JP2002022739A - Living organism related substance immobilization micro- array - Google Patents
Living organism related substance immobilization micro- arrayInfo
- Publication number
- JP2002022739A JP2002022739A JP2000201217A JP2000201217A JP2002022739A JP 2002022739 A JP2002022739 A JP 2002022739A JP 2000201217 A JP2000201217 A JP 2000201217A JP 2000201217 A JP2000201217 A JP 2000201217A JP 2002022739 A JP2002022739 A JP 2002022739A
- Authority
- JP
- Japan
- Prior art keywords
- fiber
- hollow
- related substance
- hollow fiber
- bio
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Landscapes
- Investigating, Analyzing Materials By Fluorescence Or Luminescence (AREA)
Abstract
Description
【0001】[0001]
【発明が属する技術分野】本発明は、生体関連物質を光
学的に検出する生体件連物質マイクロアレイに関する。BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a biological substance microarray for optically detecting a biological substance.
【0002】[0002]
【従来の技術】近年、多数遺伝子の一括発現解析を可能
とするDNAマイクロアレイ法(DNAチップ法)と呼
ばれる新しい分析法、ないし方法論が開発され、注目を
集めている。2. Description of the Related Art In recent years, a new analysis method or methodology called a DNA microarray method (DNA chip method) that enables simultaneous expression analysis of a large number of genes has been developed and attracted attention.
【0003】これらの方法は、いずれも核酸:核酸間ハ
イブリダイゼーション反応に基づく核酸検出・定量法で
ある点で原理的には従来の方法と同じであるが、マイク
ロアレイ又はチップと呼ばれる平面基盤片上に、多数の
DNA断片が高密度に整列固定化されたものが用いられ
ている点に大きな特徴がある。マイクロアレイ法の具体
的使用法としては、例えば、研究対象細胞の発現遺伝子
等を蛍光色素等で標識したサンプルを平面基盤片上でハ
イブリダイゼーションさせ、互いに相補的な核酸(DN
AあるいはRNA)同士を結合させ、その箇所を蛍光色
素等でラベル後、高解像度解析装置で高速に読みとる方
法が挙げられる。こうして、サンプル中のそれぞれの遺
伝子量を迅速に推定できる。即ち、この新しい方法の本
質は、基本的には反応試料の微量化と、その反応試料を
再現性よく多量・迅速・系統的に分析、定量しうる形に
配列・整列する技術との統合であると理解される。[0003] These methods are basically the same as the conventional methods in that they are nucleic acid detection and quantification methods based on a nucleic acid: nucleic acid hybridization reaction, but they are mounted on a flat substrate called a microarray or chip. There is a great feature that a large number of DNA fragments are arranged and fixed at a high density. As a specific use of the microarray method, for example, a sample obtained by labeling an expression gene or the like of a cell to be studied with a fluorescent dye or the like is hybridized on a flat base piece, and nucleic acids (DN
A or RNA), a label is labeled with a fluorescent dye or the like, and then read at high speed by a high-resolution analyzer. Thus, the amount of each gene in the sample can be quickly estimated. In other words, the essence of this new method is basically the integration of the miniaturization of the reaction sample and the technology to sequence and align the reaction sample in a form that can be analyzed and quantified in a reproducible manner in a large, rapid and systematic manner. It is understood that there is.
【0004】核酸を基盤上に固定化するための技術とし
ては、上記ノーザン法同様、ナイロンシート等の上に高
密度に固定化する方法などが開発されている。また、ガ
ラス製キャピラリーやナイロン繊維に核酸や蛋白質を固
定化させ、該繊維等を束ねて接着剤で固定化し繊維断面
方向に切断して生体関連物質配列シートを製造する方法
も提案されている(特開平11-108928号公報記載)。As a technique for immobilizing a nucleic acid on a substrate, a method of immobilizing a nucleic acid at a high density on a nylon sheet or the like has been developed as in the Northern method. Further, a method has also been proposed in which nucleic acids and proteins are immobilized on glass capillaries and nylon fibers, the fibers and the like are bundled, immobilized with an adhesive, and cut in the fiber cross-sectional direction to produce a bio-related substance array sheet ( JP-A-11-108928).
【0005】[0005]
【発明が解決しようとする課題】しかし、ナイロン等の
高分子は結晶性高分子であるため、透明性に劣り、配列
シート上の生体関連物質の検出を光学的な方法で実施す
る際に、励起光及び蛍光が散乱し、バックグラウンド光
強度が非常に高くなる。また、ガラス製キャピラリーは
加工性に劣っており、これを切断して、数百μm〜1m
mの厚さの薄片に加工するのは非常に困難である。However, since polymers such as nylon are crystalline polymers, they are inferior in transparency, and when detecting bio-related substances on an array sheet by an optical method, Excitation light and fluorescence are scattered, and the background light intensity becomes very high. Further, glass capillaries are inferior in workability, and are cut into several hundred μm to 1 m.
It is very difficult to work into flakes with a thickness of m.
【0006】上記した材料を生体関連物質マイクロアレ
イに用いると、低レベルの特異的結合の検出を目的とす
る場合には、検出光がバックグラウンド強度に覆い隠さ
れるという重大な問題があった。[0006] When the above-mentioned materials are used for a bio-related substance microarray, there is a serious problem that, when the purpose is to detect low-level specific binding, the detection light is masked by the background intensity.
