JP2002022289A - Refrigerator - Google Patents

Refrigerator

Info

Publication number
JP2002022289A
JP2002022289A JP2000205451A JP2000205451A JP2002022289A JP 2002022289 A JP2002022289 A JP 2002022289A JP 2000205451 A JP2000205451 A JP 2000205451A JP 2000205451 A JP2000205451 A JP 2000205451A JP 2002022289 A JP2002022289 A JP 2002022289A
Authority
JP
Japan
Prior art keywords
gas
liquid separator
refrigerant
condenser
path
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2000205451A
Other languages
Japanese (ja)
Inventor
Kenji Ashida
健治 芦田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sharp Corp
Original Assignee
Sharp Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sharp Corp filed Critical Sharp Corp
Priority to JP2000205451A priority Critical patent/JP2002022289A/en
Publication of JP2002022289A publication Critical patent/JP2002022289A/en
Pending legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B40/00Subcoolers, desuperheaters or superheaters
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B41/00Fluid-circulation arrangements
    • F25B41/30Expansion means; Dispositions thereof
    • F25B41/385Dispositions with two or more expansion means arranged in parallel on a refrigerant line leading to the same evaporator
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2400/00General features or devices for refrigeration machines, plants or systems, combined heating and refrigeration systems or heat-pump systems, i.e. not limited to a particular subgroup of F25B
    • F25B2400/05Compression system with heat exchange between particular parts of the system
    • F25B2400/051Compression system with heat exchange between particular parts of the system between the accumulator and another part of the cycle
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2400/00General features or devices for refrigeration machines, plants or systems, combined heating and refrigeration systems or heat-pump systems, i.e. not limited to a particular subgroup of F25B
    • F25B2400/05Compression system with heat exchange between particular parts of the system
    • F25B2400/052Compression system with heat exchange between particular parts of the system between the capillary tube and another part of the refrigeration cycle
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2600/00Control issues
    • F25B2600/25Control of valves
    • F25B2600/2507Flow-diverting valves

Abstract

PROBLEM TO BE SOLVED: To provide a refrigerator having an enhanced cycle efficiency and consuming less power. SOLUTION: A refrigeration cycle comprises a compressor 1, a discharge pipe 2, a condenser 3, a drier 4, a decompressing means 5, an evaporator 6, a gas-liquid separator 7 and a suction pipe 8 sequentially connected in order. The condenser 3 is provided with a selector valve 9 and two pipelines 21 and 22, are connected to the selector valve 9. The pipeline 21 is brought into contact with the gas liquid separator in a heat changeable state and then is connected with the drier 4, and on the other hand the pipeline 22 is connected to the drier 4 directly. Part of the condenser may be used as parts of the pipelines 21 and 22 from the selector valve 9. A path allowing heat exchange between the gas liquid separator 7 and the condenser 3 and a normal refrigeration cycle path not effecting heat exchange can be switched.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、圧縮器と凝縮器、
減圧器、蒸発器を順次接続した冷凍サイクルを設けた冷
蔵庫に関するものである。
[0001] The present invention relates to a compressor and a condenser,
The present invention relates to a refrigerator provided with a refrigeration cycle in which a pressure reducer and an evaporator are sequentially connected.

【0002】[0002]

【従来の技術】従来、冷蔵庫は、例えば特開平8−24
7617号公報に示されているように、圧縮器と凝縮
器、減圧器、蒸発器を順次接続した冷凍サイクルを設け
たものがある。この種の冷蔵庫は、前記蒸発器と圧縮器
との間に接続した気液分離器を、前記圧縮器が配設され
た機械室内に配設し、前記気液分離器内の冷媒が湿り状
態にあるように設定し、気液分離器と減圧手段である毛
細管と熱交換可能に接触させる。これにより、液冷媒を
溜めるための気液分離器を毛細管の冷却に利用してい
る。
2. Description of the Related Art Conventionally, refrigerators are disclosed, for example, in JP-A-8-24.
As disclosed in Japanese Patent No. 7617, there is a device provided with a refrigeration cycle in which a compressor, a condenser, a decompressor, and an evaporator are sequentially connected. In this type of refrigerator, a gas-liquid separator connected between the evaporator and the compressor is disposed in a machine room in which the compressor is disposed, and the refrigerant in the gas-liquid separator is in a wet state. And a gas-liquid separator and a capillary tube as a decompression means are brought into contact with each other in a heat-exchangeable manner. Thereby, the gas-liquid separator for storing the liquid refrigerant is used for cooling the capillary.

