JP2002028781A - Measuring device for welding heat input - Google Patents

Measuring device for welding heat input

Info

Publication number
JP2002028781A
JP2002028781A JP2000207622A JP2000207622A JP2002028781A JP 2002028781 A JP2002028781 A JP 2002028781A JP 2000207622 A JP2000207622 A JP 2000207622A JP 2000207622 A JP2000207622 A JP 2000207622A JP 2002028781 A JP2002028781 A JP 2002028781A
Authority
JP
Japan
Prior art keywords
welding
temperature sensor
heat input
temperature
time
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2000207622A
Other languages
Japanese (ja)
Inventor
Yasuhiro Ueno
泰弘 上野
Tadashi Takahashi
忠 高橋
Tsutomu Kizawa
勉 木沢
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Kokan Koji KK
Original Assignee
Nippon Kokan Koji KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Kokan Koji KK filed Critical Nippon Kokan Koji KK
Priority to JP2000207622A priority Critical patent/JP2002028781A/en
Publication of JP2002028781A publication Critical patent/JP2002028781A/en
Pending legal-status Critical Current

Links

Landscapes

  • Arc Welding In General (AREA)

Abstract

PROBLEM TO BE SOLVED: To precisely measure a welding heat input by detecting correctly a welding speed required when moving manually a welding torch. SOLUTION: By calculating a welding time by the changes of a rate of rise in temperature being measured by a first temperature sensor 6 installed at a specific distance in a position in parallel with the weld line of steel 1 which is a material to be welded and that being measured by a second temperature sensor 7, and by operating the welding speed from a time required actually for welding the steel 1 in a specific distance, the welding heat input is correctly obtained.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】この発明は、被覆アーク溶接
又は半自動溶接により鋼材を接合するときに、溶接入熱
を自動的に測定する溶接入熱測定装置に関するものであ
る。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a welding heat input measuring device for automatically measuring welding heat input when steel materials are joined by covered arc welding or semi-automatic welding.

【0002】[0002]

【従来の技術】高張力鋼板の溶接においては、溶接入熱
が一定値以上に大きくなると、ボンド脆化が生じる。こ
の現象の原因は溶接入熱過大により溶接後の冷却速度が
遅くなるため、溶接ボンド部の結晶粒が粗くなって靭性
が劣化するものである。このボンド脆化を防止するた
め、重要な鋼構造物の溶接工事においては、溶接入熱の
上限が規定されている。例えば、高張力鋼製の球形タン
クの溶接工事においては、「球形ガスホルダー指針(日
本ガス協会)」により、各溶接パス毎に溶接入熱の測定
を行い、その上限が一定値、例えばHW70の場合、45
000(ジュール/cm)以下になる条件で溶接施工を行
うように規定している。
2. Description of the Related Art In welding a high-tensile steel sheet, if the welding heat input exceeds a certain value, bond embrittlement occurs. The cause of this phenomenon is that the cooling rate after welding becomes slow due to excessive welding heat input, so that the crystal grains in the weld bond become coarse and the toughness deteriorates. In order to prevent this bond embrittlement, in welding important steel structures, the upper limit of welding heat input is specified. For example, in the welding work of a spherical tank made of high-tensile steel, the welding heat input is measured for each welding pass according to the “Spherical Gas Holder Guideline (Japan Gas Association)”, and the upper limit is a constant value, for example, HW70. If 45
It is stipulated that welding is performed under the condition of 000 (joules / cm) or less.

【0003】この溶接入熱Q(ジュール/cm)は、溶
接電流をI(A)、アーク電圧をE(V)、溶接速度を
v(cm/min)とすると、Q=I・E/vで求めら
れる。このうち溶接電流Iとアーク電圧Eは溶接電源の
設定値又は電流計や電圧計による実際の測定値から容易
に求められている。しかしながら溶接速度vに関しては
被覆アーク溶接や半自動MAG溶接においても溶接トー
チを手動で移動させるため、自動的に測定することは困
難である。このため従来は溶接作業員が1本の溶接棒を
用いて溶接する時間と距離を測定作業員がストップウォ
ッチと定規で測定して溶接速度vを求めたり、特開平8
−309534号公報に示すように、溶接線の近傍に一
定距離Lをおいて2個の温度センサを設け、2個の温度
センサの間を溶接トーチによる熱源が通過する時間T0
を検出し、検出した時間T0と2個の温度センサの距離
Lから溶接速度vをv=L/T0により求めたりしてい
る。
[0003] The welding heat input Q (joule / cm) is given by Q = IEE / v, where I (A) is a welding current, E (V) is an arc voltage, and v (cm / min) is a welding speed. Is required. Among them, the welding current I and the arc voltage E are easily obtained from the set values of the welding power source or the actual measured values by an ammeter or a voltmeter. However, it is difficult to measure the welding speed v automatically even in covered arc welding and semi-automatic MAG welding because the welding torch is manually moved. For this reason, conventionally, a welding worker measures the time and distance of welding using one welding rod with a stopwatch and a ruler to determine the welding speed v.
As shown in JP-A-309534, two temperature sensors are provided at a fixed distance L in the vicinity of a welding line, and a time T 0 during which a heat source by a welding torch passes between the two temperature sensors.
, And the welding speed v is obtained from v = L / T 0 from the detected time T 0 and the distance L between the two temperature sensors.

【0004】[0004]

【発明が解決しようとする課題】上記のように溶接作業
員が1本の溶接棒を用いて溶接する時間と距離を測定作
業員がストップウォッチと定規で測定して溶接速度vを
求めていると、溶接速度vを測定するために多くの測定
作業員が必要になるとともに、測定誤差が生じる可能性
がある。
As described above, the welding operator measures the time and distance of welding using one welding rod with a stopwatch and a ruler to obtain the welding speed v. In addition, many measuring operators are required to measure the welding speed v, and a measurement error may occur.