【0007】[0007]
【課題を解決するための手段】上記課題に鑑み、鋭意検
討した結果、本発明者らは、中空繊維と該繊維に固定さ
れた生体関連物質プローブを有する生体関連物質マイク
ロアレイにおいて、前記中空繊維の検出光強度が低減さ
せることにより、低レベルの特異的結合の検出もバック
グラウンド強度に覆い隠されることなく検出できること
を見いだし、本発明に至った。Means for Solving the Problems In view of the above-mentioned problems, as a result of diligent studies, the present inventors have found that a bio-related substance microarray having a hollow fiber and a bio-related substance probe fixed to the fiber has the above-mentioned structure. The present inventors have found that by reducing the intensity of the detection light, it is possible to detect low-level specific binding without being obscured by the background intensity.
【0008】即ち、本発明は、中空繊維の内壁及び/又
は中空部に生体関連物質が固定化され、該繊維の繊維軸
と交叉する切断面が2次元配列された生体関連物質プロ
ーブ固定化マイクロアレイにおいて、該中空繊維が下記
式を満足することを特徴とする生体関連物質プローブ固
定化マイクロアレイ、である。B/A<1[但し、Aは中空繊
維の中空部に存在させた蛍光分子Cy3(濃度0.01nmol/m
l)の蛍光強度を蛍光顕微鏡で該繊維切断面より検出し
たときの中空部の検出光強度、及びBは蛍光分子を存在
させずに上記と同一条件で測定したときの繊維部の検出
光強度を示す。][0008] That is, the present invention provides a microarray for immobilizing a bio-related substance probe in which a bio-related substance is immobilized on an inner wall and / or a hollow portion of a hollow fiber, and a cut surface intersecting the fiber axis of the fiber is two-dimensionally arranged. Wherein the hollow fiber satisfies the following formula: B / A <1 [where A is a fluorescent molecule Cy3 (concentration 0.01 nmol / m
l) Detected light intensity of the hollow portion when the fluorescence intensity is detected from the fiber cut surface with a fluorescence microscope, and B is the detected light intensity of the fiber portion when measured under the same conditions as above without the presence of fluorescent molecules. Is shown. ]
【0009】[0009]
【発明の実施の形態】以下に、本発明を説明する。本発
明で言う、中空繊維の内壁及び/又は中空部に生体関連
物質が固定化され、該繊維の繊維軸と交叉する切断面が
2次元配列された生体関連物質プローブ固定化マイクロ
アレイとは、生体関連物質の固定化プロセスを1次元構
造体として中空繊維上にて行い、次いで、生体関連物質
を固定化した複数本の中空繊維が整然と配列された3次
元構造体とした後、又は複数本の中空繊維が整然と配列
された3次元構造体とした後に生体関連物質を個々の中
空繊維に固定化した後に、その3次元構造の繊維配列体
を切断薄片化することにより得られた生体関連物質固定
化繊維2次元配列体薄片をいう。DESCRIPTION OF THE PREFERRED EMBODIMENTS The present invention will be described below. A bio-related substance probe-immobilized microarray in which a bio-related substance is fixed to an inner wall and / or a hollow portion of a hollow fiber and a cut surface crossing a fiber axis of the fiber is two-dimensionally arranged in the present invention is a biological The immobilization process of the related substance is performed on the hollow fibers as a one-dimensional structure, and then, after a plurality of hollow fibers on which the bio-related substances are immobilized are formed into a three-dimensional structure arranged in an orderly manner, or After fixing a bio-related substance to individual hollow fibers after forming a three-dimensional structure in which hollow fibers are neatly arranged, fixing the bio-related substance obtained by cutting and thinning the fiber array having the three-dimensional structure Refers to thinned two-dimensionally arrayed fibers.
【0010】本発明で使用する中空繊維とは、紫外光か
ら近赤外光領域(波長300〜850nm)の光の吸収および散
乱強度が非常に小さく、加えて、この波長域の入射光に
対する蛍光強度の小さなものを指す。The hollow fiber used in the present invention has a very small absorption and scattering intensity of light in the ultraviolet to near-infrared light region (wavelength: 300 to 850 nm), and additionally has a fluorescence for incident light in this wavelength region. Refers to small strength.
【0011】具体的には、下記式を満たすものとする。 B/A<1 [但し、Aは中空繊維の中空部に存在させた蛍光分子Cy3
(濃度0.01nmol/ml)の蛍光強度を蛍光顕微鏡で該繊維
切断面より検出したときの中空部の検出光強度、及びB
は蛍光分子を存在させずに上記と同一条件で測定したと
きの繊維部の検出光強度を示す。]Specifically, the following equation is satisfied. B / A <1 [where A is the fluorescent molecule Cy3
(Concentration 0.01 nmol / ml), the intensity of the detected light in the hollow part when the fluorescence intensity was detected from the fiber cut surface with a fluorescence microscope, and B
Indicates the detected light intensity of the fiber portion when measured under the same conditions as above without the presence of fluorescent molecules. ]
【0012】ここでCy3とはローダミン骨格をもつ蛍光
分子の一つであり、DNAの末端に結合させて、その蛍光
分子からの蛍光強度を測定してDNA分子の定量を行う場
合に用いられる代表的な蛍光分子である。従って、本発
明では、この代表的な蛍光分子の濃度が0.01nmol/mlと
したときに蛍光強度よりも、生体関連物質プローブの支
持体である中空繊維からのバックグラウンド強度が低い
中空繊維を用いることが必要である。DNA検出のための
蛍光分子は前記Cy3以外にアロフィコシアニン骨格、フ
ルオロセンイソチオシアニン骨格をもつ化合物が有り、
それぞれCy5、FITCと呼ばれ、励起光と蛍光波長が異な
るものであるが、本発明の中空繊維ではこれらの蛍光分
子を用いた場合でも、バックグランドからの検出光を低
減することが出来る。[0012] Here, Cy3 is one of the fluorescent molecules having a rhodamine skeleton, and is a representative molecule used when quantifying DNA molecules by binding to the end of DNA and measuring the fluorescence intensity from the fluorescent molecules. Fluorescent molecule. Therefore, in the present invention, when the concentration of this representative fluorescent molecule is 0.01 nmol / ml, the hollow fiber having a lower background intensity from the hollow fiber that is the support of the biomaterial probe is used than the fluorescent intensity. It is necessary. Fluorescent molecules for DNA detection include compounds having an allophycocyanin skeleton other than the Cy3, a fluorocene isothiocyanine skeleton,
Although they are called Cy5 and FITC, respectively, and have different excitation and emission wavelengths, the hollow fiber of the present invention can reduce the detection light from the background even when these fluorescent molecules are used.
