JP2002030373A - High specific gravity composite material - Google Patents

High specific gravity composite material

Info

Publication number
JP2002030373A
JP2002030373A JP2000215900A JP2000215900A JP2002030373A JP 2002030373 A JP2002030373 A JP 2002030373A JP 2000215900 A JP2000215900 A JP 2000215900A JP 2000215900 A JP2000215900 A JP 2000215900A JP 2002030373 A JP2002030373 A JP 2002030373A
Authority
JP
Japan
Prior art keywords
specific gravity
composite material
weight
high specific
present
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2000215900A
Other languages
Japanese (ja)
Inventor
Shigeya Sakaguchi
茂也 坂口
Masahiro Yamauchi
正博 山内
Tetsunori Kitada
哲則 北田
Yasunao Kai
安直 甲斐
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Tungsten Co Ltd
Original Assignee
Nippon Tungsten Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Tungsten Co Ltd filed Critical Nippon Tungsten Co Ltd
Priority to JP2000215900A priority Critical patent/JP2002030373A/en
Publication of JP2002030373A publication Critical patent/JP2002030373A/en
Withdrawn legal-status Critical Current

Links

Landscapes

  • Powder Metallurgy (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide an inexpensive W-based high specific gravity composite material solved in the defects of the conventional integrated type material as the use for damping, having a high damping capacity which has not been exhibited heretofore, high in workability, easy to be formed into various shapes and having a high radiation shielding capacity which has not been exhibited heretofore as the use for radiation shielding. SOLUTION: By obtaining a sintered body containing one or more kinds selected from In, Sn, Sb, Tl and Bi of 15 to 90 wt.%, and the balance W or a material in which one or more kinds selected from In, Sn, Sb, Tl and Bi of 15 to 90 wt.% are infiltrated into a W skeleton containing one or more kinds selected from Ni, Cu and Co of 0.3 to 3 wt.% on the surface, the inexpensive high specific gravity composite material provided with good damping and radiation shielding properties can be obtained.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、制振、放射線遮蔽
等に利用される高比重複合材料に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a high specific gravity composite material used for vibration suppression, radiation shielding and the like.

【0002】[0002]

【従来の技術】制振材料のタイプは一体型か、板を張合
わせた積層型とに大別される。最近は積層型のひとつで
ある制振鋼板が開発されている。制振鋼板は鋼板と樹脂
あるいはその他の材料との積層構造であるため、溶接性
や成形加工性あるいは製品の大きさや形状に致命的な制
約があり、従って、主として容器か覆いの用途で大きな
成果が報告されている。これに対し、一体型構造からな
る材料はそのような制約がなく、これまでに多くの研究
がある。Mn−Cu合金、Cu−Mn合金、アルミブロ
ンズ、マグネシュウム合金、ニチノールなどが知られて
いる。実際にはCuをベースとしてCu−Mn系合金が
開発されてきている。しかしながら、これらはいずれも
鋳造材であり、加工性に難があり、性能も不十分であっ
た。また、従来の放射線遮蔽に利用される合金にはステ
ンレス、鉛、ヘビーアロイがある。しかし、ステンレス
及び鉛は比重が小さく、遮蔽性が不十分であり所定の性
能を確保するたには容積を増す必要がある。鉛はそれ自
体毒性があり、廃棄後もその害毒は持続するため環境保
全の立場により使用が制限される傾向にある。一方、ヘ
ビーアロイは遮蔽性に優れているが経済的でないなどの
欠点がある。
2. Description of the Related Art Vibration damping materials are broadly classified into an integral type and a laminated type in which plates are laminated. Recently, damping steel sheets, which are one of the laminated types, have been developed. Since the damping steel sheet has a laminated structure of steel sheet and resin or other materials, there is a fatal restriction on weldability, formability, and size and shape of the product, and therefore, great results are mainly obtained for container or cover applications. Have been reported. On the other hand, materials having an integral structure do not have such restrictions, and there are many studies so far. Mn-Cu alloys, Cu-Mn alloys, aluminum bronze, magnesium alloys, nitinol and the like are known. Actually, Cu-Mn based alloys have been developed based on Cu. However, these are all cast materials, and have poor workability and insufficient performance. Alloys used for conventional radiation shielding include stainless steel, lead, and heavy alloys. However, stainless steel and lead have low specific gravities and insufficient shielding properties, and therefore, have to be increased in volume to ensure predetermined performance. Lead itself is toxic, and its toxicity persists even after disposal, so its use tends to be limited by environmental protection. On the other hand, heavy alloys have excellent shielding properties but are disadvantageous in that they are not economical.

