (72) Inventor Ryuichiro Tamochi 1040 Ichimo Ichiki, Hitachinaka City, Ibaraki Prefecture Inside Hitachi Science Systems, Ltd. Within Hitachi Science Systems (72) Inventor Atsushi Muto 1040 Ichimo Ichimo, Hitachinaka City, Ibaraki Prefecture Inside Hitachi Science Systems Co., Ltd. Group F-term (reference) 2F067 AA04 AA24 AA32 EE04 FF14 GG01 HH06 JJ05 KK04 KK08 LL00 QQ02 RR19

Claims (6)

【特許請求の範囲】[Claims] 【請求項1】 電子線を発生する電子銃と、電子線を集
束し照射する手段と、電子線を試料上に走査するための
偏向手段と、試料表面から発生した反射電子を検出する
四分割環状検出器と、前記四分割環状検出器で検出され
た信号を演算処理して試料表面の三次元形状解析を行う
処理部とを備える三次元形状解析装置の校正に使用され
る三次元形状解析装置用校正部材において、 当該校正部材は結晶表面を異方性エッチングすることに
より生じた角度既知の傾斜面を有することを特徴とする
三次元形状解析装置用校正部材。
1. An electron gun for generating an electron beam, means for converging and irradiating an electron beam, deflection means for scanning an electron beam on a sample, and four divisions for detecting reflected electrons generated from the surface of the sample. Three-dimensional shape analysis used for calibration of a three-dimensional shape analyzer including an annular detector and a processing unit for performing arithmetic processing on signals detected by the four-part annular detector and performing three-dimensional shape analysis of a sample surface A calibration member for a three-dimensional shape analysis device, wherein the calibration member has an inclined surface with a known angle generated by anisotropically etching a crystal surface.
【請求項2】 請求項1記載の三次元形状解析装置用校
正部材において、前記校正部材は、シリコン結晶基板の
表面を異方性エッチングすることにより生じた四角錘状
の構造物を含むことを特徴とする請求項1記載の三次元
形状解析装置用校正部材。
2. The calibration member for a three-dimensional shape analyzer according to claim 1, wherein the calibration member includes a quadrangular pyramid-shaped structure generated by anisotropically etching the surface of a silicon crystal substrate. The calibration member for a three-dimensional shape analysis device according to claim 1.
【請求項3】 電子線を発生する電子銃と、電子線を集
束し照射する手段と、電子線を試料上に走査するための
偏向手段と、試料表面から発生した反射電子を検出する
四分割環状検出器と、前記四分割環状検出器で検出され
た信号を演算処理して試料表面の三次元形状解析を行う
処理部とを備える三次元形状解析装置の校正に使用され
る三次元形状解析装置用校正部材において、 当該校正部材は、結晶表面を異方性エッチングすること
により生じた角度既知の傾斜面に前記結晶とは異なる材
料の被膜を形成したものであることを特徴とする三次元
形状解析装置用校正部材。
3. An electron gun for generating an electron beam, a means for focusing and irradiating the electron beam, a deflecting means for scanning the electron beam on a sample, and a quadrant for detecting reflected electrons generated from the sample surface. Three-dimensional shape analysis used for calibration of a three-dimensional shape analyzer including an annular detector and a processing unit for performing arithmetic processing on signals detected by the four-part annular detector and performing three-dimensional shape analysis of a sample surface In the device calibration member, the calibration member is formed by forming a film of a material different from the crystal on an inclined surface having a known angle generated by anisotropically etching the crystal surface. Calibration member for shape analyzer.
【請求項4】 電子線を発生する電子銃と、電子線を集
束し照射する手段と、電子線を試料上に走査するための
偏向手段と、試料表面から発生した反射電子を検出する
四分割環状検出器と、前記四分割環状検出器で検出され
た信号を演算処理して試料表面の三次元形状解析を行う
処理部とを備える三次元形状解析装置の校正に使用され
る三次元形状解析装置用校正部材において、 当該校正部材は、結晶表面を異方性エッチングすること
により生じた角度既知の傾斜面に前記結晶とは異なる材
料の被膜を形成した後、それを剥離してレプリカとした
ものであることを特徴とする三次元形状解析装置用校正
部材。
4. An electron gun for generating an electron beam, means for focusing and irradiating the electron beam, deflecting means for scanning the electron beam on the sample, and four divisions for detecting reflected electrons generated from the surface of the sample. Three-dimensional shape analysis used for calibration of a three-dimensional shape analyzer including an annular detector and a processing unit for performing arithmetic processing on signals detected by the four-part annular detector and performing three-dimensional shape analysis of a sample surface In the calibration member for the device, the calibration member, after forming a film of a material different from the crystal on the inclined surface with a known angle generated by anisotropically etching the crystal surface, and then peeled off the replica. A calibration member for a three-dimensional shape analyzer, wherein
【請求項5】 電子線を発生する電子銃と、電子線を集
束し照射する手段と、電子線を試料上に走査するための
偏向手段と、試料表面から発生した反射電子を検出する
四分割環状検出器と、前記四分割環状検出器で検出され
た信号を演算処理して試料表面の三次元形状解析を行う
処理部とを備える三次元形状解析装置の校正に使用され
る三次元形状解析装置用校正部材において、 当該校正部材は、結晶表面を異方性エッチングすること
により生じた角度既知の傾斜面を有する表面を鋳型とし
て前記結晶とは異なる材料を充填して形成したものであ
ることを特徴とする三次元形状解析装置用校正部材。
5. An electron gun for generating an electron beam, means for focusing and irradiating the electron beam, deflecting means for scanning the electron beam on a sample, and four divisions for detecting reflected electrons generated from the surface of the sample. Three-dimensional shape analysis used for calibration of a three-dimensional shape analyzer including an annular detector and a processing unit for performing arithmetic processing on signals detected by the four-part annular detector and performing three-dimensional shape analysis of a sample surface In the device calibration member, the calibration member is formed by filling a material different from the crystal using a surface having an inclined surface with a known angle generated by anisotropically etching the crystal surface as a template. A calibration member for a three-dimensional shape analysis device, characterized in that:
【請求項6】 試料表面を集束した電子線で照射し、試
料表面から反射された反射電子を四分割環状反射電子検
出器で検出し、前記四分割環状反射電子検出器の検出信
号を二次元的に積分して試料表面の高さ分布を測定する
三次元形状解析方法において、 請求項1〜5のいずれか1項に記載した三次元形状解析
装置用校正部材を用いて測定結果を校正することを特徴
とする三次元形状解析方法。
6. A sample surface is irradiated with a focused electron beam, reflected electrons reflected from the sample surface are detected by a four-segment annular backscattered electron detector, and a detection signal of the four-segment annular backscattered electron detector is two-dimensionally detected. In a three-dimensional shape analysis method for measuring the height distribution of a sample surface by performing integral integration, a measurement result is calibrated using the calibration member for a three-dimensional shape analysis device according to any one of claims 1 to 5. A three-dimensional shape analysis method, characterized in that:
JP2000303379A 2000-05-12 2000-10-03 Calibration member for three-dimensional shape analyzer and method for three-dimensional shape analysis Pending JP2002031520A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2000303379A JP2002031520A (en) 2000-05-12 2000-10-03 Calibration member for three-dimensional shape analyzer and method for three-dimensional shape analysis