【0003】[0003]

【発明が解決しようとする課題】しかし、前記のような
冷蔵庫では気液分離器に溜まった液冷媒は毛細管との接
触により、毛細管の温度低下に用いられるが、機械室内
の高温の空気とも熱交換するため、気液分離器の冷却能
力を十分に活用することができないという課題がある。
また、冷蔵庫は通常、外気温など運転環境の変化に対応
しなければならず、運転負荷が大きいときも冷媒不足に
ならないように冷媒量を設定しなければならない。そし
て、圧縮器などの近傍で、高温になっている機械室内に
気液分離器を設置し、気液分離器内の冷媒を常に湿り状
態になるように設定するためには冷媒封入量をさらに多
くする必要がある。これにより、冷凍サイクル全体の圧
力が高くなって消費電力が悪化し、圧縮器が高温になっ
て信頼性が低くなるという課題がある。
However, in the above-mentioned refrigerator, the liquid refrigerant accumulated in the gas-liquid separator is used to lower the temperature of the capillary tube by contact with the capillary tube. There is a problem that the cooling capacity of the gas-liquid separator cannot be fully utilized for replacement.
In addition, the refrigerator usually has to cope with changes in the operating environment such as the outside air temperature, and the amount of refrigerant must be set so that the refrigerant does not run short even when the operating load is large. Then, in the vicinity of the compressor, etc., a gas-liquid separator is installed in the machine room where the temperature is high, and in order to set the refrigerant in the gas-liquid separator so as to be always in a wet state, the amount of the charged refrigerant is further increased. I need to do more. As a result, there is a problem that the pressure of the entire refrigeration cycle is increased, the power consumption is deteriorated, and the temperature of the compressor is increased to lower the reliability.

【0004】本発明の目的は、上記課題を鑑みて、サイ
クル効率を向上させ、消費電力を低減させる冷蔵庫を提
供することにある。
An object of the present invention is to provide a refrigerator that improves cycle efficiency and reduces power consumption in view of the above problems.

【0005】[0005]

【課題を解決するための手段】本発明は、圧縮器、凝縮
器、減圧器、蒸発器、気液分離器を順次接続して冷媒を
循環させる冷凍サイクル経路を設けた冷蔵庫である。前
記凝縮器から蒸発器の間の冷凍サイクル経路側から前記
気液分離器に接触させて熱交換を行ってから元の前記冷
凍サイクル経路に戻す熱交換経路と、前記熱交換経路を
通らない通常の冷凍サイクル経路である通常経路と、前
記気液分離器内に気液2相状態の冷媒が流れる場合に
は、通常経路から前記熱交換経路に冷媒の流れを切り替
える切替手段とを設けたことを特徴とするものである。
SUMMARY OF THE INVENTION The present invention is a refrigerator provided with a refrigeration cycle path in which a compressor, a condenser, a decompressor, an evaporator, and a gas-liquid separator are sequentially connected to circulate a refrigerant. A heat exchange path that contacts the gas-liquid separator from the refrigeration cycle path side between the condenser and the evaporator to perform heat exchange and then returns to the original refrigeration cycle path; And a switching means for switching the flow of the refrigerant from the normal path to the heat exchange path when the gas-liquid two-phase refrigerant flows in the gas-liquid separator. It is characterized by the following.

【0006】前記熱交換経路は、前記凝縮器から前記気
液分離器に接触させること、あるいは、前記減圧手段か
ら前記気液分離器に接触させることを特徴とするもので
ある。
[0006] The heat exchange path is characterized in that the condenser is brought into contact with the gas-liquid separator, or the pressure-reducing means is brought into contact with the gas-liquid separator.

【0007】また、本発明の冷蔵庫は、前記気液分離器
の冷媒状態を検知する検知手段を設けたことを特徴とす
るものである。ここで、前記検知手段は、前記蒸発器と
気液分離器に設けた温度センサーであること、あるい
は、前記気液分離器内に設けた冷媒の液面高さを検知す
ることを特徴とするものである。
Further, the refrigerator of the present invention is characterized in that a detecting means for detecting a refrigerant state of the gas-liquid separator is provided. Here, the detecting means is a temperature sensor provided in the evaporator and the gas-liquid separator, or detects a liquid level of a refrigerant provided in the gas-liquid separator. Things.