【0013】図1に示したように、サンプル周辺の中空
繊維部の検出光強度が高いと、中空繊維−中空部の界面
部分が明るく照らされ、バックグラウンド強度が上昇し
てしまうという欠点がある。また、単位面積当たりの繊
維密度(スポット密度)を高くするためには、中空繊維
の内径が細い方が望ましいが、このような場合、中空繊
維の検出光強度への影響はより顕著に現れる。As shown in FIG. 1, when the detection light intensity of the hollow fiber portion around the sample is high, the interface between the hollow fiber and the hollow portion is illuminated brightly, and the background intensity increases. . Further, in order to increase the fiber density (spot density) per unit area, it is desirable that the inside diameter of the hollow fiber is small. In such a case, the influence of the hollow fiber on the detection light intensity appears more remarkably.
【0014】本発明中の検出光強度の小さな中空繊維を
用いた場合、バックグラウンド強度が低下し、より高感
度の検出が可能となる。When a hollow fiber having a small detection light intensity in the present invention is used, the background intensity is reduced, and detection with higher sensitivity becomes possible.
【0015】検出光強度の低い材料とは、例えば、メチ
ルメタクリレート、エチルメタクリレート、ブチルメタ
クリレート等のメタクリレート系モノマー、メチルアク
リレート、エチルアクリレート等のアクリレート系モノ
マーの単独重合体若しくはこれらの共重合体、又はポリ
スチレン、ポリエチレンテレフタレート、ポリカーボネ
ート等が挙げられる。The material having a low detection light intensity is, for example, a methacrylate monomer such as methyl methacrylate, ethyl methacrylate or butyl methacrylate, a homopolymer of acrylate monomers such as methyl acrylate or ethyl acrylate, or a copolymer thereof, or Examples include polystyrene, polyethylene terephthalate, and polycarbonate.
【0016】前記中空繊維の外径は、1mm以下、好まし
くは0.5mm以下である。また、内径は0.03mm以上が好ま
しい。本発明に用いる繊維は、無処理の状態でそのまま
用いてもよいが、必要に応じて、反応性官能基を導入し
た繊維であってもよく、また、プラズマ処理やγ線、電
子線などの放射線処理を施した繊維であってもよい。The outer diameter of the hollow fiber is 1 mm or less, preferably 0.5 mm or less. Further, the inner diameter is preferably 0.03 mm or more. The fiber used in the present invention may be used as it is in an untreated state, but may be a fiber into which a reactive functional group is introduced, if necessary, or may be a plasma treatment, a γ ray, an electron beam, or the like. Fibers that have been subjected to radiation treatment may be used.
【0017】したがって、本発明の中空繊維は、これら
を材料とする中空又は多孔質中空繊維である。Therefore, the hollow fibers of the present invention are hollow or porous hollow fibers made of these materials.
【0018】本発明において、前記中空繊維に固定化す
る対象となる生体関連物質とは、以下の(1)〜(3)の物
質からなる群から選択されるいずれかのものが挙げられ
るが、核酸が好ましい。 (1)核酸、アミノ酸、糖又は脂質 (2)上記(1)の物質のうち少なくとも1種類の成分からな
る重合物 (3)上記(1)又は(2)の物質と相互作用を有する物質In the present invention, the biological substance to be immobilized on the hollow fiber includes any one selected from the group consisting of the following substances (1) to (3). Nucleic acids are preferred. (1) Nucleic acid, amino acid, sugar or lipid (2) Polymer consisting of at least one component of the above (1) (3) Substance interacting with the above (1) or (2)
【0019】例えば、核酸であれば、デオキシリボ核酸
(DNA)やリボ核酸(RNA)、ペプチド核酸(PNA)、オ
キシペプチド核酸(OPNA)などの核酸などが挙げられ
る。本発明に用いる生体関連物質は、市販のものでもよ
く、また、生細胞などから得られたものでもよい。For example, nucleic acids include nucleic acids such as deoxyribonucleic acid (DNA), ribonucleic acid (RNA), peptide nucleic acid (PNA), and oxypeptide nucleic acid (OPNA). The biological substance used in the present invention may be a commercially available substance, or may be a substance obtained from living cells or the like.
