JP2002026307A - Manufacturing method for power semiconductor element - Google Patents

Manufacturing method for power semiconductor element

Info

Publication number
JP2002026307A
JP2002026307A JP2000203295A JP2000203295A JP2002026307A JP 2002026307 A JP2002026307 A JP 2002026307A JP 2000203295 A JP2000203295 A JP 2000203295A JP 2000203295 A JP2000203295 A JP 2000203295A JP 2002026307 A JP2002026307 A JP 2002026307A
Authority
JP
Japan
Prior art keywords
wafer
chip
power semiconductor
voltage
thickness
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2000203295A
Other languages
Japanese (ja)
Inventor
Masato Ochi
正人 越智
Kimimasa Kawamura
公正 河邑
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sansha Electric Manufacturing Co Ltd
Original Assignee
Sansha Electric Manufacturing Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sansha Electric Manufacturing Co Ltd filed Critical Sansha Electric Manufacturing Co Ltd
Priority to JP2000203295A priority Critical patent/JP2002026307A/en
Publication of JP2002026307A publication Critical patent/JP2002026307A/en
Pending legal-status Critical Current

Links

Landscapes

  • Thyristors (AREA)
  • Dicing (AREA)

Abstract

PROBLEM TO BE SOLVED: To manufacture a power semiconductor of low on-voltage by a method with less wafer damage trouble in production, although a wafer is thick for a conventional power semiconductor element, resulting in high on-voltage with large power loss. SOLUTION: In order to raise eventual yield of a semiconductor wafer, a wafer thicker than a completed chip is used as a ribbed wafer where only a chip effective part is made thinner in a thickness machining process, and then conventional diffusion process, dicing and the like are performed for less wafer damage trouble during process, resulting in thinner chip effective part after completion.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は,電力用半導体素子
の製造方法に関し,特にウエハの厚み加工に関するもの
である。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for manufacturing a power semiconductor device, and more particularly to a method for processing a wafer thickness.

【0002】[0002]

【従来の技術】従来の電力用半導体素子の製造工程を,
サイリスタを例に示して説明する。サイリスタ製造工程
断面図を図4に示す。N型半導体ウエハ1の両面からP
型の分離拡散領域2を格子形に形成した後,ガリウムを
拡散することにより,図4(a)に示すようにP型層
4,5が形成される。該P型層4の一部にリンを選択拡
散して図4(b)に示すようにN型層6が形成され,P
NPNの4層構造が形成され,それぞれの露出部に電極
を設けてサイリスタが完成する。分離拡散領域2の帯幅
の略中央線に相当する切断線7でダイシングして図4
(c)に示すように複数個の電力用半導体チップを完成
していた。
2. Description of the Related Art A conventional power semiconductor device manufacturing process is described as follows.
A thyristor will be described as an example. FIG. 4 is a sectional view of a thyristor manufacturing process. P from both sides of N-type semiconductor wafer 1
After the mold separation / diffusion regions 2 are formed in a lattice shape, gallium is diffused to form P-type layers 4 and 5 as shown in FIG. By selectively diffusing phosphorus into a part of the P-type layer 4, an N-type layer 6 is formed as shown in FIG.
An NPN four-layer structure is formed, and electrodes are provided on the respective exposed portions to complete the thyristor. As shown in FIG. 4, dicing is performed at a cutting line 7 corresponding to a substantially center line of the band width of the separation diffusion region 2.
As shown in (c), a plurality of power semiconductor chips were completed.

【0003】[0003]

【発明が解決しようとする課題】上記のように形成され
た電力用半導体素子のチップサイズが1cm角の場合,
オン電圧は電流100Aにおいて1.5V程度を有して
おり,このオン電圧を低くして,この部分で生じる電力
損失を減らすことが試みられている。その1つとしてウ
エハの厚みを薄くすることによって達成されているが,
例えば厚さ400ミクロンのウエハを用いたときオン電
圧が1.52Vで,360ミクロンのウエハを用いると
オン電圧が1.28Vとなる。すなわちウエハを薄くす
るとオン電圧を減らすことが出来る。しかし,ウエハの
厚みが薄くなれば,耐圧が低下したり工程中にウエハが
破損するトラブルが増してくる。製造工程でのウエハ破
損トラブルを減らし,耐圧の低下がなくオン電圧の低い
電力用半導体素子をつくることが,本発明が解決しよう
とする課題である。
When the chip size of the power semiconductor device formed as described above is 1 cm square,
The on-state voltage is about 1.5 V at a current of 100 A, and attempts have been made to reduce the on-state voltage to reduce the power loss that occurs in this portion. One of them is achieved by reducing the thickness of the wafer.
For example, when a wafer having a thickness of 400 microns is used, the ON voltage is 1.52 V, and when a wafer having a thickness of 360 microns is used, the ON voltage is 1.28 V. That is, the on-voltage can be reduced by making the wafer thinner. However, when the thickness of the wafer is reduced, the trouble that the breakdown voltage is reduced or the wafer is damaged during the process increases. It is an object of the present invention to reduce the trouble of wafer breakage in the manufacturing process and to produce a power semiconductor device having a low on-voltage without a decrease in withstand voltage.