【0005】また、2個の温度センサの間を溶接熱源が
通過する時間T0を検出し、検出した時間T0と2個の温
度センサの距離Lから溶接速度vを求める場合、2個の
温度センサの間で溶接棒を交換するためにアークの中断
が生じると、アークが中断している時間も加算されてし
まい、正確な溶接速度の測定ができなくなってしまう。
When the time T 0 during which the welding heat source passes between the two temperature sensors is detected, and the welding speed v is obtained from the detected time T 0 and the distance L between the two temperature sensors, the two If the arc is interrupted to exchange the welding rod between the temperature sensors, the time during which the arc is interrupted is also added, and it becomes impossible to measure the welding speed accurately.

【0006】この発明はかかる短所を改善し、溶接トー
チを手動で移動させているときの溶接速度を正確に検出
して溶接入熱を精度良く測定することができる溶接入熱
測定装置を提供することを目的とするものである。
The present invention has been made to solve the above-mentioned disadvantages, and provides a welding heat input measuring apparatus capable of accurately detecting a welding speed when a welding torch is manually moved and accurately measuring welding heat input. The purpose is to do so.

【0007】[0007]

【課題を解決するための手段】この発明に係る溶接入熱
測定装置は、被覆アーク溶接又は半自動溶接を行なって
いるときの溶接入熱を自動的に測定する溶接入熱測定装
置であって、電流センサと第1の温度センサと第2の温
度センサ及び入熱測定装置を有し、電流センサは溶接電
流を測定し、第1の温度センサと第2の温度センサは溶
接線と平行した位置の被溶接材に一定距離を隔てて取り
付けられ、溶接中の溶接トーチの移動による温度変化を
それぞれ測定し、入熱測定装置は第1の温度センサで測
定している温度の温度上昇率があらかじめ定められた基
準上昇率を超えたときに溶接時間の計時を開始し、第2
の温度センサで測定している温度の温度上昇率が基準上
昇率を超えたときに溶接時間の計時を停止し、計時した
溶接時間と、第1の温度センサと第2の温度センサの距
離から溶接速度を演算し、演算した溶接速度と溶接電流
及びアーク電圧から溶接入熱量を演算することを特徴と
する。
SUMMARY OF THE INVENTION A welding heat input measuring apparatus according to the present invention is a welding heat input measuring apparatus for automatically measuring welding heat input when performing covered arc welding or semi-automatic welding. A current sensor, a first temperature sensor, a second temperature sensor, and a heat input measuring device, wherein the current sensor measures a welding current, and the first temperature sensor and the second temperature sensor are positioned parallel to the welding line. Are attached at a fixed distance to the workpiece to be welded, and each measures the temperature change due to the movement of the welding torch during welding, and the heat input measuring device determines the temperature rise rate of the temperature measured by the first temperature sensor in advance. When the specified reference rate of rise is exceeded, timing of the welding time is started, and the second
When the temperature rise rate of the temperature measured by the temperature sensor exceeds the reference rise rate, the measurement of the welding time is stopped, and the measured welding time and the distance between the first temperature sensor and the second temperature sensor are used. The welding speed is calculated, and the welding heat input is calculated from the calculated welding speed, welding current and arc voltage.

【0008】上記基準上昇率を30秒から2分の時間間
隔に対して10℃から30℃の温度上昇の範囲に定める
と良い。
[0008] It is preferable that the reference rate of rise is set in a range of a temperature rise of 10 ° C to 30 ° C for a time interval of 30 seconds to 2 minutes.

【0009】この発明に係る他の溶接入熱測定装置は、
被覆アーク溶接又は半自動溶接を行なっているときの溶
接入熱を自動的に測定する溶接入熱測定装置であって、
電流センサと第1の温度センサと第2の温度センサ及び
入熱測定装置を有し、電流センサは溶接電流を測定し、
第1の温度センサと第2の温度センサは溶接線と平行し
た位置の被溶接材に一定距離を隔てて取り付けられ、溶
接中の溶接トーチの移動による温度変化をそれぞれ測定
し、入熱測定装置は第1の温度センサで測定している温
度があらかじめ定められた閾値を超えた場合に溶接時間
の計時を開始し、第2の温度センサで測定している温度
があらかじめ定められた閾値を超えた場合に溶接時間の
計時を停止し、計時した溶接時間と、第1の温度センサ
と第2の温度センサの距離から溶接速度を演算し、演算
した溶接速度と溶接電流及びアーク電圧から溶接入熱量
を演算することを特徴とする。
Another welding heat input measuring device according to the present invention is:
A welding heat input measuring device that automatically measures welding heat input when performing covered arc welding or semi-automatic welding,
A current sensor, a first temperature sensor, a second temperature sensor, and a heat input measuring device, wherein the current sensor measures a welding current;
The first temperature sensor and the second temperature sensor are attached to the workpiece to be welded at a position parallel to the welding line at a fixed distance, and each measure a temperature change due to movement of a welding torch during welding, and a heat input measuring device. Starts the timing of the welding time when the temperature measured by the first temperature sensor exceeds a predetermined threshold, and the temperature measured by the second temperature sensor exceeds the predetermined threshold. In this case, the measurement of the welding time is stopped, the welding speed is calculated from the measured welding time and the distance between the first temperature sensor and the second temperature sensor, and the welding input is calculated from the calculated welding speed, welding current and arc voltage. It is characterized by calculating the amount of heat.

【0010】上記溶接時間の計時を開始した後に電流セ
ンサで測定している溶接電流があらかじめ定めた閾値以
下になったときに溶接時間の計時を中断し、溶接電流が
閾値を超えたときに溶接時間の計時を再開すると良い。
When the welding current measured by the current sensor becomes equal to or less than a predetermined threshold after the timing of the welding time is started, the timing of the welding time is interrupted, and when the welding current exceeds the threshold, the welding is stopped. You may want to restart timing.