【0008】本発明においては、気液分離器内の冷媒状
態から熱交換経路か、通常の冷凍サイクル経路かを切替
手段で切り替える。特に、運転負荷の小さく、気液分離
器内の気液2相状態の冷媒が流れる場合には、熱交換経
路に冷媒の流れを切り替え、気液分離器内の冷媒がそれ
以外の状態のときは、通常の冷凍サイクル経路とするの
で、気液分離器内の冷却に使用されず余った冷媒によっ
て、凝縮温度を低下させ、圧縮比を小さくできるととも
に、気液分離器内の液冷媒を気化させ、冷媒循環量を増
やすことができ、サイクル効率が良くなり、消費電力量
が低減される。
In the present invention, the switching means switches between a heat exchange path and a normal refrigeration cycle path depending on the state of the refrigerant in the gas-liquid separator. In particular, when the operating load is small and the refrigerant in the gas-liquid two-phase state flows in the gas-liquid separator, the flow of the refrigerant is switched to the heat exchange path, and the refrigerant in the gas-liquid separator is in any other state. Is used as a normal refrigeration cycle path, so that the remaining refrigerant not used for cooling in the gas-liquid separator can lower the condensation temperature and reduce the compression ratio, and vaporize the liquid refrigerant in the gas-liquid separator. As a result, the refrigerant circulation amount can be increased, the cycle efficiency is improved, and the power consumption is reduced.

【0009】[0009]

【発明の実施の形態】以下、本発明における冷蔵庫の実
施の形態を図面とともに説明する。図1は、気液分離器
と凝縮器との間で熱交換できる切替手段を設けた冷凍サ
イクル概略図である。図2は気液分離器と毛細管との間
で熱交換できる切替手段を設けた冷凍サイクル概略図で
ある。図3は気液分離器と凝縮器との間で熱交換できる
切替手段を設け、蒸発器と気液分離器部に温度センサー
を設置した冷凍サイクル概略図である。図4は気液分離
器と毛細管との間で熱交換できる切替手段を設け、蒸発
器と気液分離器部に温度センサーを設置した冷凍サイク
ル概略図である。図5は内部に冷媒の液面高さを検知す
る手段であるフロートセンサーを設けた気液分離器を示
した図である。
DESCRIPTION OF THE PREFERRED EMBODIMENTS An embodiment of a refrigerator according to the present invention will be described below with reference to the drawings. FIG. 1 is a schematic diagram of a refrigeration cycle provided with switching means capable of exchanging heat between a gas-liquid separator and a condenser. FIG. 2 is a schematic diagram of a refrigeration cycle provided with switching means capable of exchanging heat between a gas-liquid separator and a capillary tube. FIG. 3 is a schematic diagram of a refrigeration cycle in which a switching unit capable of exchanging heat between a gas-liquid separator and a condenser is provided, and a temperature sensor is installed in the evaporator and the gas-liquid separator. FIG. 4 is a schematic diagram of a refrigeration cycle in which a switching means capable of exchanging heat between a gas-liquid separator and a capillary tube is provided, and a temperature sensor is provided in the evaporator and the gas-liquid separator. FIG. 5 is a view showing a gas-liquid separator provided with a float sensor as a means for detecting the liquid level of the refrigerant inside.

【0010】図1において、1は圧縮器、2は吐出パイ
プ、3は凝縮器、4はドライヤ、5は減圧手段、6は蒸
発器、7は気液分離器、8はサクションパイプであり、
順次接続することにより冷凍サイクルが形成されてい
る。また、凝縮器3には切替弁9がついており、切替弁
9に2本の配管21,22が接続されている。この一方
の配管21は気液分離器7とハンダ付けなど熱交換可能
な状態で接触させた後、ドライヤ4に接続されており、
他方の配管22は直接ドライヤ4に接続されている。な
お、前記切替弁9からの2本の配管21,22の部分を
凝縮器の一部としてもよい。切替弁9により、気液分離
器7と凝縮器3が熱交換する経路と熱交換しない通常の
冷凍サイクル経路に切り替えることができる。
In FIG. 1, 1 is a compressor, 2 is a discharge pipe, 3 is a condenser, 4 is a dryer, 5 is a decompression means, 6 is an evaporator, 7 is a gas-liquid separator, 8 is a suction pipe,
A refrigeration cycle is formed by connecting them sequentially. The condenser 3 is provided with a switching valve 9 to which two pipes 21 and 22 are connected. This one pipe 21 is connected to the dryer 4 after being brought into contact with the gas-liquid separator 7 in a heat exchange state such as soldering.
The other pipe 22 is directly connected to the dryer 4. The two pipes 21 and 22 from the switching valve 9 may be part of a condenser. The switching valve 9 can switch between a path in which the gas-liquid separator 7 and the condenser 3 exchange heat and an ordinary refrigeration cycle path in which no heat exchange is performed.

【0011】通常、気液分離器7は蒸発器6と一緒に冷
蔵庫室内の奥にあるが、気液分離器7と接触している切
替弁9からの配管21が庫内への熱負荷となるため、気
液分離器7は庫内と冷蔵庫外璧との間の断熱材内に配置
するなど熱負荷にならない位置に配置する必要がある。
Normally, the gas-liquid separator 7 is located at the back of the refrigerator compartment together with the evaporator 6, but the pipe 21 from the switching valve 9 which is in contact with the gas-liquid separator 7 reduces the heat load into the refrigerator. Therefore, it is necessary to arrange the gas-liquid separator 7 at a position where heat load does not occur, for example, in a heat insulating material between the refrigerator and the outer wall of the refrigerator.