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2000-144574 2000-05-12
JP2000144574 2000-05-12
JP2000303379A JP2002031520A (en) 2000-05-12 2000-10-03 Calibration member for three-dimensional shape analyzer and method for three-dimensional shape analysis

Publications (1)

Publication Number Publication Date
JP2002031520A true JP2002031520A (en) 2002-01-31

Family

ID=26592023

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000303379A Pending JP2002031520A (en) 2000-05-12 2000-10-03 Calibration member for three-dimensional shape analyzer and method for three-dimensional shape analysis

Country Status (1)

Country Link
JP (1) JP2002031520A (en)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005183369A (en) * 2003-11-25 2005-07-07 Hitachi High-Technologies Corp Method and device for observing sample
JP2006003235A (en) * 2004-06-17 2006-01-05 Topcon Corp Electron beam system and datum sample therefor
JP2007187538A (en) * 2006-01-13 2007-07-26 Hitachi High-Technologies Corp Charged particle beam device and image acquisition technique using the same
JP2008282761A (en) * 2007-05-14 2008-11-20 Hitachi High-Technologies Corp Scanning electron microscopy and three-dimensional shape measuring device using it
US7935927B2 (en) 2003-11-25 2011-05-03 Hitachi High-Technologies Corporation Method and apparatus for observing a specimen
WO2012121834A2 (en) * 2011-03-04 2012-09-13 Kla-Tencor Corporation Apparatus and methods for real-time three-dimensional sem imaging and viewing of semiconductor wafers
JP2016057216A (en) * 2014-09-11 2016-04-21 株式会社アドバンテスト Pattern height measuring apparatus and pattern height measuring method
JP2020139829A (en) * 2019-02-28 2020-09-03 株式会社堀場製作所 Three-dimensional image generation device and coefficient calculation method for three-dimensional image generation device