【0011】[0011]

【発明の実施の形態】この発明の溶接入熱測定装置は電
流センサと第1の温度センサと第2の温度センサ及び入
熱測定装置を有する。電流センサは溶接電源から溶接ト
ーチに供給している溶接電流を測定する。第1の温度セ
ンサと第2の温度センサは溶接線に沿って平行な位置の
被溶接材に一定距離を隔てて取り付けられ、溶接中の溶
接トーチの移動による温度変化をそれぞれ測定し、入熱
測定装置は被覆アーク溶接又は半自動溶接を行なってい
るとき、電流センサで測定している溶接電流があらかじ
め定められた閾値を超えているときに第1の温度センサ
で測定している温度の変化があらかじめ定められた基準
上昇率を超えた場合に溶接時間の計時を開始し、電流セ
ンサで測定している溶接電流が閾値以下になったときに
溶接時間の計時を中断し、溶接電流が閾値を超えたとき
に溶接時間の計時を再開し、第2の温度センサで測定し
ている温度の変化が基準上昇率を超えた場合に溶接時間
の計時を停止し、計時した溶接時間の合計値及び第1の
温度センサと第2の温度センサの距離から溶接速度を演
算する。この演算した溶接速度と溶接電流及びアーク電
圧から溶接入熱量を演算する。
DESCRIPTION OF THE PREFERRED EMBODIMENTS A welding heat input measuring device according to the present invention has a current sensor, a first temperature sensor, a second temperature sensor, and a heat input measuring device. The current sensor measures a welding current supplied from the welding power source to the welding torch. The first temperature sensor and the second temperature sensor are attached to a workpiece to be welded at positions parallel to each other along a welding line at a fixed distance, and each measure a temperature change due to movement of a welding torch during welding, and receive heat input. When the measuring device is performing covered arc welding or semi-automatic welding, the change in the temperature measured by the first temperature sensor when the welding current measured by the current sensor exceeds a predetermined threshold. The timer starts the welding time when the rate of rise exceeds a predetermined reference rate of rise, and stops the timing of the welding time when the welding current measured by the current sensor falls below the threshold. When the time exceeds, the timing of the welding time is restarted, and when the change in the temperature measured by the second temperature sensor exceeds the reference rise rate, the timing of the welding time is stopped, and the total value of the counted welding time and First temperature Calculating a welding speed from capacitors and distance of the second temperature sensor. The welding heat input is calculated from the calculated welding speed, welding current and arc voltage.

【0012】[0012]

【実施例】図1はこの発明の一実施例の構成図である。
図に示すように、被覆アーク溶接又は半自動溶接により
鋼材1を溶接線2に沿って接合する溶接装置は溶接電源
3と溶接トーチ4と電流センサ5と第1の温度センサ6
と第2の温度センサ7及び入熱測定装置8を有する。電
流センサ5は溶接電源3から溶接トーチ4に供給する溶
接電流Iを測定して入熱測定装置8に出力する。第1の
温度センサ6と第2の温度センサ7は例えば熱電対から
なり、溶接線2に沿った平行な鋼材1の位置に一定距離
Lを隔てて取り付けられ、溶接中の溶接トーチ4の移動
による温度変化をそれぞれ測定して入熱測定装置8に出
力する。
FIG. 1 is a block diagram of one embodiment of the present invention.
As shown in the drawing, a welding apparatus for joining steel material 1 along a welding line 2 by covered arc welding or semi-automatic welding includes a welding power source 3, a welding torch 4, a current sensor 5, and a first temperature sensor 6.
And a second temperature sensor 7 and a heat input measuring device 8. The current sensor 5 measures a welding current I supplied from the welding power source 3 to the welding torch 4 and outputs it to the heat input measuring device 8. The first temperature sensor 6 and the second temperature sensor 7 are composed of, for example, thermocouples and are attached to the position of the parallel steel material 1 along the welding line 2 at a predetermined distance L, and the movement of the welding torch 4 during welding Are measured and output to the heat input measuring device 8.