【0020】例えば、生体関連物質として核酸を用いる
場合には、生細胞からのDNA又はRNAの調製は、公
知の方法、例えば、DNAの抽出については、Blinらの方
法(Blin et al., Nucleic Acids Res. 3: 2303 (197
6))等により、また、RNAの抽出については、Favalo
roらの方法(Favaloro et al., Methods Enzymol.65: 7
18 (1980))等により行うことができる。更には、鎖状
若しくは環状のプラスミドDNAや染色体DNA、これ
らを制限酵素により若しくは化学的に切断したDNA断
片、試験管内で酵素等により合成されたDNA、あるいは
化学合成したオリゴヌクレオチド等を用いることもでき
る。For example, when a nucleic acid is used as a biological substance, DNA or RNA is prepared from living cells by a known method. For example, DNA extraction is performed by the method of Blin et al. (Blin et al., Nucleic Acid). Acids Res. 3: 2303 (197
6)), and for extraction of RNA, Favalo
ro et al. (Favaloro et al., Methods Enzymol. 65: 7
18 (1980)). Furthermore, a linear or circular plasmid DNA or chromosomal DNA, a DNA fragment obtained by cleaving them with a restriction enzyme or chemically, DNA synthesized by an enzyme or the like in a test tube, or a chemically synthesized oligonucleotide can also be used. it can.
【0021】中空繊維に生体関連物質を固定化する場合
には、繊維と生体関連物質との間における各種化学的又
は物理的な相互作用、すなわち繊維が有している官能基
と、生体関連物質を構成する成分との間の化学的又は物
理的な相互作用を利用することができる。また、配列体
を構成する繊維の中空部に生体関連物質を含む液を導入
した後、繊維の中空部の内壁面等に存在する官能基と生
体関連物質を構成する成分との間の相互作用を利用する
ことができる。例えば、無修飾の核酸を繊維に固定化す
る場合には、核酸と繊維とを作用させた後、ベーキング
や紫外線照射により固定できる。また、アミノ基で修飾
された核酸を繊維に固定化する場合には、グルタルアル
デヒドや1−エチル−3−(3−ジメチルアミノプロピ
ル)カルボジイミド(EDC)等の架橋剤を用いて繊維の官
能基と結合させることができる。さらに、例えば熱処
理、アルカリ処理、界面活性剤処理などを行うことによ
り、固定化された生体関連物質を変成させる、あるい
は、細胞、菌体などの生材料から得られた生体関連物質
を使用する場合は、不要な細胞成分などを除去するとい
った処理を行うこともできる。なお、これらの処理は別
々に実施してもよく、同時に実施してもよい。また、生
体関連物質を含む試料を繊維に固定化する前に適宜実施
してもよい。When a bio-related substance is immobilized on a hollow fiber, various chemical or physical interactions between the fiber and the bio-related substance, that is, the functional groups of the fiber and the bio-related substance Or a chemical or physical interaction between the constituents. In addition, after introducing a liquid containing a bio-related substance into the hollow portion of the fiber constituting the array, the interaction between the functional group present on the inner wall surface of the hollow portion of the fiber and the component forming the bio-related substance is performed. Can be used. For example, when an unmodified nucleic acid is immobilized on a fiber, the nucleic acid and the fiber are allowed to act, and then immobilized by baking or ultraviolet irradiation. When immobilizing a nucleic acid modified with an amino group on a fiber, a functional group of the fiber is immobilized using a cross-linking agent such as glutaraldehyde or 1-ethyl-3- (3-dimethylaminopropyl) carbodiimide (EDC). Can be combined with Further, for example, by performing a heat treatment, an alkali treatment, a surfactant treatment, etc. to modify the immobilized bio-related substance, or when using a bio-related substance obtained from a raw material such as a cell or a bacterial body. Can remove unnecessary cell components and the like. Note that these processes may be performed separately or simultaneously. In addition, it may be appropriately performed before the sample containing the biological substance is fixed to the fiber.
【0022】また、生体関連物質、例えば、核酸をゲル
に固定化させこのゲルを中空部に導入することもでき
る。ここで用いることのできるゲルの種類は特に限定さ
れず、例えば、アクリルアミド、N,N−ジメチルアクリ
ルアミド、N-イソプロピルアクリルアミド、N−アクリ
ロイルアミノエトキシエタノール、N-アクリロイルアミ
ノプロパノ−ル、N-メチロールアクリルアミド、N-ビニ
ルピロリドン、ヒドロキシエチルメタクリレート、(メ
タ)アクリル酸、アリルデキストリン等の単量体の1種
類または2種類以上と、メチレンビス(メタ)アクリル
アミド、ポリエチレングリコールジ(メタ)アクリレー
ト等との多官能性単量体を共重合したゲルが挙げられ
る。この場合の生体関連物質の固定化は、例えば核酸の
末端に重合可能な官能基を導入したものを調整し、これ
らと上記単量体及び重合開始剤を含む溶液を各繊維の中
空部又は多孔質部に導入後、重合ゲル化させることによ
って行うことができる。It is also possible to immobilize a biological substance, for example, a nucleic acid, on a gel and introduce the gel into a hollow portion. The type of gel that can be used here is not particularly limited, and examples thereof include acrylamide, N, N-dimethylacrylamide, N-isopropylacrylamide, N-acryloylaminoethoxyethanol, N-acryloylaminopropanol, and N-methylol. One or more monomers such as acrylamide, N-vinylpyrrolidone, hydroxyethyl methacrylate, (meth) acrylic acid, allyl dextrin, etc. and methylene bis (meth) acrylamide, polyethylene glycol di (meth) acrylate, etc. A gel obtained by copolymerizing a functional monomer is used. In this case, the immobilization of the bio-related substance is performed, for example, by preparing a polymer having a polymerizable functional group introduced into the terminal of the nucleic acid, and passing the solution containing the monomer and the polymerization initiator to the hollow portion or the porous portion of each fiber. It can be carried out by polymerizing and gelling after the introduction into the mass part.
