JP2002026437A - Substrate for optical inspection, optical inspection method using it, and optical module - Google Patents

Substrate for optical inspection, optical inspection method using it, and optical module

Info

Publication number
JP2002026437A
JP2002026437A JP2000211628A JP2000211628A JP2002026437A JP 2002026437 A JP2002026437 A JP 2002026437A JP 2000211628 A JP2000211628 A JP 2000211628A JP 2000211628 A JP2000211628 A JP 2000211628A JP 2002026437 A JP2002026437 A JP 2002026437A
Authority
JP
Japan
Prior art keywords
optical
substrate
light emitting
light
emitting element
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2000211628A
Other languages
Japanese (ja)
Inventor
Koji Takemura
浩二 竹村
Shirou Sakujima
史朗 作島
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kyocera Corp
Original Assignee
Kyocera Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kyocera Corp filed Critical Kyocera Corp
Priority to JP2000211628A priority Critical patent/JP2002026437A/en
Publication of JP2002026437A publication Critical patent/JP2002026437A/en
Withdrawn legal-status Critical Current

Links

Landscapes

  • Optical Couplings Of Light Guides (AREA)
  • Semiconductor Lasers (AREA)
  • Light Receiving Elements (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a substrate for optical inspection which can be applied to a high-speed module, an optical inspection method using the substrate, and an optical module loaded with an optical element. SOLUTION: The substrate P1 for optical inspection is provided with a substrate 11 having a plurality of optical element mounting areas on which a light emitting element and a light receiving element which receives the light emitted from the light emitting element are arranged, insulator layers 12 and 13 formed in a plurality of areas on the substrate 11, a signal line 15 and grounding conductor 16 connected to the electrode terminal of the light emitting element, and another signal line 17 and grounding conductor 1 connected to the electrode terminal of the light receiving element. The signal lines 15 and 17 of the light emitting and receiving elements are respectively laid on the separately formed insulator layers 12 and 13 and the grounding conductor of at least one of the light emitting and receiving elements is laid on one or both sides of the element.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、基板上に光ファイ
バや光素子(発光素子及び受光素子)等の光部品を搭載
し、これら光部品を光結合させる光実装基板を効率的に
作製及び検査を行うための光検査用基板及びそれを用い
た光検査方法、並びに光素子が搭載された光モジュール
に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an optical mounting board for mounting optical components such as an optical fiber and an optical element (light emitting element and light receiving element) on a substrate and optically coupling these optical parts. The present invention relates to an optical inspection substrate for performing an inspection, an optical inspection method using the same, and an optical module on which an optical element is mounted.

【0002】[0002]

【発明の背景】近年、光加入者系の普及にむけて、基板
上に光部品が搭載された光モジュールの組立コストを削
減する目的で、単結晶シリコンから成る基板(一般に、
シリコンプラットフォームと称する)を光実装基板とす
るパッシブアライメント技術が注目されている。この技
術によれば、光ファイバと発光素子であるレーザーダイ
オードや受光素子であるフォトダイオードなどの光素子
を、同一基板上に形成されたV溝や導体パターンの上に
実装するだけで、無調芯にて光モジュールの組立が可能
となる。
BACKGROUND OF THE INVENTION In recent years, with the aim of reducing the cost of assembling an optical module in which optical components are mounted on a substrate, the substrate made of single crystal silicon (generally,
Attention has been paid to a passive alignment technique using a silicon platform (hereinafter referred to as a silicon platform) as an optical mounting substrate. According to this technique, an optical fiber and an optical element such as a light emitting element such as a laser diode and a light receiving element such as a photodiode are mounted on a V-groove or a conductor pattern formed on the same substrate, resulting in an uncontrollable state. The optical module can be assembled with the core.

【0003】このような光実装基板は、同一ウエハ上に
光ファイバを搭載するV溝や、光素子を搭載する導体パ
ターンが複数組に配列された状態で一括的に作製され、
最終工程にて個々の基板に分断されて、図9に示すよう
にチップ化される。
[0003] Such an optical mounting substrate is manufactured collectively in a state where a plurality of sets of V-grooves for mounting optical fibers and conductor patterns for mounting optical elements are arranged on the same wafer.
In the final step, the substrate is divided into individual substrates and formed into chips as shown in FIG.

【0004】一枚のウエハから光実装基板を多数個作製
することは、光実装基板の作製コストの面でも極めて有
利であり、光モジュールの低コスト化という点で有望で
ある。また、シリコンウエハを利用することは、半導体
デバイスの量産化技術を流用できるため、多量の生産時
に著しくコストを削減することができるという利点があ
る。
[0004] Producing a large number of optical mounting substrates from a single wafer is extremely advantageous also in terms of the production cost of the optical mounting substrate, and is promising in terms of reducing the cost of an optical module. In addition, using a silicon wafer has the advantage that the cost can be remarkably reduced during mass production because the technology for mass production of semiconductor devices can be used.

【0005】しかしながら、せっかくウエハ単位での実
装基板の作製を行っても、光素子を実装基板上に一つ一
つ載置し、各素子の検査を行なうことは極めて煩雑であ
り、またコスト上昇の原因になると考えられる。
[0005] However, even if the mounting substrate is manufactured in units of wafers, it is extremely complicated to mount the optical elements on the mounting substrate one by one and inspect each element, and the cost increases. It is thought to be the cause.

【0006】そこで、半導体分野において採用されてい
るウエハバーンインと同様に、ウエハ状態で位置決めマ
ーカーを観察しながら多数組の光素子を実装するビジュ
アルアライメントや、半田のセルフアライメント等の技
術を用い、一括して複数の光素子を実装した後に、ウエ
ハレベルで一括的に光素子それ自体の不良を含めた実装
工程での初期不良を検出できることが非常に望ましい。
Therefore, similar to wafer burn-in employed in the semiconductor field, visual alignment for mounting a large number of optical elements while observing a positioning marker in a wafer state, and self-alignment of solder, etc. After mounting a plurality of optical elements, it is highly desirable to be able to detect an initial failure in a mounting process including a failure of the optical element itself at a wafer level.

【0007】上記検査を実現するためには、少なくとも
以下の問題を克服しなければならない。
In order to realize the above inspection, at least the following problems must be overcome.

【0008】1)図9に示すように、各チップの基板8
1に配設される発光素子及びそのモニター用の受光素子
の初期不良を検査するには、これら光素子の電気的特性
だけでなく、発光特性や受光特性を測定する必要がある
が、従来の光部品実装用基板Jでは、発光素子検査用の
光検出器や、受光素子検査用の光源を配置するスペース
が十分取れないため、これらの測定が困難となる。な
お、図9において、85,86は発光素子の駆動用導電
線、87,88は受光素子の駆動用導電線、84は光フ
ァイバを載置するためのV溝、89は発光素子を搭載す
るための半田パターン、90は受光素子を搭載するため
の半田パターンである。
1) As shown in FIG. 9, the substrate 8 of each chip
In order to inspect the initial failure of the light emitting element and the light receiving element for monitoring the light emitting element disposed in the optical element 1, it is necessary to measure not only the electrical characteristics of these optical elements but also the light emitting characteristics and light receiving characteristics. In the optical component mounting board J, it is difficult to measure a light detector for inspecting a light emitting element and a light source for inspecting a light receiving element. In FIG. 9, reference numerals 85 and 86 denote conductive wires for driving light emitting elements, 87 and 88 denote conductive wires for driving light receiving elements, 84 denotes a V-groove for mounting an optical fiber, and 89 denotes a light emitting element. 90 is a solder pattern for mounting the light receiving element.