【0013】入熱測定装置8は、図2のブロック図に示
すように、入力部9と時間信号発生部10と2値化処理
部11と温度上昇率算出部12,13と計時開始信号発
生部14と計時終了信号発生部15と溶接時間計時部1
6と溶接速度算出部17と入熱演算部18及び出力部1
9を有する。入力部9はあらかじめ設定された第1の温
度センサ6と第2の温度センサ7の距離Lと、あらかじ
め設定されたり、電流計や電圧計により実際に測定され
た溶接電流Iとアーク電圧Eを入力する。時間信号発生
部10は溶接を開始したときからクロック信号を出力す
る。2値化処理部11は電流センサ5で測定された溶接
電流Iをあらかじめ定められた閾値Ithにより2値化す
る。温度上昇率算出部12は第1の温度センサ6で測定
された鋼材1の温度θ1と時間信号発生部10から出力
しているクロック信号tを入力し、第1の温度センサ6
で測定された鋼材1の温度θ1の温度上昇率Δθ1/Δ
tを算出する。温度上昇率算出部13は第2の温度セン
サ7で測定された鋼材1の温度θ2と時間信号発生部1
0から出力しているクロック信号tを入力し、第2の温
度センサ7で測定された鋼材1の温度θ2の温度上昇率
Δθ2/Δtを算出する。計時開始信号発生部14は第
1の温度センサ6で測定された鋼材1の温度θ1の温度
上昇率Δθ1/Δtとあらかじめ設定された基準上昇率
Δθth(度/秒)とを比較し、温度上昇率Δθ1/Δt
が基準上昇率Δθthを超えたときに溶接時間の計時開始
信号を出力する。計時終了信号発生部15は第2の温度
センサ7で測定された鋼材1の温度θ2の温度上昇率Δ
θ2/Δtと基準上昇率Δθthとを比較し、温度上昇率
Δθ2/Δtが基準上昇率Δθthを超えたときに溶接時
間の計時終了信号を出力する。溶接時間計時部16は2
値化処理部11から出力する溶接電流出力DIと計時開
始信号発生部14から出力する計時開始信号及び計時終
了信号発生部15から出力する計時終了信号により第1
の温度センサ6と第2の温度センサ7の間の距離Lを溶
接が進行する時間T1を計時する。溶接速度算出部17
は溶接時間計時部16から出力する時間T1と入力部9
から出力する第1の温度センサ6と第2の温度センサ7
の距離Lにより溶接速度vを演算する。入熱演算部18
は溶接速度算出部17から出力される溶接速度vと入力
部9から出力される溶接電流Iとアーク電圧Eにより入
熱量Qを演算する。出力部19は入熱演算部18で演算
した入熱量Qを表示部20に表示するとともにプリンタ
21に出力して記録させる。
As shown in the block diagram of FIG. 2, the heat input measuring device 8 includes an input section 9, a time signal generating section 10, a binarization processing section 11, temperature rising rate calculating sections 12, 13 and a time start signal generating section. Section 14, timer end signal generating section 15, and welding time timer section 1
6, welding speed calculation unit 17, heat input calculation unit 18, and output unit 1
9 The input unit 9 receives a preset distance L between the first temperature sensor 6 and the second temperature sensor 7 and a welding current I and an arc voltage E which are preset or are actually measured by an ammeter or a voltmeter. input. The time signal generator 10 outputs a clock signal from the time when welding is started. The binarization processing unit 11 binarizes the welding current I measured by the current sensor 5 with a predetermined threshold value Ith. The temperature rise rate calculation unit 12 receives the temperature θ1 of the steel material 1 measured by the first temperature sensor 6 and the clock signal t output from the time signal generation unit 10 and receives the first temperature sensor 6.
Temperature rise rate Δθ1 / Δ of temperature θ1 of steel material 1 measured in
Calculate t. The temperature rise rate calculator 13 calculates the temperature θ2 of the steel material 1 measured by the second temperature sensor 7 and the time signal generator 1
The clock signal t output from 0 is input, and the temperature rise rate Δθ2 / Δt of the temperature θ2 of the steel material 1 measured by the second temperature sensor 7 is calculated. The timing start signal generator 14 compares the temperature rise rate Δθ1 / Δt of the temperature θ1 of the steel material 1 measured by the first temperature sensor 6 with a preset reference rise rate Δθth (degrees / second), and raises the temperature. Rate Δθ1 / Δt
Output a start time signal of the welding time when the value exceeds the reference rise rate Δθth. The timing end signal generation unit 15 calculates the temperature increase rate Δ of the temperature θ2 of the steel material 1 measured by the second temperature sensor 7.
θ2 / Δt is compared with the reference rise rate Δθth, and when the temperature rise rate Δθ2 / Δt exceeds the reference rise rate Δθth, a timing end signal for the welding time is output. The welding time timer 16 is 2
The welding current output DI output from the value processing unit 11, the timing start signal output from the timing start signal generation unit 14, and the timing end signal output from the timing end signal generation unit 15 are used for the first time.
The distance T between the temperature sensor 6 and the second temperature sensor 7 is measured as the time T1 during which the welding proceeds. Welding speed calculator 17
Is the time T1 output from the welding time timer 16 and the input 9
Temperature sensor 6 and second temperature sensor 7 output from
The welding speed v is calculated from the distance L. Heat input calculator 18
Calculates the heat input Q based on the welding speed v output from the welding speed calculation unit 17, the welding current I and the arc voltage E output from the input unit 9. The output unit 19 displays the heat input amount Q calculated by the heat input calculation unit 18 on the display unit 20 and outputs the heat input amount Q to the printer 21 for recording.

【0014】上記のように構成された溶接装置で鋼材1
の溶接線2に沿って溶接トーチ4を移動しながら溶接し
ているとき、常時、溶接電源3から溶接トーチ4に供給
している溶接電流Iを電流センサ5で測定して入熱測定
装置8に出力している。入熱測定装置8の2値化処理部
10は入力した溶接電流Iを2値化し、図3の波形図に
示すように、溶接電流出力DIを溶接時間計時部16に
出力している。この溶接を行なっているとき、被覆アー
ク溶接においては、溶接トーチ4の溶接棒は約30〜9
0秒毎に消耗して交換するため、溶接電流出力DIは溶
接トーチ4の溶接棒を交換しているときに、例えば低レ
ベルになり、実際にアークを発生して溶接を行なってい
るときに高レベルになる。また、第1の温度センサ6と
第2の温度センサ7はそれぞれ距離Lだけ離れた鋼材1
の温度θ1と温度θ2を測定して入熱測定装置8に出力
している。入熱測定装置8の温度上昇率算出部12は、
図2に示す第1の温度センサ6で測定された鋼材1の温
度θ1の温度上昇率Δθ1/Δtを算出し、計時開始信
号発生部14に出力し、温度上昇率算出部13は第2の
温度センサ7で測定された鋼材1の温度θ2の温度上昇
率Δθ2/Δtを算出し、計時終了信号発生部15に出
力している。
[0014] The steel material 1 is provided by the welding apparatus constructed as described above.
When welding is performed while moving the welding torch 4 along the welding line 2, the welding current I supplied from the welding power source 3 to the welding torch 4 is always measured by the current sensor 5 and the heat input measuring device 8 is used. Output to The binarization processing unit 10 of the heat input measurement device 8 binarizes the input welding current I and outputs a welding current output DI to the welding time timer 16 as shown in the waveform diagram of FIG. When performing this welding, in covered arc welding, the welding rod of the welding torch 4 is about 30 to 9
The welding current output DI becomes low when the welding rod of the welding torch 4 is replaced, for example, when the welding rod of the welding torch 4 is replaced. Become a high level. Further, the first temperature sensor 6 and the second temperature sensor 7 are respectively connected to the steel material 1 separated by a distance L.
Are measured and output to the heat input measuring device 8. The temperature rise rate calculation unit 12 of the heat input measurement device 8 includes:
The temperature rise rate Δθ1 / Δt of the temperature θ1 of the steel material 1 measured by the first temperature sensor 6 shown in FIG. 2 is calculated and output to the timekeeping start signal generation unit 14, and the temperature rise rate calculation unit 13 The temperature rise rate Δθ2 / Δt of the temperature θ2 of the steel material 1 measured by the temperature sensor 7 is calculated and output to the timing end signal generation unit 15.