【0012】以上のように構成された冷蔵庫で、次に冷
却運転について説明する。冷蔵庫は通常、広範な運転環
境で使用できることが必要とされており、冷媒量の調整
は主に気液分離器7で行われている。運転負荷が大きい
場合、気液分離器7内には気体の冷媒が流れるが、運転
負荷が小さい場合は気液2相状態の冷媒が流れ、液冷媒
は圧縮器1に戻らないように気液分離器7内に溜められ
る。まず、運転負荷が小さく、気液分離器7内に液冷媒
がある状態について述べる。
Next, the cooling operation of the refrigerator configured as described above will be described. Refrigerators are generally required to be usable in a wide range of operating environments, and adjustment of the amount of refrigerant is mainly performed by a gas-liquid separator 7. When the operating load is large, gaseous refrigerant flows in the gas-liquid separator 7, but when the operating load is small, refrigerant in a gas-liquid two-phase state flows, and the gas-liquid refrigerant does not return to the compressor 1. It is stored in the separator 7. First, a state in which the operation load is small and the liquid refrigerant is present in the gas-liquid separator 7 will be described.

【0013】圧縮器1の運転により、圧縮器1から吐出
された高温高圧の冷媒は、吐出パイプ2を通じて凝縮器
3へと送られる。この凝縮器3で冷媒は放熱し、気体の
状態から気液2相域の状態へと変化する。そして、切替
弁9により、凝縮器3と気液分離器7が接触する熱交換
経路21に冷媒が流れ、凝縮器3の一部は低温低圧の状
態の冷媒が流れる気液分離器7と接触しているため、凝
縮器3の放熱効果が高くなり、凝縮温度が低下する。そ
の結果、圧縮器1の圧縮比が小さくなるとともに冷却能
力も向上し、圧縮器1のCOPが高くなる。
The high-temperature and high-pressure refrigerant discharged from the compressor 1 by the operation of the compressor 1 is sent to the condenser 3 through the discharge pipe 2. The refrigerant radiates heat in the condenser 3 and changes from a gas state to a gas-liquid two-phase state. The switching valve 9 causes the refrigerant to flow through the heat exchange path 21 where the condenser 3 and the gas-liquid separator 7 come into contact, and a part of the condenser 3 comes into contact with the gas-liquid separator 7 through which the low-temperature and low-pressure refrigerant flows. As a result, the heat radiation effect of the condenser 3 increases, and the condensation temperature decreases. As a result, the compression ratio of the compressor 1 is reduced and the cooling capacity is improved, and the COP of the compressor 1 is increased.

【0014】その後、冷媒はドライヤ4を経て、減圧器
5にて低温であるサクションパイプ8と熱交換しながら
減圧され、蒸発器6で低温低圧の気液混合状態となる。
この冷媒は冷蔵庫内の空気と熱交換し、乾き度が大きく
なっていく。このとき、気液混合状態の冷媒は気液分離
器7に送り込まれるが、気液分離器7は凝縮器3の熱と
熱交換しているため、液冷媒は気化し、サクションパイ
プ8を経て圧縮器1に戻っていく。このため、気液分離
器7内の液冷媒の量が減り、蒸発圧力が上がり、冷媒循
環量の増加、圧縮比の低下などによりCOPが高くな
り、冷蔵庫の消費電力量を低減させることができる。
Thereafter, the refrigerant passes through the dryer 4 and is decompressed while exchanging heat with the low-temperature suction pipe 8 in the decompressor 5. The evaporator 6 enters a low-temperature low-pressure gas-liquid mixed state.
This refrigerant exchanges heat with the air in the refrigerator, and the dryness increases. At this time, the refrigerant in a gas-liquid mixed state is sent to the gas-liquid separator 7. Since the gas-liquid separator 7 exchanges heat with the heat of the condenser 3, the liquid refrigerant vaporizes and passes through the suction pipe 8. Return to the compressor 1. For this reason, the amount of the liquid refrigerant in the gas-liquid separator 7 decreases, the evaporation pressure increases, the refrigerant circulation amount increases, the compression ratio decreases, etc., so that the COP increases and the power consumption of the refrigerator can be reduced. .