【0004】[0004]

【課題を解決するための手段】本発明による半導体チッ
プの製造方法においては,完成後のチップの厚さより厚
いウエハを用い,各チップに切断されるときの切断線を
有する部位である分離拡散領域を残して,各チップ有効
部の片面又は両面を削る部分的厚み加工してリブ付きウ
エハを形成する。リブ付きウエハの形成後,拡散,エッ
チング等の処理工程によって各半導体層を形成する。こ
の分離拡散領域のリブ幅の略中央をダイシングして複数
個の半導体チップを形成する。
In a method of manufacturing a semiconductor chip according to the present invention, a wafer having a thickness larger than that of a completed chip is used, and a separation diffusion region which is a portion having a cutting line when each chip is cut. , A ribbed wafer is formed by partial thickness processing to cut one or both surfaces of each chip effective portion. After the formation of the ribbed wafer, each semiconductor layer is formed by processing steps such as diffusion and etching. A plurality of semiconductor chips are formed by dicing substantially the center of the rib width of the separation diffusion region.

【0005】ウエハのサイズが大きくなってくると,薄
いウエハでは工程中に破損トラブルが多く発生する。従
来は例えば360ミクロンの厚さのウエハを用いたいと
ころを400ミクロンの厚さのウエハを用い,オン電圧
1.5V程度のオン電圧の高いサイリスタ素子を生産し
ていた。この発明では,例えば厚さ400ミクロンのウ
エハを部分的厚さ加工して,全面に格子状に厚さ400
ミクロンのリブを有する厚さ360ミクロンのウエハを
各工程で処理されることになるので,リブの無い厚さ3
60ミクロンのウエハを用いる場合に比較して,各工程
でのウエハ破損は激減する。リブの部分で切断されて完
成したチップは,その周辺部に厚さ400ミクロンの枠
が形成された360ミクロン厚さのチップとなって,チ
ップ有効部は厚さが従来の400ミクロン厚さのチップ
よりも薄い360ミクロンであり,従来のオン電圧より
低い値のサイリスタとして機能する。
[0005] As the size of a wafer increases, a thin wafer often causes breakage troubles during the process. Conventionally, a thyristor element having a high ON voltage of about 1.5 V has been produced by using a wafer having a thickness of 400 microns instead of a wafer having a thickness of, for example, 360 microns. In the present invention, for example, a wafer having a thickness of 400 microns is partially processed into a thickness of 400 μm in a grid pattern over the entire surface.
Since a wafer having a thickness of 360 microns having ribs of microns is to be processed in each step, the thickness of the wafer having no ribs of 3 microns is required.
In comparison with the case of using a 60-micron wafer, wafer damage in each step is drastically reduced. The completed chip cut at the ribs is a 360-micron chip with a 400-micron frame formed around its periphery, and the chip effective part is a conventional 400-micron thick chip. It is 360 microns thinner than the chip and functions as a thyristor with a lower value than the conventional on-voltage.

【0006】[0006]