【0015】この状態で溶接が進行して、第1の温度セ
ンサ6の設置位置まで溶接トーチ4が近付くと、図3に
示すように、第1の温度センサ6の測定温度θ1が上昇
して温度上昇率Δθ1/Δtが急激に変化する。計時開
始信号発生部14は第1の温度センサ6で測定された鋼
材1の温度θ1の温度上昇率Δθ1/Δtがあらかじめ
設定された基準上昇率Δθthを超えたときに、溶接トー
チ4が第1の温度センサ6の設置位置まで達したと判断
し溶接時間の計時開始信号を出力する。溶接時間計時部
16は2値化処理部11から入力している溶接電流出力
DIが高レベルのときに計時開始信号発生部14から計
時開始信号が出力されると溶接時間の計時を開始する。
この状態で溶接が進行し、溶接トーチ4の溶接棒を交換
をするために溶接電流Iを遮断して溶接電流出力DIが
低レベルになると、溶接時間計時部16は溶接時間の計
時を停止し、それ迄に計時した溶接時間T2を一時保持
する。溶接トーチ4の溶接棒を交換して溶接が再開さ
れ、溶接電流出力DIが高レベルになると、溶接時間計
時部16は再び溶接時間の計時を開始する。この状態で
溶接トーチ4が第2の温度センサ7の設置位置まで近付
くと、第2の温度センサ7の測定温度θ2が上昇して温
度上昇率Δθ2/Δtが急激に変化する。計時終了信号
発生部16は第2の温度センサ7で測定された鋼材1の
温度θ2の温度上昇率Δθ2/Δtがあらかじめ設定さ
れた基準上昇率Δθthを超えたときに、溶接トーチ4が
第2の温度センサ7の設置位置まで達したと判断し溶接
時間の計時終了信号を出力する。溶接時間計時部16は
計時終了信号が出力されると溶接時間の計時を停止し、
それ迄に計時した溶接時間T3と一時保持した溶接時間
T2を加算して第1の温度センサ6と第2の温度センサ
7との間の距離Lの間を溶接が進行した時間T1を溶接
速度算出部17に出力する。溶接速度算出部17は溶接
時間計時部16から出力された時間T1及び入力部9か
ら出力する第1の温度センサ6と第2の温度センサ7の
間の距離Lにより溶接速度v=L/T1を演算して入熱
演算部18に出力する。入熱演算部18は溶接速度算出
部17から出力される溶接速度vと入力部9から出力さ
れる溶接電流Iとアーク電圧Eにより入熱量Q=I・E
/vを演算して出力部19に出力する。出力部19は入
熱演算部18から出力された入熱量Qを表示部20に表
示するとともにプリンタ21に出力して記録させる。
When welding proceeds in this state and the welding torch 4 approaches the installation position of the first temperature sensor 6, the measured temperature θ1 of the first temperature sensor 6 increases as shown in FIG. The temperature rise rate Δθ1 / Δt changes rapidly. When the temperature rise rate Δθ1 / Δt of the temperature θ1 of the steel material 1 measured by the first temperature sensor 6 exceeds the preset reference rise rate Δθth, the timekeeping start signal generation unit 14 generates the first welding torch 4. Is determined to have reached the installation position of the temperature sensor 6, and a clocking start signal for the welding time is output. The welding time counting unit 16 starts counting the welding time when the time counting start signal is output from the time counting start signal generating unit 14 when the welding current output DI input from the binarization processing unit 11 is at a high level.
In this state, welding proceeds, and when the welding current I is cut off to replace the welding rod of the welding torch 4 and the welding current output DI becomes low, the welding time timer 16 stops measuring the welding time. , And temporarily holds the welding time T2 measured up to that time. When welding is resumed by replacing the welding rod of the welding torch 4 and the welding current output DI becomes high, the welding time timer 16 starts measuring the welding time again. When the welding torch 4 approaches the installation position of the second temperature sensor 7 in this state, the measured temperature θ2 of the second temperature sensor 7 increases, and the temperature increase rate Δθ2 / Δt changes rapidly. When the temperature rise rate Δθ2 / Δt of the temperature θ2 of the steel material 1 measured by the second temperature sensor 7 exceeds the preset reference rise rate Δθth, the timing end signal generator 16 sets the welding torch 4 to the second position. Is determined to have reached the installation position of the temperature sensor 7, and a time signal for terminating the welding time is output. The welding time timer 16 stops measuring the welding time when the timing end signal is output,
The welding time T3 measured up to that time and the temporarily held welding time T2 are added, and the time T1 during which welding has progressed between the first temperature sensor 6 and the second temperature sensor 7 during the distance L is determined as the welding speed. Output to the calculation unit 17. The welding speed calculation unit 17 calculates the welding speed v = L / T1 based on the time T1 output from the welding time counting unit 16 and the distance L between the first temperature sensor 6 and the second temperature sensor 7 output from the input unit 9. Is calculated and output to the heat input calculation unit 18. The heat input calculator 18 calculates the heat input Q = IEE based on the welding speed v output from the welding speed calculator 17, the welding current I output from the input unit 9, and the arc voltage E.
/ V is calculated and output to the output unit 19. The output unit 19 displays the heat input amount Q output from the heat input calculation unit 18 on the display unit 20 and outputs the heat input amount Q to the printer 21 for recording.

【0016】このように溶接電流出力DIと第1の温度
センサ6で測定している温度θ1の温度上昇率Δθ1/
Δtの変化と第2の温度センサ7で測定している温度θ
2の温度上昇率Δθ2/Δtの変化により距離Lを溶接
する溶接時間T1を算出するから、距離Lを実際に溶接
している時間T1を正確に検出することができ、溶接速
度vを精度良く演算することができる。したがって入熱
量Qを正確に求めることができる。
As described above, the temperature rise rate Δθ1 / of the welding current output DI and the temperature θ1 measured by the first temperature sensor 6 is shown.
The change of Δt and the temperature θ measured by the second temperature sensor 7
Since the welding time T1 for welding the distance L is calculated from the change in the temperature rise rate Δθ2 / Δt of 2, the time T1 during which the distance L is actually welded can be accurately detected, and the welding speed v can be accurately determined. Can be calculated. Therefore, the heat input Q can be accurately obtained.