【0015】また、運転負荷が大きく、気液分離器7に
冷媒が気体で入ってくる場合は、切替弁9を凝縮器3と
気液分離器7が熱交換しない通常の冷凍サイクル経路2
2に切り替える。これにより凝縮器3が気液分離器7内
の冷媒ガスを加熱し、圧縮器1への吸入ガスの比体積を
増加させることによる冷却能力の悪化を防ぐことができ
る。よって、気液分離器7内の冷媒は常に湿り状態であ
る必要がなく、冷凍サイクルにとって最適な冷媒封入量
に設定することができる。
When the operating load is large and the refrigerant enters the gas-liquid separator 7 as a gas, the switching valve 9 is connected to the ordinary refrigeration cycle path 2 where the condenser 3 and the gas-liquid separator 7 do not exchange heat.
Switch to 2. As a result, the condenser 3 heats the refrigerant gas in the gas-liquid separator 7 to prevent the cooling capacity from deteriorating by increasing the specific volume of the gas suctioned into the compressor 1. Therefore, the refrigerant in the gas-liquid separator 7 does not need to be always in a wet state, and it is possible to set an optimum amount of refrigerant to be charged for the refrigeration cycle.

【0016】図2においては、図1と同様の冷凍サイク
ルが形成されており、同一部分には同一符号を付す。図
1と異なる点は、ドライヤ4と蒸発器6の間には切替弁
9がついており、切替弁9には2本の減圧手段である毛
細管10,11が接続されているところである。毛細管
10は気液分離器7とハンダ付けなど熱交換可能な状態
で接触させた後、蒸発器6に接続されており、毛細管1
1は直接蒸発器6に接続されている。こうして、切換弁
9により、気液分離器7と毛細管が熱交換する経路と熱
交換しない通常の冷凍サイクル経路に切り替えることが
できる。通常、気液分離器7は蒸発器6などと一緒に冷
蔵庫室内の奥にあるが、気液分離器7と接触している毛
細管10が庫内への熱負荷となるため、気液分離器7は
庫内と冷蔵庫外壁との間の断熱材内に配置するなど熱負
荷にならない位置に配置する必要がある。
In FIG. 2, a refrigeration cycle similar to that of FIG. 1 is formed, and the same portions are denoted by the same reference numerals. The difference from FIG. 1 is that a switching valve 9 is provided between the dryer 4 and the evaporator 6, and the switching valve 9 is connected to two capillary tubes 10 and 11, which are two pressure reducing means. After the capillary tube 10 is brought into contact with the gas-liquid separator 7 in a heat-exchangeable state such as soldering, the capillary tube 10 is connected to the evaporator 6.
1 is directly connected to the evaporator 6. Thus, the switching valve 9 can be used to switch between a path in which the gas-liquid separator 7 and the capillary exchange heat and a normal refrigeration cycle in which heat exchange does not occur. Normally, the gas-liquid separator 7 is located at the back of the refrigerator compartment together with the evaporator 6 and the like. However, the capillary tube 10 in contact with the gas-liquid separator 7 causes a heat load to the inside of the refrigerator. 7 needs to be arranged at a position where it does not cause a heat load, such as being arranged in a heat insulating material between the refrigerator and the outer wall of the refrigerator.

【0017】以上のように構成された冷蔵庫で、次に冷
却運転について説明する。運転負荷が小さいとき、圧縮
器1の運転により、圧縮器1から吐出された高温高圧の
冷媒は、吐出パイプ2を通じて凝縮器3へと送られる。
この凝縮器3で冷媒は放熱し、気体の状態から気液2相
域の状態へと変化し、ドライヤ4から切替弁9へと流れ
ていく。そして、切替弁9により、毛細管10に冷媒が
流れ、毛細管10の一部は低温低圧の状態の冷媒が流れ
る気液分離器7と接触し、冷媒は温度を下げながら減圧
されていく。
Next, the cooling operation of the refrigerator configured as described above will be described. When the operating load is small, the high-temperature and high-pressure refrigerant discharged from the compressor 1 is sent to the condenser 3 through the discharge pipe 2 by the operation of the compressor 1.
The refrigerant radiates heat in the condenser 3, changes from a gas state to a gas-liquid two-phase state, and flows from the dryer 4 to the switching valve 9. Then, the refrigerant flows through the capillary tube 10 by the switching valve 9, and a part of the capillary tube 10 comes into contact with the gas-liquid separator 7 through which the low-temperature and low-pressure refrigerant flows, and the refrigerant is reduced in pressure while lowering the temperature.

【0018】従来の冷凍サイクルは減圧中、サクション
パイプ8と接触させ、温度を下げることで冷棟能力を高
めていたが、今回の発明ではサクションパイプ8だけで
はなく気液分離器7とも熱交換させるので、より冷凍サ
イクルの冷却能力を高めることができ、消費電力量が低
減される。
In the conventional refrigeration cycle, the capacity of the cooling building was increased by contacting the suction pipe 8 during depressurization to lower the temperature, but in the present invention, heat exchange is performed not only with the suction pipe 8 but also with the gas-liquid separator 7. Therefore, the cooling capacity of the refrigeration cycle can be further increased, and the power consumption can be reduced.