【0009】2)半導体分野で使用されるウエハバーン
イン装置と同様に、全ての電極に対し電気的接続を行お
うとすれば、多数の接触端子が必要になるだけでなく、
これらを同時に接続するための非常に高価なコンタクタ
(プローブカード)が必要となる。特に、光素子をハイ
ブリッド(基板と別体)に搭載しているため、これらを
破損することなく上記電気的接続を行うことは困難であ
る。
2) As in the case of a wafer burn-in device used in the semiconductor field, if electrical connection is to be made to all the electrodes, not only a large number of contact terminals are required, but also
A very expensive contactor (probe card) for connecting these at the same time is required. In particular, since the optical elements are mounted on a hybrid (separate from the substrate), it is difficult to make the above-mentioned electrical connection without damaging them.

【0010】3)上記2)の問題を避けるために、配線
を引き回し、ウエハ端部でプロービングを行うようにす
ることが考えられるが、配線に交差部が生じその構造が
複雑となる。
3) In order to avoid the above problem 2), it is conceivable that the wiring is routed and probing is performed at the edge of the wafer. However, an intersection is generated in the wiring and the structure becomes complicated.

【0011】本願発明者らは上記諸問題に鑑み、光素子
をハイブリッドに一括実装したウエハに対しバーンイン
を簡便に行え、しかも光素子自体の不良や光素子の実装
時における不良を迅速且つ確実に検査可能なバーンイン
用基板及びそれを用いたバーンイン方法を提案した(特
願平11−192049号を参照)。本発明では、高速
モジュールにも適用可能な光検査用基板及びそれを用い
た光検査方法、並びに光素子が配設された光モジュール
を提供しようとするものである。
In view of the above problems, the inventors of the present invention can easily perform burn-in on a wafer in which optical elements are mounted collectively in a hybrid manner, and quickly and reliably detect defects in the optical elements themselves and defects in mounting the optical elements. A testable burn-in substrate and a burn-in method using the same have been proposed (see Japanese Patent Application No. 11-192049). An object of the present invention is to provide an optical inspection substrate applicable to a high-speed module, an optical inspection method using the same, and an optical module provided with an optical element.

【0012】[0012]

【課題を解決するための手段】本発明の光検査用基板
は、発光素子及び該発光素子の出射光を受光する受光素
子が配設される複数の光素子搭載領域を有する基板と、
該基板上の複数域に形成された絶縁体層と、前記各光素
子搭載領域の発光素子の電極端子に接続される信号線及
び接地線と、前記各光素子搭載領域の受光素子の電極端
子に接続される信号線及び接地線と、を備え、前記発光
素子の信号線と前記受光素子の信号線とが、各々分離さ
れた絶縁体層上に配設されているとともに、前記発光素
子及び前記受光素子の少なくとも一方の光素子の接地線
が、該光素子の信号線の片側または両側に配設されてい
ることを特徴とする。
According to the present invention, there is provided an optical inspection substrate comprising: a substrate having a plurality of optical element mounting regions in which a light emitting element and a light receiving element for receiving light emitted from the light emitting element are provided;
An insulator layer formed in a plurality of regions on the substrate; a signal line and a ground line connected to electrode terminals of the light emitting element in each of the optical element mounting regions; and an electrode terminal of a light receiving element in each of the optical element mounting regions. A signal line and a ground line connected to the light-emitting element, and the signal line of the light-emitting element and the signal line of the light-receiving element are disposed on separate insulator layers, respectively. A ground line of at least one of the light receiving elements is provided on one or both sides of a signal line of the optical element.

【0013】また、発光素子及び該発光素子の出射光を
受光する受光素子が配設される複数の光素子搭載領域を
有する基板と、該基板上の複数域に形成される絶縁体層
と、前記各光素子搭載領域に配設される発光素子の電極
端子に接続される信号線及び接地線と、前記各光素子搭
載領域に配設される受光素子の電極端子に接続される信
号線及び接地線と、を備え、前記発光素子の信号線と前
記受光素子の信号線とが、各々分離された絶縁体層上に
配設されているとともに、前記発光素子及び前記受光素
子の少なくとも一方の光素子の接地線が、該光素子の信
号線と絶縁体層を介して対向配置されたものとしてもよ
い。
A substrate having a plurality of optical element mounting areas on which a light emitting element and a light receiving element for receiving light emitted from the light emitting element are provided; an insulating layer formed in a plurality of areas on the substrate; A signal line and a ground line connected to an electrode terminal of a light emitting element provided in each of the optical element mounting areas; and a signal line connected to an electrode terminal of a light receiving element provided in each of the optical element mounting areas. And a ground line, wherein the signal line of the light emitting element and the signal line of the light receiving element are provided on the separated insulator layers, and at least one of the light emitting element and the light receiving element. The ground line of the optical element may be disposed so as to face the signal line of the optical element via an insulator layer.

【0014】本発明の光検査方法は、上記いずれかの光
検査用基板を準備する工程と、前記光検査用基板の各光
素子搭載領域に発光素子及び受光素子を配設する工程
と、前記発光素子及び前記受光素子が配設された光検査
用基板を所定温度に加熱する工程と、前記光検査用基板
が所定温度で加熱された状態で前記各光素子搭載領域に
配設された発光素子及び受光素子を駆動させ、前記発光
素子から出射される光量を前記受光素子により計測する
工程と、を含むことを特徴とする。
In the optical inspection method of the present invention, the step of preparing any one of the optical inspection substrates, the step of arranging a light emitting element and a light receiving element in each optical element mounting area of the optical inspection substrate, Heating the optical inspection substrate on which the light emitting element and the light receiving element are disposed to a predetermined temperature, and emitting light in each of the optical element mounting areas while the optical inspection substrate is heated at the predetermined temperature. Driving the element and the light receiving element and measuring the amount of light emitted from the light emitting element by the light receiving element.

【0015】本発明の光モジュールは、上記光検査方法
を施した後に、前記光検査用基板を前記各光素子搭載領
域毎に分割して得たことを特徴とする。ここで,特に受
光素子は端面受光型であることを特徴とする。
An optical module according to the present invention is characterized in that after performing the above-described optical inspection method, the optical inspection substrate is obtained by dividing the substrate for each optical element mounting area. Here, the light receiving element is characterized in that it is of an end face light receiving type.