【0003】[0003]

【発明が解決しようとする課題】本発明は、制振用途と
して従来の一体型材料の欠点を解消し、従来にない高い
制振性能を有し、加工性がよく、多様な形状に対応で
き、また、放射線遮蔽用途として、従来にない高い放射
線遮蔽性能を有し、毒性の少ないWベースの低価格の高
比重複合材料を提供することを目的とする。
SUMMARY OF THE INVENTION The present invention eliminates the drawbacks of conventional integrated materials for vibration damping applications, has unprecedented high vibration damping performance, has good workability, and can cope with various shapes. It is another object of the present invention to provide a low-priced, low-cost, high-specific-gravity W-based composite material having high radiation shielding performance, which has never been achieved before, as a radiation shielding application.

【0004】[0004]

【課題を解決するための手段】本発明は、上述の観点か
ら高比重であるWに注目して研究を行った結果、制振、
放射線遮蔽性を備えた高比重複合材料を得るためIn、
Sn、Sb、Tl、Biのうち1種以上の粉末を15〜
90重量%と残部W粉末を混合、プレス等の成形後、焼
結することを特徴とする。In、Sn、Sb、Tl、B
iのうち1種以上が15重量%より小さいと、液相の量
が不足して十分な焼結体強度が得られない。また90重
量%より大きくなると、比重が低下し、制振性、放射線
遮蔽性の向上が望めないので、In、Sn、Sb、T
l、Biの種以上の量としては15〜90重量%がよ
い。また、焼結法に比べて経済的な溶浸法で製造する場
合、濡れ性が悪く溶浸しないため、溶浸時の濡れ性を改
善するためにIn、Sn、Sb、Tl、Biのうち1種
以上15〜90重量%を、Ni、Cu、Coのうち1種
以上を0.3〜3重量%を表面に含有したWスケルトン
に溶浸させたことを特徴とする。Ni、Cu、Coのう
ち1種以上が0.3重量%より小さいと濡れ性が悪くな
り溶浸しない。また3重量%より大きくなると比重が低
下し、制振性、放射線遮蔽性の向上が望めないので、N
i、Cu、Coの1種以上の量としては0.3〜3重量
%が望ましい。ここで、Wは請求項3及び4に記した様
に2種類、または3種類の粒径の粉末を組み合わせた材
料を使用し、In、Sn、Sb、Tl、Biのうち1種
以上を15〜90重量%溶浸させることによりタングス
テン粒子が最密充填された高比重複合材料が得られるよ
うにした。比重が10より小さいと、制振性、放射線遮
蔽性が十分でなく、比重が17より大きいと、Wの使用
量が多くなるだけで制振性、放射線遮蔽性は比重が17
のものとかわらずコスト面で不経済となるので、比重は
10以上、17以下であればよい。本発明はW−(0.
3〜3)重量%Ni粉末をカーボン型にタッピング充填
後、あるいはW−(0.3〜3)重量%Niの加圧成形
体の上にBiの鋳塊を置いて800℃以上の水素気流中
で溶浸することにより得ることができる。
According to the present invention, as a result of conducting research focusing on W having a high specific gravity from the above viewpoint, vibration suppression,
In order to obtain a high specific gravity composite material having radiation shielding properties, In,
One or more powders of Sn, Sb, Tl, Bi
It is characterized in that 90% by weight and the remainder W powder are mixed, molded by pressing or the like, and then sintered. In, Sn, Sb, Tl, B
If at least one of i is less than 15% by weight, the amount of the liquid phase is insufficient, and sufficient sintered body strength cannot be obtained. On the other hand, if it exceeds 90% by weight, the specific gravity decreases, and it is not possible to improve the vibration damping property and the radiation shielding property, so that In, Sn, Sb, T
The amount of the species 1 and Bi is preferably 15 to 90% by weight. In the case of manufacturing by the infiltration method which is more economical than the sintering method, since wettability is poor and infiltration is not performed, in order to improve wettability at the time of infiltration, In, Sn, Sb, Tl, and Bi At least one of 15 to 90% by weight is infiltrated into a W skeleton containing 0.3 to 3% by weight of one or more of Ni, Cu, and Co on a surface thereof. If at least one of Ni, Cu, and Co is smaller than 0.3% by weight, the wettability is deteriorated and no infiltration occurs. On the other hand, if it exceeds 3% by weight, the specific gravity decreases, and it is not possible to expect improvement in vibration damping properties and radiation shielding properties.
The amount of at least one of i, Cu, and Co is desirably 0.3 to 3% by weight. Here, W is a material obtained by combining powders of two or three kinds of particle diameters as described in claims 3 and 4, and one or more of In, Sn, Sb, Tl, and Bi are used for 15 or more. A high specific gravity composite material in which tungsten particles are closest packed is obtained by infiltrating by ~ 90 wt%. When the specific gravity is less than 10, the vibration damping property and the radiation shielding property are not sufficient, and when the specific gravity is more than 17, the vibration damping property and the radiation shielding property are only 17 by increasing the usage of W.
Since the cost is uneconomical regardless of the specific gravity, the specific gravity may be 10 or more and 17 or less. The present invention provides W- (0.
3-3) A hydrogen gas stream of 800 ° C. or more after tapping filling of a weight% Ni powder into a carbon mold or placing an ingot of Bi on a pressed compact of W- (0.3-3) weight% Ni It can be obtained by infiltrating in the inside.