【0019】そして、運転負荷が大きく、気液分離器7
に冷媒がガス状態で入ってくるときは冷媒が毛細管11
を流れる経路に切り替える。これにより、毛細管10が
気液分離器7内の冷媒ガスを加熱し、圧縮器1への吸入
ガスの比体積を増加させることによる冷却能力の悪化を
防ぐことができる。よって、気液分離器7内の冷媒は常
に湿り状態である必要がなく、冷凍サイクルにとって最
適な冷媒封入量に設定することができる。
The operation load is large, and the gas-liquid separator 7
When the refrigerant enters the gaseous state into the capillary 11
To the path that flows. Thereby, the capillary tube 10 can heat the refrigerant gas in the gas-liquid separator 7 and prevent the cooling capacity from deteriorating due to the increase in the specific volume of the gas sucked into the compressor 1. Therefore, the refrigerant in the gas-liquid separator 7 does not need to be always in a wet state, and it is possible to set an optimum amount of refrigerant to be charged for the refrigeration cycle.

【0020】図3、図4の冷凍サイクルにおいて、図
1、図2と同一部分には同一符号を付す。図1、図2と異
なるのは、温度センサー12,13を配置した点であ
る。温度センサー12は蒸発器6内の冷媒温度、温度セ
ンサー13は気液分離器7内の冷媒温度を検知すること
ができる。
In the refrigeration cycles of FIGS. 3 and 4, the same parts as those of FIGS. 1 and 2 are denoted by the same reference numerals. The difference from FIGS. 1 and 2 is that the temperature sensors 12 and 13 are arranged. The temperature sensor 12 can detect the temperature of the refrigerant in the evaporator 6, and the temperature sensor 13 can detect the temperature of the refrigerant in the gas-liquid separator 7.

【0021】運転負荷が小さく気液分離器7内に液冷媒
が溜まっている場合、温度センサー12と温度センサー
13における冷媒温度が等しくなる。そこで、図3にお
いて切替弁9は凝縮器3と気液分離器7が熱交換する経
路、図4において毛細管10と気液分離器7が熱交換す
る経路に冷媒が流れるように制御される。
When the operation load is small and the liquid refrigerant is accumulated in the gas-liquid separator 7, the refrigerant temperatures at the temperature sensor 12 and the temperature sensor 13 become equal. Therefore, in FIG. 3, the switching valve 9 is controlled so that the refrigerant flows in a path in which the condenser 3 and the gas-liquid separator 7 exchange heat, and in FIG. 4, a refrigerant flows in a path in which the capillary tube 10 exchanges heat with the gas-liquid separator 7.

【0022】また、運転負荷が大きく、気液分離器7に
冷媒がガス状態で入ってくる場合は、温度センサー13
は温度センサー12より高い温度を示す。そこで、図3
において切替弁9は凝縮器3と気液分離器7が熱交換し
ない経路、図4において気液分離器7と熱交換しない毛
細管11の経路に冷媒が流れるように制御される。
If the operating load is large and the refrigerant enters the gas-liquid separator 7 in a gaseous state, the temperature sensor 13
Indicates a temperature higher than the temperature sensor 12. Therefore, FIG.
In FIG. 4, the switching valve 9 is controlled so that the refrigerant flows in a path in which the condenser 3 and the gas-liquid separator 7 do not exchange heat, and in FIG.

【0023】また、図5に示すように、気液分離器7の
内部には、冷媒の液面高さを検知する手段であるフロー
トセンサー14が備えられている。そして、気液分離器
7内の液冷媒の有無はフロートセンサー14のフロート
により検知され、液冷媒が存在するときは気液分離器7
と凝縮器3または毛細管10が熱交換するように、液冷
媒が存在しない場合は熱交換しないように切替弁9が制
御される。
As shown in FIG. 5, a float sensor 14 is provided inside the gas-liquid separator 7 as means for detecting the liquid level of the refrigerant. The presence or absence of liquid refrigerant in the gas-liquid separator 7 is detected by the float of the float sensor 14, and when liquid refrigerant is present,
The switching valve 9 is controlled so that the heat exchange between the liquid refrigerant and the condenser 3 or the capillary tube 10 does not occur, and when there is no liquid refrigerant, the heat exchange does not occur.