【0023】前記のごとく作成した生体関連物質固定化
繊維は、複数本の繊維を配列し、樹脂等で包埋して、生
体関連物質固定化繊維配列体を作成する。または、複数
本の繊維を配列し樹脂等で包埋してから、個々の繊維に
生体関連物質を固定化しても良い。該配列体を繊維軸に
直角にスライスすることにより、生体関連物質固定化繊
維配列体薄片(本発明で言う生体関連物質固定化マイク
ロアレイ)を得る。該配列体薄片は、任意の繊維数を収
束し、配列体を作成できるが、単位面積当たりの繊維の
本数が多く存在することが好ましい。よって、繊維の外
径は細い方が好ましく、0.5mm以下、更に好ましくは0.3
mmである。The bio-related substance-immobilized fibers prepared as described above are arranged in a plurality of fibers and embedded in a resin or the like to prepare a bio-related substance-immobilized fiber array. Alternatively, a plurality of fibers may be arranged and embedded in a resin or the like, and then a biomaterial may be immobilized on each fiber. By slicing the array at right angles to the fiber axis, a bio-related substance-immobilized fiber array slice (a bio-related substance-immobilized microarray according to the present invention) is obtained. The array slice can converge an arbitrary number of fibers to form an array, but preferably has a large number of fibers per unit area. Therefore, the outer diameter of the fiber is preferably small, 0.5 mm or less, more preferably 0.3 mm
mm.
【0024】また、前記検出光強度の低い材料を用いた
生体関連物質固定化マイクロアレイを用い、例えば、多
数遺伝子の一括発現解析を行う場合蛍光顕微鏡等を用
い、検出・解析を行うことができる。本発明の生体関連
物質固定化マイクロアレイは、バックグラウンドとなる
中空繊維の検出光強度が小さいために、中空繊維部を含
むアレイ全体を一括で撮影して検出することができ、且
つ検出に係る時間が短縮できるという利点がある。Further, using a microarray immobilized with a biological substance using a material having a low detection light intensity, for example, when performing simultaneous expression analysis of a large number of genes, detection and analysis can be performed using a fluorescence microscope or the like. Since the detection light intensity of the hollow fiber serving as the background is low, the biological-related substance-immobilized microarray of the present invention can collectively photograph and detect the entire array including the hollow fiber portion, and the time required for detection There is an advantage that can be shortened.
【0025】[0025]
【実施例】以下、本発明を実施例により詳細に説明す
る。ただし、本発明はこれら実施例によりその技術範囲
が限定される物ではない。以下、実施例、比較例の蛍光
顕微鏡観察は、浜松ホトニクス製 冷却CCDカメラC4880
-37(512×512 素子、24μm正方画素)及びNikon製蛍光
顕微鏡E600対物レンズ×10NA=0.3を用いて実施し
た。用いたフィルターはNikon社製蛍光試薬専用フィル
タブロック〔励起波長:535±25nm、検出波長:610±
38nm(Cy3フィルター)、励起波長:620±30nm、検出
波長:700±38nm(Cy5フィルター)、励起波長:465
〜495nm、検出波長:515〜555nm(FITCフィルター)〕
の3種類である。DESCRIPTION OF THE PREFERRED EMBODIMENTS The present invention will be described below in detail with reference to embodiments. However, the technical scope of the present invention is not limited by these examples. Hereinafter, the fluorescence microscope observation of the examples and comparative examples was performed using a cooled CCD camera C4880 manufactured by Hamamatsu Photonics.
-37 (512 × 512 elements, 24 μm square pixels) and Nikon fluorescence microscope E600 objective lens × 10NA = 0.3. The filter used was a filter block dedicated to a fluorescent reagent manufactured by Nikon [excitation wavelength: 535 ± 25 nm, detection wavelength: 610 ±.
38 nm (Cy3 filter), excitation wavelength: 620 ± 30 nm, detection wavelength: 700 ± 38 nm (Cy5 filter), excitation wavelength: 465
~ 495nm, detection wavelength: 515 ~ 555nm (FITC filter)]
There are three types.
【0026】(参考例1) (a)蛍光標識オリゴヌクレオチドの合成 オリゴヌクレオチドの合成は、PEバイオシステムズ社の
自動合成機DNA/RNA synthesizer (model394)を用いて行
い、DNA合成の最終ステップで、5’末端にFITC、Cy3又
はCy5を導入したGCAT配列のオリゴヌクレオチドを合成
した。これらは、一般的手法によって脱保護及び精製し
て使用した(特願平11-59397号公報明細書参照)。Reference Example 1 (a) Synthesis of Fluorescently Labeled Oligonucleotides Oligonucleotides were synthesized using an automatic synthesizer DNA / RNA synthesizer (model 394) manufactured by PE Biosystems. In the final step of DNA synthesis, An oligonucleotide having a GCAT sequence in which FITC, Cy3 or Cy5 was introduced at the 5 ′ end was synthesized. These were used after deprotection and purification by a general method (see Japanese Patent Application No. 11-59397).