【0017】上記実施例は第1の温度センサ6で測定し
ている温度θ1の温度上昇率Δθ1/Δtの変化から溶
接時間の計時開始信号を出力し、第2の温度センサ7で
測定している温度θ2の温度上昇率Δθ2/Δtの変化
から計時終了信号を出力する場合について説明したが、
第1の温度センサ6で測定している温度θ1があらかじ
め定めた閾値θthを超えたときに溶接時間の計時開始信
号を出力し、第2の温度センサ7で測定している温度θ
2があらかじめ定めた閾値θthを超えたときに計時終了
信号を出力するようにしても良い。
In the above embodiment, a timing signal for starting the welding time is output from the change in the temperature rise rate Δθ1 / Δt of the temperature θ1 measured by the first temperature sensor 6 and measured by the second temperature sensor 7. The case where the timing end signal is output from the change of the temperature rise rate Δθ2 / Δt of the temperature θ2 has been described,
When the temperature θ1 measured by the first temperature sensor 6 exceeds a predetermined threshold value θth, a clocking start signal of the welding time is output, and the temperature θ measured by the second temperature sensor 7 is output.
Alternatively, a timing end signal may be output when 2 exceeds a predetermined threshold value θth.

【0018】〔具体例1〕 板厚35mmで厚さ1m、
幅50cmの高張力鋼の鋼材1を2枚突合せたX開先を
用いて入熱測定装置8で溶接入熱量Qを測定した。溶接
方法は被覆アーク溶接で溶接棒は低水素系の径4mmを
用い、溶接姿勢は下向きとした。第1の温度センサ6と
第2の温度センサ7を溶接線2から30mmの位置で距
離Lを10cmとし、そして溶接中は第1の温度センサ
6と第2の温度センサ7の測定温度θ1,θ2を保存し
て、各測定温度θ1,θ2の一定時間Δt例えば90秒
間の変化Δθ1,Δθ2の変化に対する基準上昇率Δθ
thを20度とし、各測定温度θ1,θ2の変化Δθ1,
Δθ2が基準上昇率Δθthを超えたとき、第1の温度セ
ンサ6と第2の温度センサ7の位置に溶接トーチ4が接
近したと判断した。また溶接電流も常時監視し、50
(A)以下となった場合、溶接が中断したと判断して、
その期間は溶接時間計時部16を一時停止させた。ま
た、アーク電圧は23V一定とした。この条件で実際の
溶接を行い、溶接入熱量Qを入熱測定装置8で測定する
とともに、従来と同様に手動で溶接入熱量Qを測定し
た。この測定を溶接電流を変えて8パス繰り返し行なっ
た結果を図4に示す。図4に示すように、入熱測定装置
8で測定した溶接入熱量Qと手動で測定した溶接入熱量
Qはほぼ一致し、入熱測定装置8で精度良く溶接入熱量
Qを測定できることを確認できた。
[Specific Example 1] A plate thickness of 35 mm, a thickness of 1 m,
The welding heat input Q was measured by the heat input measuring device 8 using an X groove in which two steel materials 1 of high-tensile steel having a width of 50 cm were butted. The welding method was coated arc welding, the welding rod used was a low hydrogen type diameter of 4 mm, and the welding position was downward. The distance L between the first temperature sensor 6 and the second temperature sensor 7 is set to 10 cm at a position 30 mm from the welding line 2, and the measured temperatures θ 1 and θ 1 of the first temperature sensor 6 and the second temperature sensor 7 during welding. .theta.2 is stored, and the reference rise rate .DELTA..theta. with respect to the change .DELTA..theta.1, .DELTA..theta.2.
Let th be 20 degrees, and change Δθ1,
When Δθ2 exceeds the reference rise rate Δθth, it is determined that the welding torch 4 has approached the positions of the first temperature sensor 6 and the second temperature sensor 7. In addition, the welding current is constantly monitored and 50
(A) When it becomes the following, it is determined that welding has been interrupted,
During that period, the welding time timer 16 was temporarily stopped. The arc voltage was constant at 23V. The actual welding was performed under these conditions, and the heat input Q was measured by the heat input measuring device 8, and the welding heat input Q was measured manually as in the conventional case. FIG. 4 shows the result of repeating this measurement for 8 passes while changing the welding current. As shown in FIG. 4, it was confirmed that the welding heat input Q measured by the heat input measuring device 8 and the welding heat input Q measured manually were almost the same, and that the welding heat input Q could be accurately measured by the heat input measuring device 8. did it.

【0019】〔具体例2〕 上記具体例と同様に板厚2
7mmで長さ1m、幅50cmの高張力鋼の鋼材1を2
枚突合せたX開先を用い、被覆アーク溶接で径が5mm
の低水素系の溶接棒を用い、下向き姿勢で溶接し、溶接
電流を変えて8パス繰り返し行なったときに入熱測定装
置8で測定した溶接入熱量Qと手動で測定した溶接入熱
量Qを図5に示す。この場合も入熱測定装置8で測定し
た溶接入熱量Qと手動で測定した溶接入熱量Qはほぼ一
致した。
[Specific Example 2] As in the above specific example, the sheet thickness 2
2 pieces of high-strength steel 7 mm, 1 m long and 50 cm wide
5mm in diameter by sheathed arc welding using X butt joint
The welding heat input Q measured by the heat input measuring device 8 and the welding heat input Q manually measured when welding was performed in a downward position using a low hydrogen welding rod and the welding current was changed and eight passes were repeated were performed. As shown in FIG. Also in this case, the welding heat input Q measured by the heat input measuring device 8 and the welding heat input Q manually measured almost matched.