【発明の実施の形態】本発明の実施の形態を,図1に工
程断面図で示し,図2に平面図で示した。図1(a)の
1は厚さ400ミクロンのN型半導体ウエハである。図
2に示すような,例えば直径5インチのウエハに格子状
の領域にP型の分離拡散を行い,分離拡散領域2の帯幅
の略中央が切断線7となる。図1(a)に示すように分
離拡散を行ったN型半導体ウエハは分離拡散領域2を残
して全面を厚さ360ミクロンになる迄エッチングなど
の方法で削り取る工程を経て,格子形リブ状で,図1
(b)に示すような分離拡散領域2を有するウエハを得
る。削り取られて新しく出来た表面であるチップ有効面
3にガリウムを拡散してP型半導体層4,5を形成す
る。該P型層4の一部にリンを拡散すると図1(c)に
示すようにN型層6が形成される。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS An embodiment of the present invention is shown in FIG. 1 as a process sectional view and FIG. 2 as a plan view. 1A is an N-type semiconductor wafer having a thickness of 400 microns. As shown in FIG. 2, for example, a P-type separation / diffusion is performed on a lattice-shaped region on a wafer having a diameter of 5 inches. As shown in FIG. 1 (a), the N-type semiconductor wafer subjected to the separation / diffusion is subjected to a step of removing the entire surface except for the separation / diffusion region 2 to a thickness of 360 μm by etching or the like. , FIG.
A wafer having the separation / diffusion region 2 as shown in FIG. Gallium is diffused into the chip effective surface 3 which is a newly formed surface which has been scraped off to form P-type semiconductor layers 4 and 5. When phosphorus is diffused into a part of the P-type layer 4, an N-type layer 6 is formed as shown in FIG.

【0007】前記の切断線7でダイシングして図1
(d)および図3に示すような,例えば1cm角の半導
体チップが形成される。各半導体層の露出部に電極を設
け,サイリスタの機能を得て,チップサイズ1cm角
で,オン電流100Aのとき,オン電圧1.28Vの特
性が得られた。従来の方法での格子状のリブの無い全面
厚さ400ミクロンのウエハを用いて形成されたサイリ
スタの場合に比較して,オン電圧が0.24V低い値に
なったので,100Aのとき,24Wの電力損失が1素
子当たりで節約されることになる。以上はサイリスタを
例にして説明したが,同様にダイオードなど電力用半導
体素子がこの技術思想のもとで実現できる。
[0007] Dicing along the cutting line 7
As shown in FIG. 3D and FIG. 3, for example, a 1 cm square semiconductor chip is formed. Electrodes were provided on the exposed portions of each semiconductor layer to obtain the function of a thyristor, and the characteristics of an ON voltage of 1.28 V were obtained when the chip size was 1 cm square and the ON current was 100 A. Since the on-state voltage was 0.24 V lower than that of a thyristor formed using a 400-μm-thick wafer without a grid-like rib by a conventional method, it was 24 W at 100 A. Is saved per element. Although the above description has been made by taking a thyristor as an example, a power semiconductor element such as a diode can be similarly realized based on this technical idea.

【0008】[0008]

【発明の効果】本発明によれば,上記のようなオン電圧
が低く,電力損失の少ない電力用半導体素子が,工業的
生産でのウエハ破損トラブルが少なく実現できて,素子
の電力損失による発熱量も少なく,放熱器の小型化も可
能になり,半導体素子応用製品全体の材料削減と,稼動
時の消費エネルギーの削減で環境保全にも貢献し工業的
価値が大きい。
According to the present invention, a power semiconductor device having a low on-state voltage and a small power loss as described above can be realized with less trouble of wafer breakage in industrial production, and heat generation due to power loss of the device. The amount is small, and the radiator can be downsized. This contributes to environmental preservation by reducing the material of the whole semiconductor device application product and the energy consumption during operation, and has great industrial value.

【図面の簡単な説明】[Brief description of the drawings]

【図1】 本発明による実施形態を示すサイリスタ製造
工程断面図。
FIG. 1 is a sectional view showing a thyristor manufacturing process showing an embodiment according to the present invention.

【図2】 本発明による実施形態を示すサイリスタ製造
工程平面図。
FIG. 2 is a plan view of a thyristor manufacturing process showing an embodiment according to the present invention.

【図3】 本発明による実施形態を示すサイリスタチッ
プの外形斜視図。
FIG. 3 is an external perspective view of a thyristor chip showing an embodiment according to the present invention.

【図4】 公知のサイリスタ製造工程断面図。FIG. 4 is a cross-sectional view of a known thyristor manufacturing process.