【0027】(b)メタクリレート基を有する蛍光標識
オリゴヌクレオチドの調製 (a)で得られた5’末端にFITC、Cy3又はCy5を有する
オリゴヌクレオチド(500nmol/ml)50μl及び、グリシ
ジルメタクリレート5μl、ジメチルホルムアミド(DM
F)5μlを混合し、70℃で2時間反応させて、メタクリレ
ート基を有する蛍光色素を調製し、水190μlを加えて、1
00nmol/mlのメタクリレート基を有する蛍光色素(GMA変
性FITC、GMA変性Cy3、GMA変性Cy5)を得た。(B) Preparation of fluorescently labeled oligonucleotide having a methacrylate group 50 μl of the oligonucleotide (500 nmol / ml) having FITC, Cy3 or Cy5 at the 5 ′ end obtained in (a), 5 μl of glycidyl methacrylate, dimethylformamide (DM
F) 5 μl was mixed and reacted at 70 ° C. for 2 hours to prepare a fluorescent dye having a methacrylate group.
A fluorescent dye having a methacrylate group of 00 nmol / ml (GMA-modified FITC, GMA-modified Cy3, GMA-modified Cy5) was obtained.
【0028】〔実施例1〕 (1)中空部に蛍光分子が存在しない場合。 外径300μm、内径160μmのポリメチルメタアクリレート
(以下、PMMA)中空繊維(三菱レイヨン社製PMMA、溶融
紡糸品)を25本束ねて、その一端部の約2cmは中空繊
維の中空部が開口した状態になるようにウレタン樹脂で
固め、他端は樹脂で固めずに自由端とした。この中空繊
維束を予め調整した反応液(下記、水溶液A)を入れた
反応容器内において中空繊維の自由端から反応液を中空
繊維内に吸引により樹脂で固めた部分まで充填した。水
溶液充填後、窒素雰囲気下70℃で3時間重合した。Example 1 (1) A case where no fluorescent molecule exists in the hollow portion. A bundle of 25 polymethyl methacrylate (PMMA) hollow fibers (PMMA manufactured by Mitsubishi Rayon Co., Ltd., melt-spun product) having an outer diameter of 300 μm and an inner diameter of 160 μm was bundled, and about 2 cm at one end of the hollow fiber was opened. It was solidified with urethane resin so as to be in a state, and the other end was free end without being solidified with resin. The hollow fiber bundle was filled from the free end of the hollow fiber into the hollow fiber into the portion solidified with resin by suction from the free end of the hollow fiber in a reaction vessel containing a previously prepared reaction liquid (hereinafter referred to as aqueous solution A). After filling the aqueous solution, polymerization was carried out at 70 ° C. for 3 hours under a nitrogen atmosphere.
【0029】 <水溶液A> ・アクリルアミド 4.5 質量部 ・N,N′−メチレンビスアクリルアミド 0.5 質量部 ・2,2′−アゾビス(2−メチルプロピオン アミジン)ジヒドロクロライド 0.1 質量部 ・水 95 質量部<Aqueous solution A>-4.5 parts by mass of acrylamide-0.5 parts by mass of N, N'-methylenebisacrylamide-0.1 parts by mass of 2,2'-azobis (2-methylpropion amidine) dihydrochloride-95 parts by mass of water
【0030】アクリルアミドゲルの重合を行った後、ブ
ロックを中空繊維軸に直角方向にスライスして厚さ約1
mmの薄片を得た。この薄片の切断面を前記の方法で蛍
光顕微鏡観察し、繊維断面の検出光強度を数値化した。
繊維部分の検出光強度は、Cy3フィルターを用いた場
合3500であった。After polymerization of the acrylamide gel, the block is sliced in a direction perpendicular to the hollow fiber axis to a thickness of about 1
mm slices were obtained. The cut surface of the slice was observed with a fluorescence microscope by the above-described method, and the detected light intensity of the fiber cross section was quantified.
The detection light intensity of the fiber portion was 3,500 when the Cy3 filter was used.
【0031】また、同様にCy5フィルターを用いた場
合1000、FITCフィルターを用いた場合1000であ
った。Similarly, the value was 1000 when the Cy5 filter was used and 1000 when the FITC filter was used.
【0032】(2)中空部にGMA変性蛍光標識オリゴヌ
クレオチドが存在する場合。 次に参考例で調整したGMA変性Cy3、GMA変性Cy5、GMA変
性FITCを所定の濃度含むアクリルアミド水溶液(下記、
水溶液B)をそれぞれ調整し、上記と同様にしてPMMAの
中空繊維中に固定化した。更に、同様に厚さ約1mmの薄
片を得て、上記蛍光分子を含まない場合と同一条件(即
ち励起光強度や検出光検出感度を同じくして)でそれぞ
れの薄片の中空部の蛍光強度を測定し、検出光強度を数
値化した。(2) The case where a GMA-modified fluorescently labeled oligonucleotide is present in the hollow part. Next, an acrylamide aqueous solution containing a predetermined concentration of GMA-modified Cy3, GMA-modified Cy5, and GMA-modified FITC prepared in Reference Example (described below,
The aqueous solutions B) were respectively prepared, and fixed in the hollow fibers of PMMA in the same manner as described above. Further, similarly, a slice having a thickness of about 1 mm was obtained, and the fluorescence intensity in the hollow portion of each slice was measured under the same conditions as those in the case where the fluorescent molecules were not contained (ie, with the same excitation light intensity and detection light detection sensitivity). Measurement was performed and the detected light intensity was digitized.