【0020】また、上記各具体例で各測定温度θ1,θ
2の所定時間間隔Δtの変化の基準値Δθthを可変し
て、溶接熱源を第1の温度センサ6と第2の温度センサ
7に接近させる実験を行なった結果、基準値Δθthを1
0度以下にすると予熱による温度上昇も検知してしま
い、基準値Δθthを30度以上にすると溶接入熱が小さ
いときに、溶接熱源が第1の温度センサ6と第2の温度
センサ7に接近したことを検出できなくなり、基準値Δ
θthを10度から30度までの範囲にしたときに、溶接
熱源が第1の温度センサ6と第2の温度センサ7に接近
したことを確実に検出できた。
In each of the above specific examples, the measured temperatures θ1, θ
As a result of performing an experiment in which the reference value Δθth of the change of the predetermined time interval Δt in Step 2 is changed and the welding heat source approaches the first temperature sensor 6 and the second temperature sensor 7, the reference value Δθth is set to 1
If the temperature is set to 0 degrees or less, a temperature rise due to preheating is also detected. If the reference value Δθth is set to 30 degrees or more, when the welding heat input is small, the welding heat source approaches the first temperature sensor 6 and the second temperature sensor 7. Cannot be detected, and the reference value Δ
When θth was in the range of 10 degrees to 30 degrees, it was possible to reliably detect that the welding heat source had approached the first temperature sensor 6 and the second temperature sensor 7.

【0021】また、上記実施例は電流センサ5で測定し
ている溶接電流の変化及び第1の温度センサ6と第1の
温度センサ7で測定している温度の変化から入熱測定装
置8で溶接時間を演算して溶接入熱量を算出する場合に
ついて説明したが、入熱測定装置8の動作をプログラム
してシーケンサやパソコンに格納しておくことにより、
シーケンサやパソコンで溶接時間を演算して溶接入熱量
を算出しても良い。
In the above embodiment, the heat input measuring device 8 detects the change in the welding current measured by the current sensor 5 and the change in the temperature measured by the first temperature sensor 6 and the first temperature sensor 7. Although the case where the welding time is calculated by calculating the welding time has been described, the operation of the heat input measuring device 8 is programmed and stored in a sequencer or a personal computer.
The welding heat input may be calculated by calculating the welding time with a sequencer or a personal computer.

【0022】[0022]

【発明の効果】この発明は以上説明したように、一定距
離隔てて設けた第1の温度センサで測定している温度の
変化と第2の温度センサでそれぞれ測定している温度の
変化により一定距離を溶接する溶接時間を算出するか
ら、一定距離を実際に溶接している時間を正確に検出し
て溶接速度を精度良く演算することができ、溶接入熱量
を正確に求めることができる。
As described above, according to the present invention, a constant change is caused by a change in temperature measured by the first temperature sensor provided at a fixed distance and a change in temperature measured by the second temperature sensor. Since the welding time for welding the distance is calculated, it is possible to accurately detect the time for actually welding a certain distance, accurately calculate the welding speed, and accurately determine the welding heat input.

【0023】また、電流センサで検出している実際の溶
接電流の変化及び一定距離隔てて設けた第1の温度セン
サと第2の温度センサでそれぞれ測定している温度の変
化から溶接時間を算出するから、溶接が中断した場合で
も実際の溶接時間を正確に検出することができ、溶接速
度を精度良く演算して溶接入熱量を正確に求めることが
できる。
The welding time is calculated from a change in the actual welding current detected by the current sensor and a change in the temperature measured by the first temperature sensor and the temperature measured by the second temperature sensor provided at a fixed distance. Therefore, even when welding is interrupted, the actual welding time can be accurately detected, and the welding speed can be accurately calculated to accurately determine the welding heat input.

【図面の簡単な説明】[Brief description of the drawings]

【図1】この発明の実施例の構成図である。FIG. 1 is a configuration diagram of an embodiment of the present invention.

【図2】入熱測定装置の構成を示すブロック図である。FIG. 2 is a block diagram illustrating a configuration of a heat input measurement device.

【図3】上記実施例の動作を示す波形図である。FIG. 3 is a waveform chart showing the operation of the embodiment.

【図4】具体例1による自動入熱測定結果と手動入熱測
定結果の比較図である。
FIG. 4 is a comparison diagram of an automatic heat input measurement result and a manual heat input measurement result according to Example 1.

【図5】具体例2による自動入熱測定結果と手動入熱測
定結果の比較図である。
FIG. 5 is a comparison diagram of an automatic heat input measurement result and a manual heat input measurement result according to a specific example 2.

【符号の説明】[Explanation of symbols]

1;鋼材、2;溶接線、3;溶接電源、4;溶接トー
チ、5;電流センサ、6;第1の温度センサ、7;第2
の温度センサ、8;入熱測定装置、9;入力部、10;
時間信号発生部,11;2値化処理部、12,13;温
度上昇率算出部、14;計時開始信号発生部、15;計
時終了信号発生部、16;溶接時間計時部、17;溶接
速度算出部、18;入熱演算部、19;出力部、20;
表示部、21;プリンタ。
1; steel material; 2; welding wire; 3; welding power source; 4; welding torch; 5; current sensor; 6; first temperature sensor;
Temperature sensor, 8; heat input measuring device, 9; input unit, 10;
Time signal generator, 11; binarization processor, 12, 13; temperature rise rate calculator, 14; clock start signal generator, 15; clock end signal generator, 16; welding time clock, 17; welding speed Calculation unit 18; heat input calculation unit 19; output unit 20;
Display unit, 21; printer.