【0005】[0005]

【発明の実施の形態】請求項1記載の発明は、In、S
n、Sb、Tl、Biのうち1種以上を15〜90重量
%含有し、残部がWからなる高比重複合材料でありCu
−Mn系合金、ステンレス、鉛と比較してもこれら以上
の制振、放射線遮蔽性を備えている。請求項2記載の発
明は、Ni、Cu、Coのうち1種以上を0.3〜3重
量%含有し、In、Sn、Sb、Tl、Biのうち1種
以上を15〜90重量%含有し、残部がWからなること
を特徴とするが、請求項1記載の本発明を焼結法に比べ
て経済的な溶浸法で製造する場合、濡れ性が悪く溶浸し
ないため、溶浸時の濡れ性を改善するためにIn、S
n、Sb、Tl、Biのうち1種以上15〜90重量%
を、Ni、Cu、Coのうち1種以上を0.3〜3重量
%を表面に含有したWスケルトンに溶浸させて製造する
ものであり、Cu−Mn系合金、ステンレス、鉛と比較
してもこれら以上の制振、放射線遮蔽性を備えており、
ヘビーアロイにくらべると経済的である。請求項3記載
の発明はWの粒子の分布が異なる粒子群を組み合わせる
ことによってWの充填性を最密充填となるように改善
し、Wの持つ制振、放射線遮蔽効果を高めるものであ
る。請求項4の発明はその粒子群の具体的粒度及び配合
比であり、この配合にすることによってW粒子の充填性
が改善され、最密充填となり、本発明の材料の持つ制
振、放射線遮蔽効果を高めることが出来る。請求項5に
記載の発明は、比重が10〜17であることを特徴とす
る請求項1から請求項4のいずれかに記載の高比重複合
材料であり、比重が10より小さいと従来利用されてい
るCu−Mn系合金、ステンレス、鉛と制振、放射線遮
蔽性が同等であり優位性がない。比重が17ではヘビー
アロイとほぼ同等の制振、放射線遮蔽性を有する。以下
実施例により、本発明を詳細に説明する。
DESCRIPTION OF THE PREFERRED EMBODIMENTS The invention according to claim 1 is characterized in that In, S
a high specific gravity composite material containing 15 to 90% by weight of at least one of n, Sb, Tl and Bi, with the balance being W
-Has vibration damping and radiation shielding properties higher than those of Mn-based alloy, stainless steel and lead. The invention according to claim 2 contains at least one of Ni, Cu, and Co at 0.3 to 3% by weight, and at least one of In, Sn, Sb, Tl, and Bi at 15 to 90% by weight. The remaining portion is made of W. However, when the present invention according to claim 1 is manufactured by an infiltration method which is more economical than the sintering method, wettability is poor and infiltration is not performed. In, S to improve wettability at the time
at least one of n, Sb, Tl, and Bi in an amount of 15 to 90% by weight
Is produced by infiltrating at least one of Ni, Cu, and Co into a W skeleton containing 0.3 to 3% by weight on the surface, and is compared with Cu-Mn alloy, stainless steel, and lead. Even more than these, it has vibration suppression and radiation shielding properties,
It is more economical than heavy alloys. The third aspect of the present invention is to improve the packing property of W so as to be the closest packing by combining a group of particles having different distributions of W particles, and to enhance the vibration damping and radiation shielding effects of W. The invention according to claim 4 relates to the specific particle size and the compounding ratio of the particle group. By adopting this compounding, the filling property of the W particles is improved, the packing becomes close-packed, and the material of the present invention has vibration damping and radiation shielding. The effect can be enhanced. The invention according to claim 5 is the high specific gravity composite material according to any one of claims 1 to 4, wherein the specific gravity is from 10 to 17, and if the specific gravity is less than 10, it is conventionally used. Vibration damping and radiation shielding properties are the same as those of Cu-Mn-based alloys, stainless steel, and lead, and there is no advantage. At a specific gravity of 17, it has almost the same vibration damping and radiation shielding properties as a heavy alloy. Hereinafter, the present invention will be described in detail with reference to examples.