【0033】中空部分の検出光強度は、Cy3フィルター
を用いた場合、4380であった。The detection light intensity of the hollow portion was 4380 when using a Cy3 filter.
【0034】また、同様にCy5フィルターを用いた場
合、1310、FITCフィルターを用いた場合1070であった。Similarly, the value was 1310 when the Cy5 filter was used, and 1070 when the FITC filter was used.
【0035】 <水溶液B> ・GMA変性蛍光標識オリゴヌクレオチド (GMA変性Cy3:0.01 nmol/ml、又はGMA変性Cy5:0.005nmol/ml、又はGMA変性FITC :0.05nmol/ml) ・アクリルアミド 4.5 質量部 ・N,N′−メチレンビスアクリルアミド 0.5 質量部 ・2,2′−アゾビス(2−メチルプロピ オンアミジン)ジヒドロクロライド 0.1 質量部 ・水 95 質量部 結果を表1.に纏めた。<Aqueous solution B> GMA-modified fluorescently labeled oligonucleotide (GMA-modified Cy3: 0.01 nmol / ml, or GMA-modified Cy5: 0.005 nmol / ml, or GMA-modified FITC: 0.05 nmol / ml) 4.5 parts by mass of acrylamide N, N'-methylenebisacrylamide 0.5 parts by mass-2,2'-azobis (2-methylpropionamidine) dihydrochloride 0.1 parts by mass-water 95 parts by mass Table 1 shows the results. I put together.
【0036】〔比較例1〕外径300μmのナイロン6
製中空繊維(溶融紡糸品)を25本束ねて、実施例1と
同様にしてGMA変性プローブA固定化アクリルアミド
ゲルの重合を行った後、ブロックを中空繊維軸に直角方
向にスライスして厚さ約1mmの薄片を得た。この薄片
を実施例1と同様の方法で蛍光顕微鏡観察し、繊維断面
の検出光強度を数値化した。検出光強度は、Cy3フィ
ルターを用いた場合8000であり、(式1)の条件を
満たさなかった(B/A=1.8>1)。Cy5フィル
ターを用いた場合1700、FITCフィルターを用いた場
合2250であり、検出光バックグランドの高い生体関
連物質プローブ固定化アレーであった。Comparative Example 1 Nylon 6 having an outer diameter of 300 μm
After bundling 25 hollow fibers (melt-spun products) and polymerizing the acrylamide gel immobilized with GMA-modified probe A in the same manner as in Example 1, the block was sliced in a direction perpendicular to the hollow fiber axis to obtain a thickness. A slice of about 1 mm was obtained. The thin section was observed with a fluorescence microscope in the same manner as in Example 1, and the detected light intensity at the fiber cross section was quantified. The detected light intensity was 8000 when the Cy3 filter was used, and did not satisfy the condition of (Equation 1) (B / A = 1.8> 1). The number was 1700 when the Cy5 filter was used, and 2250 when the FITC filter was used, indicating that the array was a biological substance probe immobilized with a high detection light background.
【0037】表1. Table 1.
【0038】[0038]
【発明の効果】本発明によって、生体関連物質を光学的
に検出する生体関連物質マイクロアレイについて、その
支持体である中空繊維或いはキャピラリーに透明な材料
を用いることによって、バックグラウンド強度に覆い隠
される低レベルの光学的な検出が可能となる。According to the present invention, a bio-related substance microarray for optically detecting a bio-related substance, by using a transparent material for a hollow fiber or a capillary which is a support thereof, is capable of being covered by a background intensity. Optical detection of the level becomes possible.
【0039】[0039]
【図1】 検出強度の高い中空繊維が包埋された薄片の
断面図。FIG. 1 is a cross-sectional view of a thin section in which hollow fibers having high detection strength are embedded.
【図2】 検出強度の低い中空繊維が包埋された薄片の
断面図。FIG. 2 is a cross-sectional view of a thin section in which hollow fibers having low detection strength are embedded.