【0024】[0024]

【発明の効果】本発明の冷蔵庫は、気液分離器内の気液
2相状態の冷媒が流れる場合には、熱交換経路に冷媒の
流れを切り替えるから、気液分離器内の冷却に使用され
ず余った冷媒によって、凝縮温度を低下させ、圧縮比を
小さくできるとともに、気液分離器内の液冷媒を気化さ
せ、冷媒循環量を増やすことができ、サイクル効率が良
くなり、消費電力量が低減される。また、気液分離器内
の冷媒によって、毛細管温度を低下させることができ、
冷却能力が上がり、運転率が低減されるため、消費電力
量が低減される。そして、気液分離器内に液冷媒が溜ま
っていない状態では切替弁により、凝縮器や毛細管と気
液分離器との熱交換が行われなくなるので圧縮器に戻る
冷媒ガス温度の毛細管と気液分離器内の冷媒との熱交換
による上昇が起こらず、サイクル効率の悪化を防ぐこと
ができる。
The refrigerator of the present invention is used for cooling the inside of the gas-liquid separator because the flow of the refrigerant is switched to the heat exchange path when the gas-liquid two-phase refrigerant in the gas-liquid separator flows. The remaining refrigerant lowers the condensation temperature, lowers the compression ratio, evaporates the liquid refrigerant in the gas-liquid separator, increases the refrigerant circulation, improves cycle efficiency, and reduces power consumption. Is reduced. Also, by the refrigerant in the gas-liquid separator, the capillary temperature can be reduced,
Since the cooling capacity is increased and the operation rate is reduced, the power consumption is reduced. When the liquid refrigerant does not accumulate in the gas-liquid separator, the switching valve stops heat exchange between the condenser and the capillary and the gas-liquid separator. An increase due to heat exchange with the refrigerant in the separator does not occur, so that deterioration in cycle efficiency can be prevented.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の気液分離器と凝縮器との間で熱交換で
きる切替手段を設けた冷凍サイクル概略図である。
FIG. 1 is a schematic diagram of a refrigeration cycle provided with switching means capable of exchanging heat between a gas-liquid separator and a condenser of the present invention.

【図2】本発明の気液分離器と毛細管との間で熱交換で
きる切替手段を設けた冷凍サイクル概略図である。
FIG. 2 is a schematic diagram of a refrigeration cycle provided with switching means capable of exchanging heat between a gas-liquid separator of the present invention and a capillary tube.

【図3】本発明の気液分離器と凝縮器との間で熱交換で
きる切替手段を設け、蒸発器と気液分離器部に温度セン
サーを設置した冷凍サイクル概略図である。
FIG. 3 is a schematic diagram of a refrigeration cycle in which a switching unit capable of exchanging heat between a gas-liquid separator and a condenser according to the present invention is provided, and a temperature sensor is installed in an evaporator and a gas-liquid separator unit.

【図4】本発明の気液分離器と毛細管との間で熱交換で
きる切替手段を設け、蒸発器と気液分離器部に温度セン
サーを設置した冷凍サイクル概略図である。
FIG. 4 is a schematic diagram of a refrigeration cycle in which a switching means capable of exchanging heat between a gas-liquid separator and a capillary tube of the present invention is provided, and a temperature sensor is provided in an evaporator and a gas-liquid separator.

【図5】本発明の内部に冷媒の液面高さを検知する手段
であるフロートセンサーを設けた気液分離器を示した図
である。
FIG. 5 is a view showing a gas-liquid separator provided with a float sensor as a means for detecting the liquid level of the refrigerant inside the present invention.

【符号の説明】[Explanation of symbols]

1 圧縮器 2 吐出パイプ 3 凝縮器 4 ドライヤ 5 減圧器 6 蒸発器 7 気液分離器 8 サクションパイプ 9 切替弁 10,11 毛細管 12,13 温度センサー 14 フロートセンサー DESCRIPTION OF SYMBOLS 1 Compressor 2 Discharge pipe 3 Condenser 4 Dryer 5 Decompressor 6 Evaporator 7 Gas-liquid separator 8 Suction pipe 9 Switching valve 10, 11 Capillary tube 12, 13 Temperature sensor 14 Float sensor

Claims (6)