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】 被覆アーク溶接又は半自動溶接を行なっ
ているときの溶接入熱を自動的に測定する溶接入熱測定
装置であって、 電流センサと第1の温度センサと第2の温度センサ及び
入熱測定装置を有し、 電流センサは溶接電流を測定し、第1の温度センサと第
2の温度センサは溶接線と平行した位置の被溶接材に一
定距離を隔てて取り付けられ、溶接中の溶接トーチの移
動による温度変化をそれぞれ測定し、 入熱測定装置は第1の温度センサで測定している温度の
温度上昇率があらかじめ定められた基準上昇率を超えた
ときに溶接時間の計時を開始し、第2の温度センサで測
定している温度の温度上昇率が基準上昇率を超えたとき
に溶接時間の計時を停止し、計時した溶接時間と、第1
の温度センサと第2の温度センサの距離から溶接速度を
演算し、演算した溶接速度と溶接電流及びアーク電圧か
ら溶接入熱量を演算することを特徴とする溶接入熱測定
装置。
1. A welding heat input measuring device for automatically measuring welding heat input when performing covered arc welding or semi-automatic welding, comprising: a current sensor, a first temperature sensor, a second temperature sensor, A heat input measuring device, wherein the current sensor measures a welding current, and the first temperature sensor and the second temperature sensor are attached to a workpiece to be welded at a position parallel to the welding line at a predetermined distance, and The heat input measuring device measures the welding time when the temperature rise rate of the temperature measured by the first temperature sensor exceeds a predetermined reference rise rate. Is started, and when the temperature rise rate of the temperature measured by the second temperature sensor exceeds the reference rise rate, the timing of the welding time is stopped.
A welding speed is calculated from a distance between the temperature sensor and the second temperature sensor, and a welding heat input amount is calculated from the calculated welding speed, welding current and arc voltage.
【請求項2】 上記基準上昇率を30秒から2分の時間
間隔に対して10℃から30℃の温度上昇の範囲に定め
る請求項1記載の溶接入熱測定装置。
2. The welding heat input measuring apparatus according to claim 1, wherein said reference rate of rise is set in a range of a temperature rise of 10 ° C. to 30 ° C. for a time interval of 30 seconds to 2 minutes.
【請求項3】 被覆アーク溶接又は半自動溶接を行なっ
ているときの溶接入熱を自動的に測定する溶接入熱測定
装置であって、 電流センサと第1の温度センサと第2の温度センサ及び
入熱測定装置を有し、 電流センサは溶接電流を測定し、第1の温度センサと第
2の温度センサは溶接線と平行した位置の被溶接材に一
定距離を隔てて取り付けられ、溶接中の溶接トーチの移
動による温度変化をそれぞれ測定し、 入熱測定装置は第1の温度センサで測定している温度が
あらかじめ定められた閾値を超えた場合に溶接時間の計
時を開始し、第2の温度センサで測定している温度があ
らかじめ定められた閾値を超えた場合に溶接時間の計時
を停止し、計時した溶接時間と、第1の温度センサと第
2の温度センサの距離から溶接速度を演算し、演算した
溶接速度と溶接電流及びアーク電圧から溶接入熱量を演
算することを特徴とする溶接入熱測定装置。
3. A welding heat input measuring device for automatically measuring welding heat input when performing covered arc welding or semi-automatic welding, comprising: a current sensor, a first temperature sensor, a second temperature sensor, A heat input measuring device, wherein the current sensor measures a welding current, and the first temperature sensor and the second temperature sensor are attached to a workpiece to be welded at a position parallel to the welding line at a predetermined distance, and The heat input measuring device starts measuring the welding time when the temperature measured by the first temperature sensor exceeds a predetermined threshold, and When the temperature measured by the temperature sensor exceeds a predetermined threshold, the measurement of the welding time is stopped, and the welding speed is determined based on the measured welding time and the distance between the first temperature sensor and the second temperature sensor. Calculate and calculate A welding heat input measuring device which calculates a welding heat input amount from a welding speed, a welding current and an arc voltage.
【請求項4】 上記溶接時間の計時を開始した後に電流
センサで測定している溶接電流があらかじめ定めた閾値
以下になったときに溶接時間の計時を中断し、溶接電流
が閾値を超えたときに溶接時間の計時を再開する請求項
1,2又は3記載の溶接入熱測定装置。
4. When the timing of the welding time is started and the welding current measured by the current sensor falls below a predetermined threshold, the timing of the welding time is interrupted, and when the welding current exceeds the threshold. 4. The welding heat input measuring device according to claim 1, wherein the measuring of the welding time is restarted.
JP2000207622A 2000-07-10 2000-07-10 Measuring device for welding heat input Pending JP2002028781A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2000207622A JP2002028781A (en) 2000-07-10 2000-07-10 Measuring device for welding heat input

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2000207622A JP2002028781A (en) 2000-07-10 2000-07-10 Measuring device for welding heat input

Publications (1)

Publication Number Publication Date
JP2002028781A true JP2002028781A (en) 2002-01-29

Family

ID=18704359

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000207622A Pending JP2002028781A (en) 2000-07-10 2000-07-10 Measuring device for welding heat input

Country Status (1)

Country Link
JP (1) JP2002028781A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10967451B2 (en) 2016-03-31 2021-04-06 Illinois Tool Works Inc. Methods and apparatus to control hot-start weld current for arc ignition

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10967451B2 (en) 2016-03-31 2021-04-06 Illinois Tool Works Inc. Methods and apparatus to control hot-start weld current for arc ignition

Similar Documents

Publication Publication Date Title
US6265688B1 (en) Method of welding metals and apparatus for use therefor
JPH0255150B2 (en)
JPH11156553A (en) Method and device to detect abrasion of at least either of plasma arc torch electrode or nozzle
JP3211586B2 (en) Welding quality monitoring device
KR20180130173A (en) System and Method for Real time Monitoring of Electric Resistance Welding
CN103945975A (en) Monitoring method for plasma arc welding and plasma arc welding device
US11648619B2 (en) Method and device for making a workpiece surface of a metal workpiece
JP2002028781A (en) Measuring device for welding heat input
JPH08122051A (en) Method for measuring nugget of spot welding part
JP2002028782A (en) Measuring device for welding heat input
JP2011067845A (en) Plasma keyhole welding device and plasma keyhole welding method
KR100241029B1 (en) A welding quality certification system and method thereof
KR100270098B1 (en) Apparatus and method for quality judge of welding
JP3739219B2 (en) Control method of steel bar welding
JP2006110554A (en) Method for judging quality of resistance spot welding and monitoring device
JPS6046886A (en) Control device for resistance welding machine
JP2002239728A (en) Arc welding control method and arc welding equipment
JPH0994674A (en) Control method for resistance welding
JP2000102880A (en) Method and device for controlling welding conditions of resistance welding
JP4091374B2 (en) Flash welding machine
JPH05285677A (en) Method for detecting weld finish position in electroslag welding
SU1660909A1 (en) Method of determining the distribution of heat flow from a source of heat
Zou et al. Real time temperature measurement of nylon 66 butt-joints during vibration welding.
JP2005052861A (en) Plasma welding equipment, controlling method therefor, and weldment
JP2005138158A (en) Welding method