【0006】[0006]

【実施例】本発明の高比重複合材料と比較試料及びステ
ンレス、鉛、ヘビーアロイとを用いて物性試験用試料、
γ線遮蔽テスト用試料(厚み:20mm)を作成し、比
重、γ線透過率、制振、遮蔽性能について比較した。 実施例1 W粉末を50重量%、Sn粉末を5重量%、Bi粉末を
45重量%混合し成形後、900℃で焼結して本発明の
高比重複合材料を製造した。比較試料としてW粉末を5
重量%、Sn粉末を5重量%、Bi粉末を90重量%混
合後、同条件で製造したものと市販のステンレス、鉛、
ヘビーアロイを用いた。前記本発明と同系の成分で含有
成分量が異なるもの、ステンレス、鉛の比重はそれぞれ
9.7、8.0、11.2であった。本発明の高比重複
合材料の比重は12.5でありヘビーアロイの16.8
よりは小であるが、本発明と同系の成分で含有成分量が
異なるもの、ステンレス、鉛に比べて高比重であった。
γ線透過率を比較したところ、ヘビーアロイを1とした
とき、本発明と同系の成分で含有成分量が異なるものは
1.67、ステンレス、鉛はそれぞれ2.2と1.54
であった。本発明の高比重複合材料は1.33であり本
発明と同系の成分で含有成分量が異なるもの、ステンレ
ス、鉛に比べて放射線遮蔽性に優れることがわかった。
In、Sn、Sb、Tl、Biのうち1種以上を15〜
90重量%含有し、残部がWからなる他の高比重複合材
料についても同様の結果であった。 実施例2 W粉末を64.5重量%、Ni粉末を1.5重量%混合
しカーボンの型に充填後、その上にBiの鋳塊を置いて
800℃の水素気流中で溶浸して本発明の高比重複合材
料を製造した。比較試料としてW粉末を5重量%、Ni
粉末を0.3重量%混合しカーボンの型に充填後、その
上にBiの鋳塊を置いて同条件で溶浸して製造したもの
と、市販のステンレス、鉛、ヘビーアロイを用いた。本
発明と同系の成分で成分含有量が異なる試料の比重は
9.8、ステンレス、鉛はそれぞれ8.0、11.2で
あった。本発明の高比重複合材料の比重は14.2であ
りヘビーアロイの16.8よりは小であるが、本発明と
同系の成分で成分含有量が異なる試料、ステンレス、鉛
に比べて高比重であった。γ線透過率を比較したとこ
ろ、ヘビーアロイを1としたとき、本発明と同系の成分
で成分含有量が異なる試料は1.67、ステンレス、鉛
はそれぞれ2.2と1.54であった。本発明の高比重
複合材料は1.18であり本発明と同系の成分で成分含
有量が異なる試料、ステンレス、鉛に比べて遮蔽性に優
れることがわかった。Ni、Cu、Coの1種以上を
0.3〜3重量%含有し、In、Sn、Sb、Tl、B
iのうち1種以上を15〜90重量%含有し、残部がW
からなる他の高比重複合材料についても同様の結果であ
ったが、W粉末を83.5重量%、Ni粉末を1.5重
量%混合した加圧成形体の上にBiの鋳塊を置いて80
0℃の水素気流中で溶浸して製造した本発明の高比重複
合材料の比重は16.6であり、γ線透過率は1.01
でヘビーアロイとほぼ同等であった。 実施例3 平均粒子径12μm、4μm、1μmのW粉末をそれぞ
れ75重量%、15重量%、15重量%の配合で混合
し、このW粉末を64.5重量%、Ni粉末を1.5重
量%混合しカーボンの型に充填後、その上にBiの鋳塊
を置いて800℃の水素気流中で溶浸して本発明の高比
重複合材料を製造した。比較試料は平均粒子径4μmの
W粉末のみを使用して、粒径以外は本発明材料と全く同
条件で溶浸して製造した。比較試料の比重は11.4、
本発明の高比重複合材料の比重は14.2であった。請
求項3又は請求項4に示す粒径、配合量にすることによ
って、高比重複合材料が得られることがわかる。 実施例4 実施例1から実施例3で用いた本発明の高比重材料をパ
ソコン外部記憶装置の容器に貼り付け使用し、振動測定
器と騒音測定器を用いて振動と騒音を測定したが、従来
のCu−Mn系合金、ステンレスに比べて数倍以上の制
振、遮音性能を示した。
EXAMPLES A high-density composite material of the present invention, a comparative sample, and a sample for a physical property test using stainless steel, lead, and heavy alloy,
A sample for γ-ray shielding test (thickness: 20 mm) was prepared, and the specific gravity, γ-ray transmittance, vibration damping, and shielding performance were compared. Example 1 50 wt% of W powder, 5 wt% of Sn powder, and 45 wt% of Bi powder were mixed, molded, and sintered at 900 ° C. to produce a high specific gravity composite material of the present invention. 5 W powder as a comparative sample
% Of Sn powder, 5% by weight of Sn powder, and 90% by weight of Bi powder.
Heavy alloy was used. The specific gravities of the same components as those of the present invention but having different contents, stainless steel and lead were 9.7, 8.0 and 11.2, respectively. The specific gravity of the high specific gravity composite material of the present invention is 12.5, and 16.8 of heavy alloy.
Although smaller than that of the present invention, those having the same components as those of the present invention but containing different amounts of components, the specific gravity was higher than that of stainless steel and lead.
Comparing the γ-ray transmittance, when the heavy alloy is set to 1, the components similar to those of the present invention and having different contents are 1.67, and stainless steel and lead are 2.2 and 1.54, respectively.
Met. The high specific gravity composite material of the present invention was 1.33, which was found to be superior to those of the present invention in terms of radiation shielding properties as compared with those of the present invention, which were different from those containing stainless steel and lead.
At least one of In, Sn, Sb, Tl, and Bi