【0016】[0016]

【発明の実施の形態】以下に、本発明に係る実施形態に
ついて図面に基づき詳細に説明する。なお、同一構成に
は同一符号を付し説明を省略する場合がある。
Embodiments of the present invention will be described below in detail with reference to the drawings. Note that the same components are denoted by the same reference numerals and description thereof may be omitted.

【0017】〔光検査用基板及び光検査方法〕図1に光
検査用基板であるバーンイン用基板1の模式的な平面図
を示す。所定面方位(例えば、ミラー指数で(100)
面や(110)面)を主面とするシリコン単結晶等の異
方性エッチングが可能な材料から成る基板(ウエハ)W
上に、破線で図示した多数の光部品実装用基板形成(チ
ップ形成)領域Tを、複数行,複数列に配列している。
また、ウエハ上には絶縁体層が複数域に形成されてお
り、これらの絶縁体層上に導電線が配線されている。
[Optical Inspection Substrate and Optical Inspection Method] FIG. 1 is a schematic plan view of a burn-in substrate 1 which is an optical inspection substrate. A predetermined plane orientation (for example, (100) in Miller index)
(Wafer) W made of a material capable of anisotropic etching, such as silicon single crystal having a principal plane of (110) plane)
Above, a large number of optical component mounting substrate forming (chip forming) regions T indicated by broken lines are arranged in a plurality of rows and a plurality of columns.
Further, an insulator layer is formed in a plurality of regions on the wafer, and conductive lines are wired on these insulator layers.

【0018】同一列に配設させる半導体レーザ等の発光
素子の上面側電極端子に接続される導電線(信号線)を
L1,L2,L3,・・・として図示し、また、同一行
に配設させるフォトダイオード等の受光素子の上面側電
極端子に接続される導電線(信号線)をP1,P2,P
3,・・・として図示している。また、各信号線におけ
る通電用端子はL1a,L2a,L3a,・・・、P1
a,P2a,P3a,・・・である。
The conductive lines (signal lines) connected to the upper electrode terminals of the light emitting elements such as semiconductor lasers arranged in the same column are shown as L1, L2, L3,. The conductive lines (signal lines) connected to the electrode terminals on the upper surface of the light receiving element such as the photodiode to be provided are P1, P2, P
Are shown as 3,... The terminals for energization in each signal line are L1a, L2a, L3a,.
a, P2a, P3a,...

【0019】また、発光素子に接続された信号線と受光
素子に接続された信号線とが、各々分離された絶縁体層
上に配設されており、発光素子及び受光素子の少なくと
も一方の光素子の接地線が、当該光素子の信号線の片側
または両側に配設されているか、もしくは、当該光素子
の信号線と絶縁体層を介して対向配置されている。な
お、図1においては簡単のため接地線は省略して図示し
ている。
In addition, a signal line connected to the light emitting element and a signal line connected to the light receiving element are provided on the separated insulator layers, respectively, and at least one of the light emitting element and the light receiving element The element ground line is disposed on one or both sides of the signal line of the optical element, or is arranged opposite to the signal line of the optical element via an insulating layer. In FIG. 1, ground lines are omitted for simplicity.

【0020】図2(a)〜(c)は、バーンイン用基板
1の一部領域(光部品実装用基板4枚分)における配線
の様子について模式的に図示したものである。図2
(a)はバーンイン用基板1の最上面における発光素子
の上面側電極端子に接続される信号線L2,L3及び接
地線LG2,LG3を図示し、(b)は上部絶縁体層Z
Hの概略パターンを図示し、(c)は上記上部絶縁体層
ZHの下部に配設されるとともに、バーンイン用基板1
に形成された下部絶縁体層上に配設され、受光素子の上
面側電極端子に接続される信号線P2,P3を図示した
ものである(本例の接地線については、発光素子の接地
線と共有する構成をとっている)。
FIGS. 2A to 2C schematically show the state of wiring in a partial area of the burn-in board 1 (for four optical component mounting boards). FIG.
(A) illustrates the signal lines L2, L3 and the ground lines LG2, LG3 connected to the upper electrode terminals of the light emitting element on the uppermost surface of the burn-in substrate 1, and (b) illustrates the upper insulator layer Z.
H shows a schematic pattern, and (c) shows a burn-in substrate 1 disposed below the upper insulator layer ZH.
1 shows signal lines P2 and P3 which are arranged on a lower insulator layer formed on the lower surface and are connected to electrode terminals on the upper surface side of the light receiving element (the ground line in this example is the ground line of the light emitting element). And share it).

【0021】図2において、図示Lは発光素子が配設さ
れる領域(発光素子搭載領域)を示し、図示Pは受光素
子が配設される領域(受光素子搭載領域)を示し、これ
らL、Pの光素子搭載領域がバーンイン用基板1上に多
数形成されている。また、発光素子に光接続させる光フ
ァイバを配設・固定するための、断面V字状をなすV溝
14が、各発光素子搭載領域Lの近傍に、ウエハに対す
るアルカリ水溶液等による異方性エッチングで形成され
ている。
In FIG. 2, L indicates a region in which the light emitting element is provided (light emitting device mounting region), and P indicates a region in which the light receiving device is provided (light receiving device mounting region). A large number of P element mounting regions are formed on the burn-in substrate 1. A V-shaped groove 14 having a V-shaped cross section for arranging and fixing an optical fiber to be optically connected to the light emitting element is provided near the respective light emitting element mounting areas L by anisotropic etching of the wafer with an alkaline aqueous solution or the like. It is formed with.

【0022】このように、例えば、同一列に位置する発
光素子においては、発光素子の上面側電極端子から発光
素子の図示左側に位置する信号線L2,L3,・・・へ
接続し、発光素子の下面側電極端子から発光素子の図示
右側に位置する接地線LG2,LG3,・・・へ接続す
る。また、同一行に位置する受光素子においては、受光
素子の上面側電極端子から受光素子の図示下側に位置す
る信号線P3,P4,・・・へ接続し、受光素子の下面
側電極端子から上部絶縁体層ZHの開口部を介して、上
部絶縁体層上の発光素子の接地線PG3,PG4,・・
・へ接続する。発光素子に接続される信号線は、受光素
子に接続される信号線上に形成された上部絶縁体層ZH
上に配設されているので、発光素子の導電線が受光素子
の導電線に接触することがなく、各々の光素子への通電
が可能であり、しかも簡便に配線することができる。
As described above, for example, in the case of the light emitting elements located in the same column, the upper surface side electrode terminal of the light emitting element is connected to the signal lines L2, L3,. Are connected to the ground lines LG2, LG3,... Located on the right side of the light emitting element in the figure. Further, in the light receiving elements located in the same row, the signal lines P3, P4,... Located on the lower side of the light receiving element are connected from the upper electrode terminal of the light receiving element to the lower electrode terminal of the light receiving element. Through the openings in the upper insulator layer ZH, the ground lines PG3, PG4,.
・ Connect to The signal line connected to the light emitting element is an upper insulator layer ZH formed on the signal line connected to the light receiving element.
Since it is arranged above, the conductive line of the light emitting element does not come into contact with the conductive line of the light receiving element, and it is possible to energize each optical element, and furthermore, it is possible to wire easily.