Cited By (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7935927B2 (en) 2003-11-25 2011-05-03 Hitachi High-Technologies Corporation Method and apparatus for observing a specimen
JP2005183369A (en) * 2003-11-25 2005-07-07 Hitachi High-Technologies Corp Method and device for observing sample
JP2013069693A (en) * 2003-11-25 2013-04-18 Hitachi High-Technologies Corp Method of observing specimen
JP4500653B2 (en) * 2003-11-25 2010-07-14 株式会社日立ハイテクノロジーズ Sample observation method and apparatus
JP2006003235A (en) * 2004-06-17 2006-01-05 Topcon Corp Electron beam system and datum sample therefor
JP4532177B2 (en) * 2004-06-17 2010-08-25 株式会社トプコン Electron beam system
JP2007187538A (en) * 2006-01-13 2007-07-26 Hitachi High-Technologies Corp Charged particle beam device and image acquisition technique using the same
JP2008282761A (en) * 2007-05-14 2008-11-20 Hitachi High-Technologies Corp Scanning electron microscopy and three-dimensional shape measuring device using it
US7705304B2 (en) 2007-05-14 2010-04-27 Hitachi High-Technologies Corporation Scanning electron microscope and three-dimensional shape measuring device that used it
WO2012121834A2 (en) * 2011-03-04 2012-09-13 Kla-Tencor Corporation Apparatus and methods for real-time three-dimensional sem imaging and viewing of semiconductor wafers
WO2012121834A3 (en) * 2011-03-04 2013-01-03 Kla-Tencor Corporation Apparatus and methods for real-time three-dimensional sem imaging and viewing of semiconductor wafers
JP2014507781A (en) * 2011-03-04 2014-03-27 ケーエルエー−テンカー コーポレイション Apparatus and method for real-time three-dimensional SEM imaging and viewing of semiconductor wafers
KR101907231B1 (en) 2011-03-04 2018-10-11 케이엘에이-텐코 코포레이션 Apparatus and methods for real-time three-dimensional sem imaging and viewing of semiconductor wafers
JP2016057216A (en) * 2014-09-11 2016-04-21 株式会社アドバンテスト Pattern height measuring apparatus and pattern height measuring method
JP2020139829A (en) * 2019-02-28 2020-09-03 株式会社堀場製作所 Three-dimensional image generation device and coefficient calculation method for three-dimensional image generation device

Similar Documents

Publication Publication Date Title
US6218264B1 (en) Method of producing a calibration standard for 2-D and 3-D profilometry in the sub-nanometer range
Dixson et al. Traceable calibration of critical-dimension atomic force microscope linewidth measurements with nanometer uncertainty
EP0345772B1 (en) Pattern configuration measuring apparatus
US7576317B1 (en) Calibration standard for a dual beam (FIB/SEM) machine
Hübner et al. Downwards to metrology in nanoscale: determination of the AFM tip shape with well-known sharp-edged calibration structures
US6059981A (en) Fiducial marks for charged-particle-beam exposure apparatus and methods for forming same
US5804460A (en) Linewidth metrology of integrated circuit structures
JP2002031520A (en) Calibration member for three-dimensional shape analyzer and method for three-dimensional shape analysis
US6358860B1 (en) Line width calibration standard manufacturing and certifying method
US8695111B2 (en) Video rate-enabling probes for atomic force microscopy
JP3488745B2 (en) Dimension calibration sample mounting stage and dimensional calibration sample
JPH01262403A (en) Probe and its manufacture
Tortonese et al. Sub-50-nm isolated line and trench width artifacts for CD metrology
JP2018128307A (en) Observation method and sample production method
US7682844B2 (en) Silicon substrate processing method for observing defects in semiconductor devices and defect-detecting method
JP2010085376A (en) Method for measuring pattern using scanning electron microscope
JP2694115B2 (en) Calibration / measurement reference structure, method for forming the same, and measurement method using the same
Cresswell et al. CD reference features with sub-five nanometer uncertainty
RU2704390C2 (en) Method of three-dimensional reconstruction of surface of sample using images obtained using raster electronic microscope
Wang et al. Measurement of deep groove structures using a self-fabricated long tip in a large range metrological atomic force microscope
JP2008224258A (en) Charged particle beam apparatus
JPH1131655A (en) Mark substrate, manufacture of mark substrate, electron-beam drawing apparatus and adjusting method for optical system of electron-beam drawing apparatus
Grigorov et al. Nanosized reference materials based on track-etched polymer membranes.
JPH03211746A (en) Method and apparatus for measuring ion beam diameter
JPH11340131A (en) Manufacture of semiconductor integrated circuit

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20040219

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20051014

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060523

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060724

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20060822