Similar results were obtained for other high specific gravity composite materials containing 90% by weight and the balance being W. Example 2 64.5% by weight of W powder and 1.5% by weight of Ni powder were mixed, filled in a carbon mold, placed on a Bi ingot, and infiltrated in a hydrogen stream at 800 ° C. to form a main body. An inventive high specific gravity composite material was produced. As a comparative sample, 5% by weight of W powder, Ni
After mixing 0.3% by weight of the powder and filling in a carbon mold, a Bi ingot was placed thereon and infiltrated under the same conditions, and commercially available stainless steel, lead, and heavy alloy were used. The specific gravity of a sample having the same component as that of the present invention but having a different component content was 9.8, and the values of stainless steel and lead were 8.0 and 11.2, respectively. Although the specific gravity of the high specific gravity composite material of the present invention is 14.2, which is smaller than 16.8 of the heavy alloy, the specific gravity is higher than that of the sample, stainless steel, and lead which are similar to the present invention and have different component contents. there were. When the γ-ray transmittances were compared, when the heavy alloy was set to 1, the samples of the same type as the present invention and having different component contents were 1.67, and those of stainless steel and lead were 2.2 and 1.54, respectively. The high specific gravity composite material of the present invention was 1.18, and it was found that it had better shielding properties than samples of the same type as the present invention but having different component contents, stainless steel, and lead. Containing 0.3 to 3% by weight of one or more of Ni, Cu, and Co, and containing In, Sn, Sb, Tl, and B
i in an amount of 15 to 90% by weight, with the balance being W
The same results were obtained for other high specific gravity composite materials consisting of the following, except that the ingot of Bi was placed on a compact formed by mixing 83.5% by weight of W powder and 1.5% by weight of Ni powder. 80
The specific gravity of the high specific gravity composite material of the present invention produced by infiltration in a hydrogen stream at 0 ° C. is 16.6, and the γ-ray transmittance is 1.01.
Was almost equivalent to a heavy alloy. Example 3 W powders having an average particle diameter of 12 μm, 4 μm, and 1 μm were mixed at a blending ratio of 75% by weight, 15% by weight, and 15% by weight, respectively, and the W powder was 64.5% by weight, and the Ni powder was 1.5% by weight. %, And filled in a carbon mold. Then, a Bi ingot was placed thereon and infiltrated in a hydrogen stream at 800 ° C. to produce a high specific gravity composite material of the present invention. The comparative sample was produced by using only W powder having an average particle diameter of 4 μm and infiltrating under exactly the same conditions as the material of the present invention except for the particle diameter. The specific gravity of the comparative sample is 11.4,
The specific gravity of the high specific gravity composite material of the present invention was 14.2. It can be seen that a high specific gravity composite material can be obtained by setting the particle diameter and the amount of compounding as described in claim 3 or 4. Example 4 The high specific gravity material of the present invention used in Examples 1 to 3 was attached to a container of a personal computer external storage device, and vibration and noise were measured using a vibration measuring device and a noise measuring device. Vibration suppression and sound insulation performance several times higher than conventional Cu-Mn alloys and stainless steel were exhibited.