【0023】次に、光検査方法であるバーンイン方法に
ついて各工程ごとに説明する。
Next, a burn-in method as an optical inspection method will be described for each process.

【0024】まず、光検査用基板であるバーンイン用基
板を準備する。そして、このバーンイン用基板上に形成
された配線電極上に、ウエハの状態で金スズ半田等を用
いて、複数の発光素子及びそのモニター用の受光素子を
ビジュアルアライメントまたは半田のセルフアライメン
トで配設・固定する。
First, a burn-in substrate, which is an optical inspection substrate, is prepared. Then, on the wiring electrodes formed on the burn-in substrate, a plurality of light-emitting elements and a light-receiving element for monitoring the same are arranged by visual alignment or self-alignment of solder using gold tin solder or the like in a wafer state.・ Fix it.

【0025】次に、加速試験を行うために、例えば85
℃前後でバーンイン用基板を加熱させ、この状態で、図
1における発光素子の信号線L1に発光素子の閾値以上
の電流で通電し、同一列の発光素子を発光駆動(作動)
させ、信号線P3,P4,・・・により同一列の受光素
子を順次駆動(作動)させ、順次各受光素子により発光
素子から出射される光量を計測(検出)する。このよう
にして、順次各列の発光素子と受光素子の駆動(作動)
でもって、受光素子の検出光量に基づいた検査を行うこ
とができる。なお、図1において、受光素子の検出光量
の測定機器等については簡単のため図示を省略してい
る。
Next, for performing an accelerated test, for example, 85
The substrate for burn-in is heated to about ° C. In this state, a current equal to or higher than the threshold value of the light emitting element is applied to the signal line L1 of the light emitting element in FIG.
Then, the light receiving elements in the same column are sequentially driven (operated) by the signal lines P3, P4,..., And the amount of light emitted from the light emitting element is sequentially measured (detected) by each light receiving element. In this manner, the driving (operation) of the light emitting element and the light receiving element in each column is sequentially performed.
Thus, the inspection based on the detected light amount of the light receiving element can be performed. In FIG. 1, a device for measuring the amount of light detected by the light receiving element is omitted for simplicity.

【0026】このとき、発光素子や受光素子の光素子自
体の不良やこれらの実装工程等における不良、または断
線等の不良があれば、所定の光量が得られない。また、
光素子の実装時における発光素子−受光素子間に位置ず
れが生じても同様に所定の光量が得られない。これによ
り、任意の光部品実装用基板領域Tにおける光素子実装
時の不良を確実且つ迅速に検出することができる。ここ
で、受光素子は面受光型の受光素子よりトレランスの厳
しい(位置ずれに対して敏感な)端面受光型の受光素子
を用いることが好ましい。本発明のバーンイン方法にお
いては、発光素子の光量を受光素子で検出することで、
双方の光素子不良及び実装時の位置ずれを検出するた
め、発光素子からの光量を直接対向する受光面で検出す
ることが好ましい。
At this time, if there is a defect in the optical element itself of the light emitting element or the light receiving element, a defect in the mounting process thereof, or a defect such as disconnection, a predetermined light amount cannot be obtained. Also,
Even if a positional shift occurs between the light emitting element and the light receiving element when mounting the optical element, a predetermined amount of light cannot be obtained. This makes it possible to reliably and quickly detect a defect in mounting an optical element in an arbitrary optical component mounting substrate region T. Here, it is preferable to use an end-face light-receiving light-receiving element that has tighter tolerance (more sensitive to positional deviation) than the surface light-receiving light-receiving element. In the burn-in method of the present invention, by detecting the light amount of the light emitting element with the light receiving element,
In order to detect both optical element defects and displacement during mounting, it is preferable to detect the amount of light from the light emitting element on the directly facing light receiving surface.

【0027】図1に示すように、導電線をマトリックス
状に配線することにより、通電する列と検出する行か
ら、不良となっている光部品実装用基板形成領域Tを特
定することができるが、マトリックス状に配線を施すた
めには、例えば信号線L3と信号線P2との交差する領
域において、両者が短絡しないことが必要である。本発
明においては、図2に示すように、例えば、発光素子の
電極端子に接続させる信号線と、受光素子の電極端子に
接続させる信号線とが、各々異なる絶縁体層上に形成さ
れているので短絡することがない。
As shown in FIG. 1, by arranging the conductive lines in a matrix, the defective optical component mounting substrate forming region T can be specified from the columns to be energized and the rows to be detected. In order to provide wiring in a matrix, for example, in a region where the signal line L3 intersects with the signal line P2, it is necessary that both are not short-circuited. In the present invention, as shown in FIG. 2, for example, a signal line connected to an electrode terminal of a light emitting element and a signal line connected to an electrode terminal of a light receiving element are formed on different insulator layers. There is no short circuit.

【0028】ウエハWにおける各光部品実装用基板形成
領域Tの輪郭部に位置する各導電線に重なるラインで、
縦横に切断して得られた個々のチップは、例えば図3に
示す光部品実装用基板P1となり、図5に示すように、
この光部品実装用基板P1上において、図3の半田パタ
ーン19上に発光素子30、半田パターン20上に受光
素子31を実装し、V溝14上に光ファイバ37を実装
したものが光モジュールM1である。
A line overlapping with each conductive line located at the outline of each optical component mounting substrate forming region T on the wafer W,
The individual chips obtained by cutting vertically and horizontally become, for example, an optical component mounting board P1 shown in FIG. 3, and as shown in FIG.
On this optical component mounting board P1, the light emitting element 30 is mounted on the solder pattern 19 of FIG. 3, the light receiving element 31 is mounted on the solder pattern 20, and the optical fiber 37 is mounted on the V-groove 14 to form the optical module M1. It is.

【0029】ここで、図中、35は発光素子30の上面
側電極端子と信号線15とを接続させるためのボンディ
ングワイヤ、36は受光素子31の上面側電極端子と信
号線17とを接続させるためのボンディングワイヤ、そ
して、34は下部絶縁体層上にある発光素子及び受光素
子用の接地線と、上部絶縁体層上にある信号線の片側ま
たは両側にある接地線とを接続するためのボンディング
ワイヤである。ボンディングワイヤ36は導体パターン
で構成することも可能である。これにより、接地線のイ
ンダクタンスを低減することができ、インピーダンス不
整合を回避し、より高周波特性に優れた配線構造を有す
る光モジュールにすることができる。
In the drawing, reference numeral 35 denotes a bonding wire for connecting the upper electrode terminal of the light emitting element 30 to the signal line 15, and 36 denotes a connection between the upper electrode terminal of the light receiving element 31 and the signal line 17. A bonding wire for connecting the ground line for the light emitting element and the light receiving element on the lower insulator layer to the ground line on one or both sides of the signal line on the upper insulator layer; It is a bonding wire. The bonding wire 36 may be formed of a conductor pattern. Thereby, the inductance of the ground line can be reduced, impedance mismatch can be avoided, and an optical module having a wiring structure with more excellent high-frequency characteristics can be obtained.