フロントページの続き (51)Int.Cl.7 識別記号 FI テーマコート゛(参考) G01N 37/00 102 G01N 37/00 102 (72)発明者 高橋 厚 広島県大竹市御幸町20番1号 三菱レイヨ ン株式会社中央技術研究所内 (72)発明者 秋田 隆 広島県大竹市御幸町20番1号 三菱レイヨ ン株式会社中央技術研究所内 Fターム(参考) 2G043 AA03 BA16 CA03 DA02 EA01 FA01 FA02 FA06 GA07 GB21 HA05 JA03 KA05 LA03 MA01Continued on the front page (51) Int.Cl. 7 Identification symbol FI Theme coat II (Reference) G01N 37/00 102 G01N 37/00 102 (72) Inventor Atsushi Takahashi 20-1 Miyukicho, Otake City, Hiroshima Prefecture Mitsubishi Rayon Inside the Central Research Institute, Inc. (72) Takashi Akita 20-1 Miyukicho, Otake City, Hiroshima Prefecture Mitsubishi Rayon Co., Ltd. Central Research Laboratory F-term (reference) 2G043 AA03 BA16 CA03 DA02 EA01 FA01 FA02 FA06 GA07 GB21 HA05 JA03 KA05 LA03 MA01
Claims (2)
関連物質が固定化され、該繊維の繊維軸と交叉する切断
面が2次元配列された生体関連物質プローブ固定化マイ
クロアレイにおいて、該中空繊維が下記式を満足するこ
とを特徴とする生体関連物質固定化マイクロアレイ。 B/A<1 [但し、Aは中空繊維の中空部に存在させた蛍光分子Cy3
(濃度0.01nmol/ml)の蛍光強度を蛍光顕微鏡で該繊維
切断面より検出したときの中空部の検出光強度、及びB
は蛍光分子を存在させずに上記と同一条件で測定したと
きの繊維部の検出光強度を示す。]1. A bio-related substance probe-immobilized microarray in which a bio-related substance is immobilized on an inner wall and / or a hollow portion of a hollow fiber, and a cut surface intersecting a fiber axis of the fiber is two-dimensionally arranged. A microarray immobilized with a biological substance, wherein the fibers satisfy the following formula: B / A <1 [where A is the fluorescent molecule Cy3
(Concentration 0.01 nmol / ml), the intensity of the detected light in the hollow part when the fluorescence intensity was detected from the fiber cut surface with a fluorescence microscope, and B
Indicates the detected light intensity of the fiber portion when measured under the same conditions as above without the presence of fluorescent molecules. ]
単独又は共重合体、ポリエチレン、ポリスチレン、ポリ
エチレンテレフタレート又はポリカーボネートである請
求項1記載の生体関連物質固定化マイクロアレイ。2. The microarray according to claim 1, wherein the hollow fibers are a homo- or copolymer of a (meth) acrylic monomer, polyethylene, polystyrene, polyethylene terephthalate or polycarbonate.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2000201217A JP2002022739A (en) | 2000-07-03 | 2000-07-03 | Living organism related substance immobilization micro- array |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2000201217A JP2002022739A (en) | 2000-07-03 | 2000-07-03 | Living organism related substance immobilization micro- array |
Publications (1)
Publication Number | Publication Date |
---|---|
JP2002022739A true JP2002022739A (en) | 2002-01-23 |
Family
ID=18698952
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2000201217A Pending JP2002022739A (en) | 2000-07-03 | 2000-07-03 | Living organism related substance immobilization micro- array |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP2002022739A (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US7280680B2 (en) | 2002-03-04 | 2007-10-09 | Riken | Method and apparatus for observing three-dimensional localizations of in vivo expressed genes as well as method and apparatus for observing minute three-dimensional localizations of in vivo expressed genes |
-
2000
- 2000-07-03 JP JP2000201217A patent/JP2002022739A/en active Pending
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US7280680B2 (en) | 2002-03-04 | 2007-10-09 | Riken | Method and apparatus for observing three-dimensional localizations of in vivo expressed genes as well as method and apparatus for observing minute three-dimensional localizations of in vivo expressed genes |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US11214796B2 (en) | Gene expression analysis ME1HOD using two dimensional cDNA library | |
KR100538502B1 (en) | Carriers Having Biological Substance | |
US8802369B2 (en) | Gel having biosubstance fixed thereto and microarray utilizing the gel | |
JP3510882B2 (en) | Biologically related substance microarray and manufacturing method thereof | |
JP4404328B2 (en) | Method for producing biopolymer array flake | |
CA2552233A1 (en) | A device for analysing an interaction between target and probe molecules | |
JP2000245460A (en) | Nucleic acid-immobilized hollow fiber and arranged body of nucleic acid-immobilized hollow fibers and its thin specimen | |
KR100655669B1 (en) | Electrophoretic buffer | |
JP2002022739A (en) | Living organism related substance immobilization micro- array | |
JP4036611B2 (en) | Bio-related substance microarray and detection method using the same | |
JP2000270878A (en) | Nucleic acid-immobilized gel-holding hollow fiber, arranged body of the hollow fiber and section thereof | |
JP2002340900A (en) | Biosensor, biosensor array, and detection method | |
JP4108891B2 (en) | Nucleic acid-immobilized gel-carrying porous hollow fiber, porous hollow fiber array and thin piece thereof | |
JP2003121439A (en) | Organism-released material immobilizing micro-array | |
JP2000270879A (en) | Nucleic acid-immobilized gel-holding fiber, arranged body of the fiber and section thereof | |
KR20030070604A (en) | Selectively hybridizable substance immobilization fiber, fiber array comprising bundle of such fibers, selective hybridizing method, device therefor, and base | |
JP2000270877A (en) | Nucleic acid-immobilized gel-holding porous fiber, arranged body of the porous fiber and section thereof | |
JP2003344405A (en) | Probe immobilizing gel holding micro-array and specimen detection method using it | |
JP2000279177A (en) | Porous fiber in which nucleic acid was fixed, porous fiber array in which nucleic acid was fixed, and thin slice thereof | |
JP2010259340A (en) | Through-hole microarray and method for producing the same | |
JP2003130873A (en) | Self fluorescence suppression microarray | |
JP2007101185A (en) | Gel wherein probe is fixed to at least two kinds of substituted (meth)acrylamide derivative and microarray using it | |
JP2003322650A (en) | Highly sensitive detection technique through the use of concentration | |
JP2002122596A (en) | Microarray for detecting biological substance | |
JP5660468B2 (en) | Method for producing gel microarray for detecting bio-related substances |