【0007】[0007]

【発明の効果】本発明の高比重複合材料は比重が10〜
17であり、制振用途として従来のCu−Mn系合金、
ステンレスの欠点を解消し、従来にない高い制振性能を
有し、加工性がよいため、多様な形状に対応できる。ま
た、放射線遮蔽用途として、従来にない高い放射線性能
を有し、毒性が少ないのでステンレス、鉛の代替として
使用した場合、容積が小となり省スペースが可能とな
る。また、製造費用がやすいのでヘビーアロイの代替と
して使用できる。
The high specific gravity composite material of the present invention has a specific gravity of 10 to 10.
17, a conventional Cu-Mn-based alloy as a vibration damping application,
It eliminates the disadvantages of stainless steel, has unprecedented high vibration damping performance, and has good workability, so it can be used in a variety of shapes. Further, it has unprecedentedly high radiation performance and has low toxicity for use as a radiation shielding application. Therefore, when used as a substitute for stainless steel and lead, the volume becomes small and space can be saved. Also, it can be used as an alternative to heavy alloys because of its low manufacturing cost.

Claims (5)

【特許請求の範囲】[Claims] 【請求項1】In、Sn、Sb、Tl、Biのうち1種
以上を15〜90重量%含有し、残部がWからなる高比
重複合材料。
1. A high specific gravity composite material comprising 15 to 90% by weight of at least one of In, Sn, Sb, Tl, and Bi and the balance being W.
【請求項2】0.3〜3重量%をNi、Cu、Coのう
ち1種以上で置換したことを特徴とする請求項1記載の
高比重複合材料。
2. The high specific gravity composite material according to claim 1, wherein 0.3 to 3% by weight is replaced by one or more of Ni, Cu and Co.
【請求項3】Ni、Cu、Coのうち1種以上を0.3
〜3重量%表面に含有する平均粒子径7〜25μmの粒
径の大きなWと平均粒子径2.0μm未満の粒径の小さ
なW、又はNi、Cu、Coのうち1種以上を0.3〜
3重量%表面に含有する平均粒子径7〜25μmの粒径
の大きなWと平均粒子径2〜4μmの粒径が中程度のW
と平均粒子径2.0μm未満の粒径の小さなWとが交互
に分散したWスケルトンの隙間にIn、Sn、Sb、T
l、Biのうち1種以上を15〜90重量%溶浸充填し
た複合材料からなることを特徴とする請求項2に記載の
高比重複合材料。
3. The method according to claim 1, wherein at least one of Ni, Cu, and Co is added to 0.3.
-3% by weight of a large W having an average particle diameter of 7-25 μm and a small W having an average particle diameter of less than 2.0 μm, or one or more of Ni, Cu and Co contained in a surface of 0.3 to 0.3% by weight. ~
Large W having an average particle diameter of 7 to 25 μm and medium W having an average particle diameter of 2 to 4 μm contained on a 3 wt% surface.
In, Sn, Sb, T are placed in the gaps of the W skeleton, where W and the small W particles having an average particle diameter of less than 2.0 μm are alternately dispersed.
The high specific gravity composite material according to claim 2, comprising a composite material in which at least one of l and Bi is infiltrated and filled by 15 to 90% by weight.
【請求項4】Wの粒度構成が、大粒子群と中粒子群と小
粒子群との組み合わせからなり、大粒子群が平均粒子径
7〜25μmの粉末であり、中粒子群が平均粒子径2〜
4μmの粉末であり、そして、小粒子群が平均粒子径
2.0μm未満の粉末であって、大粒子群が60〜80
重量%と小粒子群が4〜19重量%からなり、残部が中
粒子群からなることを特徴とする請求項1から請求項3
のいずれかに記載の高比重複合材料
4. The particle size of W is composed of a combination of a large particle group, a medium particle group and a small particle group, wherein the large particle group is powder having an average particle diameter of 7 to 25 μm, and the medium particle group is an average particle diameter. Two
4 μm powder, and the small particle group is a powder having an average particle diameter of less than 2.0 μm, and the large particle group is 60 to 80 μm.
The small particle group comprises 4 to 19% by weight, and the remainder comprises a medium particle group.
High specific gravity composite material according to any of the above
【請求項5】比重が10〜17であることを特徴とする
請求項1から請求項4のいずれかに記載の高比重複合材
料。
5. The high specific gravity composite material according to claim 1, wherein the specific gravity is 10 to 17.
JP2000215900A 2000-07-12 2000-07-12 High specific gravity composite material Withdrawn JP2002030373A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2000215900A JP2002030373A (en) 2000-07-12 2000-07-12 High specific gravity composite material