【0030】また、本発明の光検査方法は、図7に示す
ように、受光素子の信号線を共通にせず、信号端子Pa
1,Pa2,・・・のように各光部品実装用基板領域T
毎に設け、例えば、信号線L3を通電する場合に、個別
の受光素子の信号端子Pa1,Pb1,・・・に通電し
て、バーンインを行うようにしてもよく、これにより、
絶縁体層の構成に制約を受けない反面、受光素子の信号
検出は個別に行うことになる。このようなバーンイン用
ウエハから切り出した個々のチップは、例えば図3や図
4に示すような光部品実装用基板P1、P2となるが、
上記検査方法を終えた後にバーンイン用ウエハを各光素
子搭載領域毎にダイシング等で分離することにより、こ
れら光部品実装用基板P1、P2に光素子や光導波体を
実装された、例えば、図5、図6に示す光モジュールM
1、M2とすることができる。
Further, according to the optical inspection method of the present invention, as shown in FIG.
1, Pa2,... Each optical component mounting substrate region T
For example, when the signal line L3 is energized, the burn-in may be performed by energizing the signal terminals Pa1, Pb1,... Of the individual light receiving elements.
Although the structure of the insulator layer is not restricted, the signal detection of the light receiving element is performed individually. Individual chips cut out from such a burn-in wafer become optical component mounting substrates P1 and P2 as shown in FIGS. 3 and 4, for example.
After the above inspection method is completed, the burn-in wafer is separated by dicing or the like into each optical element mounting area, so that optical elements and optical waveguides are mounted on these optical component mounting substrates P1 and P2. 5. Optical module M shown in FIG.
1, M2.

【0031】〔光部品実装用基板〕次に、上記ウエハW
を個々の基板に切断して得られる光部品実装用基板の実
施形態(ただし、ここでは導体パターンの様子を明らか
にするために光素子等が搭載されていないもの)につい
て詳細に説明する。なお、図3,図4における同様な部
材については、簡単のため重複した説明及び符号の表示
を省略する場合があるものとする。
[Optical Component Mounting Substrate] Next, the wafer W
Of an optical component mounting substrate obtained by cutting the substrate into individual substrates (however, here, an optical element or the like is not mounted in order to clarify the state of a conductor pattern) will be described in detail. In addition, about the same member in FIG.3, FIG.4, for simplification, duplicate description and the display of a code | symbol may be omitted.

【0032】図3(a),(b)に示すように、光部品
実装用基板P1は、例えば、所定面方位(ミラー指数に
よる表示で(100)面等)を有する主面のシリコン単
結晶から成る基板11の表面に熱酸化等により厚さ数千
Å程度の下部絶縁体層13が形成されたものであり、こ
の上に発光素子及び受光素子の下面側電極端子が載置さ
れる電極パッド及び半田パターン19,20が設けられ
ている。なお、これら電極パッドは、基板11にKOH
等のアルカリ溶液の異方性エッチングで形成された、光
ファイバ等の光導波体を搭載させるためのV溝14に対
し正確に位置決めされ形成されている。
As shown in FIGS. 3A and 3B, the optical component mounting substrate P1 has, for example, a silicon single crystal of a main surface having a predetermined plane orientation (a (100) plane or the like represented by a Miller index). A lower insulating layer 13 having a thickness of about several thousand mm is formed on a surface of a substrate 11 made of, for example, thermal oxidation, and an electrode on which lower surface electrode terminals of a light emitting element and a light receiving element are mounted. Pads and solder patterns 19 and 20 are provided. These electrode pads are provided on the substrate 11 by KOH.
It is accurately positioned and formed with respect to a V-groove 14 for mounting an optical waveguide such as an optical fiber formed by anisotropic etching of an alkaline solution such as.

【0033】ここで、電極パッドは、例えば、上層/下
層がAu/Pt/TiやAu/Cr等で構成され、厚さ
0.3〜2.0μmであり、半田パターンはAu−Sn
合金等から成る。
The electrode pad has, for example, an upper / lower layer made of Au / Pt / Ti or Au / Cr, a thickness of 0.3 to 2.0 μm, and a solder pattern of Au-Sn.
It is made of an alloy or the like.

【0034】また、下部絶縁体層13上には、受光素子
の上面側電極端子に後記するボンディングワイヤで接続
される信号線17、及び受光素子の下面側電極端子に接
続される接地線18が形成されており、さらに、光素子
搭載領域の開口部12a,導電線16のワイヤボンディ
ング領域の開口部12b,信号線17のワイヤボンディ
ング領域の開口部及び引出し領域の開口部12c,12
d、接地線18のワイヤボンディング領域の開口部12
eのそれぞれを有し、酸化シリコンや窒化シリコン等か
ら成る上部絶縁体層12が厚さ0.1μm以上に形成さ
れている。
On the lower insulator layer 13, a signal line 17 connected to the upper electrode terminal of the light receiving element by a bonding wire described later and a ground line 18 connected to the lower electrode terminal of the light receiving element are provided. Further, an opening 12a in the optical element mounting region, an opening 12b in the wire bonding region of the conductive line 16, an opening in the wire bonding region of the signal line 17, and openings 12c and 12 in the lead-out region are formed.
d, opening 12 of wire bonding region of ground line 18
e, and an upper insulator layer 12 made of silicon oxide, silicon nitride, or the like is formed to a thickness of 0.1 μm or more.

【0035】一方、発光素子の上面側電極端子に後述す
るボンディングワイヤで接続される信号線15及び、発
光素子の下面側電極端子に接続される接地線16から、
上部絶縁体層上の開口部12bを介して、後述するボン
ディングワイヤで接続される接地線21が形成されてい
る。
On the other hand, from the signal line 15 connected to the upper electrode terminal of the light emitting element by a bonding wire described later and the ground line 16 connected to the lower electrode terminal of the light emitting element,
A ground line 21 is formed through an opening 12b on the upper insulator layer and connected by a bonding wire described later.

【0036】なお、上記各導電線は電極パッドと同様な
材質,厚みから成るものとする。
Each of the conductive wires is made of the same material and thickness as the electrode pads.

【0037】かくして、光部品実装用基板P1によれ
ば、ウエハ・バーンインを好適に行うことができるだけ
でなく、上部絶縁体層12を厚く形成することで、配線
の寄生容量を低減することが可能となり、しかも熱安定
性に優れた高周波対応に好適な優れた光モジュール用の
光部品実装用基板を提供することができる。また、信号
電極15の両側にグランド線21を配置する構成(コプ
レーナ構造)にすることで、さらに高周波に対して好適
な配線構造になる。
Thus, according to the optical component mounting substrate P1, not only can the wafer burn-in be performed favorably, but also the parasitic capacitance of the wiring can be reduced by forming the upper insulator layer 12 thick. In addition, it is possible to provide an excellent optical component mounting board for an optical module which is excellent in thermal stability and suitable for high frequency. Further, by adopting a configuration in which the ground lines 21 are arranged on both sides of the signal electrode 15 (coplanar structure), a wiring structure more suitable for high frequencies is obtained.