【符号の説明】[Explanation of symbols]

1 N型半導体ウエハ 2 分離拡散領域 3 チップ有効部(削り取り面) 4 P型拡散層 5 P型拡散層 6 N型拡散層 7 切断線 DESCRIPTION OF SYMBOLS 1 N-type semiconductor wafer 2 Separation diffusion area 3 Chip effective part (cutting surface) 4 P-type diffusion layer 5 P-type diffusion layer 6 N-type diffusion layer 7 Cutting line

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 拡散,エッチング等の処理工程を経て,
ウエハに各半導体層が形成され,複数個のチップに切断
されて形成される電力用半導体素子の製造方法におい
て,前記ウエハの表面を各チップ有効部ごとに分離拡散
領域を残して片面又は両面を削る部分的厚み加工してリ
ブ付きウエハを形成し,リブ付きウエハを形成した後前
記各処理工程によって各半導体層を形成し,各半導体層
形成後各チップ有効部より厚いリブ状の分離拡散領域を
ダイシングして,複数個のチップを形成することを特徴
とする電力用半導体素子の製造方法。
Claims: 1. Through a process such as diffusion and etching,
In a method for manufacturing a power semiconductor device in which each semiconductor layer is formed on a wafer and cut into a plurality of chips, the surface of the wafer may be formed on one or both surfaces while leaving a separate diffusion region for each chip effective portion. A wafer with ribs is formed by partial thickness processing, and a wafer with ribs is formed. After each wafer is formed, each semiconductor layer is formed by the above-described processing steps. Forming a plurality of chips by dicing the semiconductor device.
JP2000203295A 2000-07-05 2000-07-05 Manufacturing method for power semiconductor element Pending JP2002026307A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2000203295A JP2002026307A (en) 2000-07-05 2000-07-05 Manufacturing method for power semiconductor element

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2000203295A JP2002026307A (en) 2000-07-05 2000-07-05 Manufacturing method for power semiconductor element

Publications (1)

Publication Number Publication Date
JP2002026307A true JP2002026307A (en) 2002-01-25

Family

ID=18700720

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000203295A Pending JP2002026307A (en) 2000-07-05 2000-07-05 Manufacturing method for power semiconductor element

Country Status (1)

Country Link
JP (1) JP2002026307A (en)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5632734A (en) * 1979-08-27 1981-04-02 Hitachi Ltd Manufacture of silicon semiconductor device
JPH1050718A (en) * 1996-08-07 1998-02-20 Hitachi Ltd Manufacture of semiconductor device
JPH10321877A (en) * 1997-03-18 1998-12-04 Toshiba Corp Semiconductor device for high withstand voltage power
JP2000260670A (en) * 1999-03-05 2000-09-22 Mitsubishi Materials Corp Silicon wafer and manufacture thereof

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5632734A (en) * 1979-08-27 1981-04-02 Hitachi Ltd Manufacture of silicon semiconductor device
JPH1050718A (en) * 1996-08-07 1998-02-20 Hitachi Ltd Manufacture of semiconductor device
JPH10321877A (en) * 1997-03-18 1998-12-04 Toshiba Corp Semiconductor device for high withstand voltage power
JP2000260670A (en) * 1999-03-05 2000-09-22 Mitsubishi Materials Corp Silicon wafer and manufacture thereof

Similar Documents

Publication Publication Date Title
JP4189710B2 (en) Manufacturing method of light emitting diode
US4097310A (en) Method of forming silicon solar energy cells
US4524376A (en) Corrugated semiconductor device
JP3344056B2 (en) Gallium nitride based compound semiconductor light emitting device and method of manufacturing the same
JP2006319079A (en) Semiconductor device and its manufacturing method
JP2002026307A (en) Manufacturing method for power semiconductor element
CN114141911A (en) Epitaxial structure, manufacturing method thereof and light-emitting device
US20080108161A1 (en) Method for manufacturing vertical light-emitting diode
JPH10209506A (en) Manufacture of semiconductor light emitting element
GB2102202A (en) Semiconductor device passivation
JP2011023658A (en) Method of manufacturing semiconductor device
US11424322B2 (en) Semiconductor device and method of manufacturing the same
JPH08124879A (en) Manufacture of mesa semiconductor device
JP2005340484A (en) Semiconductor device and manufacturing method thereof
JPH04103666U (en) Electrode of blue light emitting device
JPS61253830A (en) Manufacture of semiconductor device
JPS62287675A (en) Light emitting diode element and manufacture thereof
JPS59100563A (en) Manufacture of mesa type semiconductor device
JPS5826653B2 (en) Manufacturing method of semiconductor device
CN117913147A (en) Composite groove type Schottky diode device and manufacturing method thereof
JPS59188939A (en) Manufacture of semiconductor device
JPS5951150B2 (en) Manufacturing method for inverted mesa semiconductor device
JP2008243863A (en) Pin diode and its manufacturing method
JPH01313971A (en) Mesa type semiconductor device and its manufacture
JPS5836495B2 (en) Manufacturing method of semiconductor device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070618

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20070618

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20080104

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110517

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110704

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20110704

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20110726