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2000215900A JP2002030373A (en) 2000-07-12 2000-07-12 High specific gravity composite material

Publications (1)

Publication Number Publication Date
JP2002030373A true JP2002030373A (en) 2002-01-31

Family

ID=18711252

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000215900A Withdrawn JP2002030373A (en) 2000-07-12 2000-07-12 High specific gravity composite material

Country Status (1)

Country Link
JP (1) JP2002030373A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2009046607A1 (en) * 2007-10-12 2009-04-16 Zongyuan Wei Composite shielding material for protection against medical x-ray
JP2017096682A (en) * 2015-11-19 2017-06-01 原子燃料工業株式会社 Fuel holder
JP2019211397A (en) * 2018-06-07 2019-12-12 松林工業株式会社 Tungsten sheet and radiation suit

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2009046607A1 (en) * 2007-10-12 2009-04-16 Zongyuan Wei Composite shielding material for protection against medical x-ray
JP2017096682A (en) * 2015-11-19 2017-06-01 原子燃料工業株式会社 Fuel holder
JP2019211397A (en) * 2018-06-07 2019-12-12 松林工業株式会社 Tungsten sheet and radiation suit

Similar Documents

Publication Publication Date Title
CN101068942B (en) Non-evaporable getter alloys for hydrogen sorption
JP2006152442A5 (en)
US4851192A (en) Aluminum alloy for structures with high electrical resistivity
BR9809615A (en) Hard powders coated with hard material and sintered articles thereof
JP2002527626A5 (en)
TWI325896B (en) Iron-based powder combination
JP2004533543A5 (en)
NO129408B (en)
JP4907259B2 (en) FeCoB-based target material with Cr added
JP2002030373A (en) High specific gravity composite material
US4090875A (en) Ductile tungsten-nickel-alloy and method for manufacturing same
JPS63176819A (en) Two-layer oil impregnated sintered bearing
CN102066593B (en) Aluminium-based grain refiner
US3451809A (en) Method of sintering maraging steel with boron additions
US3669634A (en) Metal composites
US4447392A (en) Ductile silver based brazing alloys containing a reactive metal and manganese or germanium or mixtures thereof
JP2002105510A (en) Composite material with high specific gravity
JP6823075B2 (en) Non-evaporable getter alloy especially suitable for hydrogen and carbon monoxide adsorption
Ahn et al. Local structure of Al-and Fe-based metallic glasses
RU2062812C1 (en) Charge of solid alloy on the base of tungsten carbide
CN101311284A (en) Magnesium alloy and magnesium alloy thin material
US3900936A (en) Cemented ferrochrome material
JPS63270441A (en) Magnesium damping alloy and its production
JPS5819628B2 (en) Corrosion resistant hard alloy
JP2916940B2 (en) Copper-based powder composition for powder metallurgy raw materials

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20071002