【0038】次に、光部品実装用基板の他の実施形態に
ついて説明する。光部品実装用基板は例えば図4
(a),(b)に示す光部品実装用基板P2のように、
発光素子の上面側電極端子に接続される信号線15を、
図3と同様上部絶縁体層12の上側に設け、下面側電極
端子に接続される接地線16を上部絶縁体層12を隔て
て信号線と対向するように構成したものである。ただ
し、この場合は図示されているように、上記絶縁体層1
2に接地線16の引出し用開口部12fを設けるものと
する(この例では、受光素子に接続される接地線18に
ついても共通の開口部12fを用いている)。
Next, another embodiment of the optical component mounting board will be described. For example, FIG.
Like the optical component mounting board P2 shown in FIGS.
A signal line 15 connected to the upper electrode terminal of the light emitting element;
3, a ground line 16 connected to the lower electrode terminal is arranged to face the signal line with the upper insulator layer 12 interposed therebetween. However, in this case, as shown in FIG.
2 is provided with an opening 12f for leading out the ground line 16 (in this example, a common opening 12f is used also for the ground line 18 connected to the light receiving element).

【0039】かくして、光部品実装用基板P2において
も、ウエハ・バーンインを好適に行うことができるだけ
でなく、上部絶縁体層12を厚く形成することで、配線
の寄生容量を低減することが可能となり、しかも熱安定
性に優れた高周波対応に好適な優れた光モジュール用の
光部品実装用基板を提供することができる。また、発光
素子及び受光素子の少なくとも一方の光素子の接地線
が、この光素子の信号線と絶縁体層を介して対向配置す
るストリップライン構造とすることで、高周波に対して
好適な配線構造となる。
Thus, also in the optical component mounting substrate P2, not only can the wafer burn-in be suitably performed, but also the parasitic capacitance of the wiring can be reduced by forming the upper insulating layer 12 thick. Moreover, it is possible to provide an excellent optical component mounting substrate for an optical module, which is excellent in thermal stability and suitable for high frequency. In addition, a ground line of at least one of the light-emitting element and the light-receiving element has a strip line structure in which the ground line is opposed to the signal line of the optical element via an insulating layer, so that a wiring structure suitable for high frequencies is provided. Becomes

【0040】〔光モジュール〕次に、上記光検査方法を
施した後に、光検査用基板(例えば、バーンイン用ウエ
ハ)を各光素子搭載領域毎に分割して得た光モジュール
について説明する。
[Optical Module] Next, an optical module obtained by dividing an optical inspection substrate (for example, a burn-in wafer) for each optical element mounting area after performing the optical inspection method will be described.

【0041】図5、図6はそれぞれ図3、図4の光部品
実装用基板P1,P2上に、発光素子30、受光素子3
1、光ファイバ37を搭載して成る光モジュールM1,
M2を示したものである。
FIGS. 5 and 6 show the light emitting element 30 and the light receiving element 3 on the optical component mounting substrates P1 and P2 of FIGS. 3 and 4, respectively.
1. An optical module M1 having an optical fiber 37 mounted thereon.
M2 is shown.

【0042】上記光モジュールM1,M2においては、
受光素子として端面受光型の光素子を、こうしたハイブ
リッド実装の好適な例として採用しているが、図8に示
すように、受光素子31の搭載下部にV溝61を形成
し、その内側斜面62に金等の材料を蒸着することによ
り反射面を形成し、発光素子30の後方出射光を、その
反射面で反射した光を面受光型の受光素子を用いて検出
しても構わない。
In the optical modules M1 and M2,
As a light receiving element, an end face light receiving type optical element is adopted as a preferable example of such hybrid mounting. As shown in FIG. 8, a V-groove 61 is formed below the mounting of the light receiving element 31, and an inner slope 62 thereof is formed. A reflective surface may be formed by vapor-depositing a material such as gold on the substrate, and light emitted backward from the light emitting element 30 may be detected by using a surface light receiving type light receiving element.

【0043】なお、本発明は上述した実施形態に限定さ
れるものではない。発光素子及び受光素子の両電極端子
の各々に接続させる信号線及び接地線の少なくとも一方
の接地線が、当該光素子の信号線が配設されている絶縁
体層と同じ絶縁体層上にであって、当該信号線の片側ま
たは両側に配設されるような構成(コプレーナ構造)と
するか、もしくは当該光素子の信号線が配設されている
絶縁体層の下方にこの信号線と対向するように配設され
るような構成(ストリップライン構造)とすれば、本発
明の要旨を逸脱しない範囲で適宜変更し実施が可能であ
る。
The present invention is not limited to the above embodiment. At least one of the signal line and the ground line connected to each of the electrode terminals of the light emitting element and the light receiving element is formed on the same insulator layer as the insulator layer on which the signal line of the optical element is provided. The signal line is provided on one or both sides of the signal line (coplanar structure), or the signal line of the optical element is opposed to the signal line below the insulator layer where the signal line is disposed. With such a configuration (strip line structure), the configuration can be appropriately changed and implemented without departing from the gist of the present invention.

【0044】[0044]

【発明の効果】以上詳述したように、本発明によれば、
例えば発光素子の信号線と受光素子の信号線とが互いに
異なる絶縁体層上に配設されることになるので、各信号
線の配線が容易となる。また、ウエハレベルで高速の光
素子自体及びその実装時における不良を容易且つ確実に
検出することが可能となるので、これらのことから、信
頼性の高い光部品実装用基板や光モジュールを得ること
ができる。
As described in detail above, according to the present invention,
For example, since the signal line of the light emitting element and the signal line of the light receiving element are provided on different insulator layers, wiring of each signal line becomes easy. In addition, since it is possible to easily and reliably detect a high-speed optical element itself at the wafer level and a defect at the time of mounting the optical element, it is possible to obtain a highly reliable optical component mounting substrate or optical module from these. Can be.

【0045】また、発光素子に接続される導電線(信号
線及び接地線)と受光素子に接続される導電線とを互い
に交差するマトリックス状に配線することが可能とな
り、これにより、プロービングをきわめて簡便に且つ迅
速に行え、しかも、バーンイン装置におけるプローバー
構造を簡単に構成でき、不良検出の作業性も良好な非常
に優れた光検査用基板及びそれを用いた光検査方法を提
供でき、ひいては信頼性に優れた光モジュールも提供で
きる。
Further, it is possible to arrange conductive lines (signal lines and ground lines) connected to the light emitting element and conductive lines connected to the light receiving element in a matrix shape crossing each other. It is possible to provide a very excellent optical inspection substrate and an optical inspection method using the same, which can be performed simply and quickly, and furthermore, the prober structure in the burn-in apparatus can be easily configured, and the workability of defect detection is also good. An optical module with excellent performance can be provided.

【0046】また、発光素子及び受光素子の少なくとも
一方の光素子の接地線が、この光素子の信号線の片側ま
たは両側に配設されること、もしくは、発光素子及び受
光素子の少なくとも一方の光素子の接地線が、この光素
子の信号線と絶縁体層を介して対向配置されていること
により、高周波特性の優れた配線構造とすることがで
き、性能の優れた光モジュールを提供できる。
The ground line of at least one of the light emitting element and the light receiving element is provided on one or both sides of the signal line of the optical element, or the light of at least one of the light emitting element and the light receiving element is provided. Since the ground line of the element is arranged to face the signal line of the optical element via the insulator layer, a wiring structure having excellent high-frequency characteristics can be obtained, and an optical module having excellent performance can be provided.

【0047】さらに、本発明において、受光素子は面受
光型の受光素子より厳しい条件で発光素子の出射光をモ
ニターする、位置ずれに敏感な端面受光型の受光素子を
用いることで、より信頼性の高い光検査用基板及び光検
査方法を提供することができ、ひいては信頼性の優れた
光モジュールを提供することも可能である。
Furthermore, in the present invention, the reliability of the light receiving element is improved by using an edge receiving light receiving element which is sensitive to displacement and monitors the light emitted from the light emitting element under more severe conditions than the surface light receiving type light receiving element. It is possible to provide an optical inspection substrate and an optical inspection method with high reliability, and it is also possible to provide an optical module with excellent reliability.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明に係る検査用基板の一実施形態を模式的
に説明する平面図である。
FIG. 1 is a plan view schematically illustrating an embodiment of an inspection substrate according to the present invention.

【図2】本発明の検査用基板の一部分を模式的に示す平
面図で、(a)は発光素子に接続される導電線を主に示
すもので、(b)は(a)の導電線が配設される上部絶
縁体層を示すものである。(c)は上部絶縁体層の下方
に配設された、受光素子に接続される導電線を主に示す
ものである。
FIGS. 2A and 2B are plan views schematically showing a part of a test substrate according to the present invention, wherein FIG. 2A mainly shows conductive lines connected to a light emitting element, and FIG. 2B shows the conductive lines of FIG. Indicates an upper insulator layer provided thereon. (C) mainly shows a conductive line connected to the light receiving element, which is arranged below the upper insulator layer.

【図3】本発明に係る光部品実装用基板の一実施形態を
模式的に説明する図であり、(a)は平面図、(b)は
A1−A1線断面図である。
3A and 3B are diagrams schematically illustrating an embodiment of an optical component mounting board according to the present invention, wherein FIG. 3A is a plan view and FIG. 3B is a cross-sectional view taken along line A1-A1.

【図4】本発明に係る光部品実装用基板の他の実施形態
を模式的に説明する図であり、(a)は平面図、(b)
はA2−A2線断面図である。
4A and 4B are diagrams schematically illustrating another embodiment of the optical component mounting board according to the present invention, wherein FIG. 4A is a plan view and FIG.
Is a sectional view taken along line A2-A2.

【図5】本発明に係る光実装基板を用いた、光モジュー
ルの実施形態を模式的に説明する平面図で、図3で示し
た光部品実装用基板に対する光モジュールの平面図を示
している。
5 is a plan view schematically illustrating an embodiment of an optical module using the optical mounting board according to the present invention, and shows a plan view of the optical module with respect to the optical component mounting board shown in FIG. 3; .

【図6】本発明に係る光実装基板を用いた、光モジュー
ルの実施形態を模式的に説明する平面図で、図4で示し
た光部品実装用基板に対する光モジュールの平面図を示
している。
6 is a plan view schematically illustrating an embodiment of an optical module using the optical mounting board according to the present invention, and shows a plan view of the optical module with respect to the optical component mounting board shown in FIG. 4; .

【図7】本発明に係る検査用基板の他の実施形態を模式
的に説明する平面図である。
FIG. 7 is a plan view schematically illustrating another embodiment of the inspection substrate according to the present invention.

【図8】本発明に係る光実装基板を用いた、光モジュー
ルの他の実施形態を示している。
FIG. 8 shows another embodiment of the optical module using the optical mounting board according to the present invention.

【図9】従来の光実装用基板の構成を説明するための図
であり、(a)は平面図、(b)は(a)のB−B線断
面図である。
9A and 9B are views for explaining the configuration of a conventional optical mounting substrate, wherein FIG. 9A is a plan view, and FIG. 9B is a cross-sectional view taken along line BB of FIG.

【符号の説明】[Explanation of symbols]

1:光検査用基板 11:基板 12:上部絶縁体層 13:下部絶縁体層 14:V溝 15:(発光素子用)信号線 16:(発光素子用)接地線 17:(受光素子用)信号線 18:(受光素子用)接地線 19,20:半田パターン 21:(発光素子用の上部絶縁体層)接地線 30:発光素子 31:受光素子 37:光ファイバ(光導波体) L:発光素子搭載領域(光素子搭載領域) P:受光素子搭載領域(光素子搭載領域) M1,M2:光モジュール P1,P2:光部品実装用基板 T:光部品実装用基板形成領域 W:基板(ウエハ) ZH:上部絶縁体層 1: Optical inspection substrate 11: Substrate 12: Upper insulator layer 13: Lower insulator layer 14: V groove 15: Signal line (for light emitting element) 16: Ground line (for light emitting element) 17: (for light receiving element) Signal line 18: ground line (for light receiving element) 19, 20: solder pattern 21: (upper insulator layer for light emitting element) ground line 30: light emitting element 31: light receiving element 37: optical fiber (optical waveguide) L: Light emitting element mounting area (optical element mounting area) P: light receiving element mounting area (optical element mounting area) M1, M2: optical module P1, P2: optical component mounting substrate T: optical component mounting substrate forming area W: substrate ( Wafer) ZH: Upper insulator layer

───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.7 識別記号 FI テーマコート゛(参考) H01S 5/026 H01L 31/02 Z Fターム(参考) 2H037 AA01 BA02 BA11 DA03 DA04 DA06 DA18 DA22 5F073 BA01 EA28 FA06 HA02 HA06 HA09 HA11 5F088 AA01 BA18 BA20 BB01 JA03 JA11 JA20 ──────────────────────────────────────────────────続 き Continued on the front page (51) Int.Cl. 7 Identification symbol FI Theme coat ゛ (Reference) H01S 5/026 H01L 31/02 Z F term (Reference) 2H037 AA01 BA02 BA11 DA03 DA04 DA06 DA18 DA22 5F073 BA01 EA28 FA06 HA02 HA06 HA09 HA11 5F088 AA01 BA18 BA20 BB01 JA03 JA11 JA20

Claims (5)

【特許請求の範囲】[Claims] 【請求項1】 発光素子及び該発光素子の出射光を受光
する受光素子が配設される複数の光素子搭載領域を有す
る基板と、該基板上の複数域に形成された絶縁体層と、
前記発光素子の電極端子に接続される信号線及び接地線
と、前記受光素子の電極端子に接続される信号線及び接
地線と、を備えるとともに、前記発光素子の信号線と前
記受光素子の信号線とが、各々分離された絶縁体層上に
配設され、かつ前記発光素子及び前記受光素子の少なく
とも一方の光素子の接地線が、該光素子の信号線の片側
または両側に配設されていることを特徴とする光検査用
基板。
A substrate having a plurality of optical element mounting regions in which a light emitting element and a light receiving element for receiving light emitted from the light emitting element are provided; an insulator layer formed in a plurality of regions on the substrate;
A signal line and a ground line connected to the electrode terminal of the light emitting element, a signal line and a ground line connected to the electrode terminal of the light receiving element, and the signal line of the light emitting element and the signal of the light receiving element. And a ground line of at least one optical element of the light emitting element and the light receiving element is disposed on one or both sides of a signal line of the optical element. An optical inspection substrate, comprising:
【請求項2】 発光素子及び該発光素子の出射光を受光
する受光素子が配設される複数の光素子搭載領域を有す
る基板と、該基板上の複数域に形成される絶縁体層と、
前記発光素子の電極端子に接続される信号線及び接地線
と、前記受光素子の電極端子に接続される信号線及び接
地線と、を備えるとともに、前記発光素子の信号線と前
記受光素子の信号線とが、各々分離された絶縁体層上に
配設され、かつ前記発光素子及び前記受光素子の少なく
とも一方の光素子の接地線が、該光素子の信号線と絶縁
体層を介して対向配置されていることを特徴とする光検
査用基板。
2. A substrate having a plurality of optical element mounting areas on which a light emitting element and a light receiving element for receiving light emitted from the light emitting element are provided; an insulator layer formed in a plurality of areas on the substrate;
A signal line and a ground line connected to the electrode terminal of the light emitting element, a signal line and a ground line connected to the electrode terminal of the light receiving element, and the signal line of the light emitting element and the signal of the light receiving element. A light-emitting element and a light-receiving element, and a ground line of at least one optical element of the light-emitting element and the light-receiving element faces a signal line of the optical element via an insulator layer. An optical inspection substrate, wherein the substrate is arranged.
【請求項3】 請求項1または2に記載の光検査用基板
を準備する工程と、前記光検査用基板の各光素子搭載領
域に発光素子及び受光素子を配設する工程と、前記発光
素子及び前記受光素子が配設された光検査用基板を所定
温度に加熱する工程と、前記光検査用基板が所定温度で
加熱された状態で前記各光素子搭載領域に配設された発
光素子及び受光素子を駆動させ、前記発光素子から出射
される光量を前記受光素子により計測する工程と、を含
むことを特徴とする光検査方法。
3. The step of preparing the substrate for optical inspection according to claim 1 or 2, arranging a light emitting element and a light receiving element in each optical element mounting area of the substrate for optical inspection, and the light emitting element Heating the optical inspection substrate on which the light receiving elements are disposed to a predetermined temperature, and the light emitting elements disposed in the respective optical element mounting areas while the optical inspection substrate is heated at the predetermined temperature; and Driving the light receiving element and measuring the amount of light emitted from the light emitting element with the light receiving element.
【請求項4】 請求項3に記載の光検査方法を施した後
に、前記光検査用基板を前記各光素子搭載領域毎に分割
して得たことを特徴とする光モジュール。
4. An optical module obtained by performing the optical inspection method according to claim 3 and dividing the optical inspection substrate into each of the optical element mounting areas.
【請求項5】 前記受光素子は端面受光型であることを
特徴とする請求項4に記載の光モジュール。
5. The optical module according to claim 4, wherein said light receiving element is an end face light receiving type.
JP2000211628A 2000-07-12 2000-07-12 Substrate for optical inspection, optical inspection method using it, and optical module Withdrawn JP2002026437A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2000211628A JP2002026437A (en) 2000-07-12 2000-07-12 Substrate for optical inspection, optical inspection method using it, and optical module

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2000211628A JP2002026437A (en) 2000-07-12 2000-07-12 Substrate for optical inspection, optical inspection method using it, and optical module

Publications (1)

Publication Number Publication Date
JP2002026437A true JP2002026437A (en) 2002-01-25

Family

ID=18707701

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000211628A Withdrawn JP2002026437A (en) 2000-07-12 2000-07-12 Substrate for optical inspection, optical inspection method using it, and optical module

Country Status (1)

Country Link
JP (1) JP2002026437A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101150020B1 (en) 2010-07-15 2012-05-31 엘지이노텍 주식회사 Lead Frame

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101150020B1 (en) 2010-07-15 2012-05-31 엘지이노텍 주식회사 Lead Frame
US8575734B2 (en) 2010-07-15 2013-11-05 Lg Innotek Co., Ltd. Lead frame

Similar Documents

Publication Publication Date Title
TW502354B (en) Inspection device for semiconductor
JP3917133B2 (en) LSI package with interface module and interposer, interface module, connection monitor circuit, signal processing LSI used therefor
KR100470970B1 (en) Probe needle fixing apparatus and method for semiconductor device test equipment
US4812742A (en) Integrated circuit package having a removable test region for testing for shorts and opens
US5969533A (en) Probe card and LSI test method using probe card
US9230938B2 (en) Method of manufacturing semiconductor device
US6448634B1 (en) Tape carrier, semiconductor assembly, semiconductor device and electronic instrument
EP0398575A2 (en) Method of manufacturing optical assemblies
US8378346B2 (en) Circuit architecture for the parallel supplying during electric or electromagnetic testing of a plurality of electronic devices integrated on a semiconductor wafer
CN101006352A (en) Substrate with patterned conductive layer
US6623997B2 (en) Method for burn-in processing of optical transmitter arrays using a submount substrate
JPWO2009041637A1 (en) Semiconductor inspection apparatus, inspection method, and semiconductor device to be inspected
JP2000012948A (en) High-frequency laser module, photoelectrocnic element, and manufacture of the high-frequency laser module
JPWO2005122238A1 (en) Method for manufacturing semiconductor integrated circuit device
US6555841B1 (en) Testable substrate and a testing method
JP2004184839A (en) Display device
JP2002026437A (en) Substrate for optical inspection, optical inspection method using it, and optical module
JPS6231136A (en) Device for evaluating photosemiconductor element
JPH09246599A (en) Apparatus for measuring electrooptic characteristic
KR101123802B1 (en) Semiconductor chip
KR20030078659A (en) Probe card and substrate for manufacturing probe card
KR100403758B1 (en) Semiconductor Probe Device and Semiconductor Probe Chip Using the Same, and Fabricating Method thereof
JP4234270B2 (en) Manufacturing method of semiconductor device
JP3310930B2 (en) Probe card
KR100679167B1 (en) The probe card using coaxial cable for semiconductor wafer

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070618

A761 Written withdrawal of application

Free format text: JAPANESE INTERMEDIATE CODE: A761

Effective date: 20100622

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20100622