【特許請求の範囲】[Claims] 【請求項1】 圧縮器、凝縮器、減圧器、蒸発器、気液
分離器を順次接続して冷媒を循環させる冷凍サイクル経
路を設けた冷蔵庫において、 前記凝縮器から蒸発器の間の冷凍サイクル経路側から前
記気液分離器に接触させて熱交換を行ってから元の前記
冷凍サイクル経路に戻す熱交換経路と、 前記熱交換経路を通らない通常の冷凍サイクル経路であ
る通常経路と、 前記気液分離器内に気液2相状態の冷媒が流れる場合に
は、通常経路から前記熱交換経路に冷媒の流れを切り替
える切替手段とを設けたことを特徴とする冷蔵庫。
1. A refrigerator provided with a refrigeration cycle path in which a compressor, a condenser, a decompressor, an evaporator, and a gas-liquid separator are sequentially connected to circulate a refrigerant, wherein the refrigeration cycle between the condenser and the evaporator is provided. A heat exchange path that contacts the gas-liquid separator from the path side to perform heat exchange and then returns to the original refrigeration cycle path; a normal path that is a normal refrigeration cycle path that does not pass through the heat exchange path; A refrigerator provided with switching means for switching the flow of the refrigerant from a normal path to the heat exchange path when a refrigerant in a gas-liquid two-phase state flows in the gas-liquid separator.
【請求項2】 前記熱交換経路は、前記凝縮器から前記
気液分離器に接触させることを特徴とする請求項1記載
の冷蔵庫。
2. The refrigerator according to claim 1, wherein the heat exchange path contacts the gas-liquid separator from the condenser.
【請求項3】 前記熱交換経路は、前記減圧手段から前
記気液分離器に接触させることを特徴とする請求項1記
載の冷蔵庫。
3. The refrigerator according to claim 1, wherein the heat exchange path is brought into contact with the gas-liquid separator from the decompression means.
【請求項4】 前記気液分離器の冷媒状態を検知する検
知手段を設けたことを特徴とする請求項1、2又は3記
載の冷蔵庫。
4. The refrigerator according to claim 1, further comprising detecting means for detecting a refrigerant state of the gas-liquid separator.
【請求項5】 前記検知手段は、前記蒸発器と気液分離
器に設けた温度センサーであることを特徴とする請求項
4記載の冷蔵庫。
5. The refrigerator according to claim 4, wherein said detecting means is a temperature sensor provided in said evaporator and said gas-liquid separator.
【請求項6】 前記検知手段は、前記気液分離器内に設
けた冷媒の液面高さを検知することを特徴とする請求項
4記載の冷蔵庫。
6. The refrigerator according to claim 4, wherein the detecting means detects a liquid level of a refrigerant provided in the gas-liquid separator.
JP2000205451A 2000-07-06 2000-07-06 Refrigerator Pending JP2002022289A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2000205451A JP2002022289A (en) 2000-07-06 2000-07-06 Refrigerator

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2000205451A JP2002022289A (en) 2000-07-06 2000-07-06 Refrigerator

Publications (1)

Publication Number Publication Date
JP2002022289A true JP2002022289A (en) 2002-01-23

Family

ID=18702534

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000205451A Pending JP2002022289A (en) 2000-07-06 2000-07-06 Refrigerator

Country Status (1)

Country Link
JP (1) JP2002022289A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102200364A (en) * 2011-04-22 2011-09-28 上海海事大学 Open economizer applying principle of dual-pressure circulation
EP2631572A3 (en) * 2012-02-21 2014-11-05 Whirlpool Corporation Dual capillary tube / heat exchanger in combination with cycle priming for reducing charge migration
EP2631578A3 (en) * 2012-02-21 2014-11-05 Whirlpool Corporation Refrigerator with variable capacity compressor and cycle priming action through capacity control and associated methods
CN104864619A (en) * 2015-06-19 2015-08-26 苏州医电神空调设备工程有限公司 Refrigerating system with stepless regulation return air temperature
US9618246B2 (en) 2012-02-21 2017-04-11 Whirlpool Corporation Refrigeration arrangement and methods for reducing charge migration

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102200364A (en) * 2011-04-22 2011-09-28 上海海事大学 Open economizer applying principle of dual-pressure circulation
EP2631572A3 (en) * 2012-02-21 2014-11-05 Whirlpool Corporation Dual capillary tube / heat exchanger in combination with cycle priming for reducing charge migration
EP2631578A3 (en) * 2012-02-21 2014-11-05 Whirlpool Corporation Refrigerator with variable capacity compressor and cycle priming action through capacity control and associated methods
US9285161B2 (en) 2012-02-21 2016-03-15 Whirlpool Corporation Refrigerator with variable capacity compressor and cycle priming action through capacity control and associated methods
US9618246B2 (en) 2012-02-21 2017-04-11 Whirlpool Corporation Refrigeration arrangement and methods for reducing charge migration
US9696077B2 (en) 2012-02-21 2017-07-04 Whirlpool Corporation Dual capillary tube / heat exchanger in combination with cycle priming for reducing charge migration
US20170241687A1 (en) * 2012-02-21 2017-08-24 Whirlpool Corporation Refrigeration arrangement and methods for reducing charge migration losses
EP2631568B1 (en) * 2012-02-21 2019-07-31 Whirlpool Corporation Refrigeration arrangement and methods for reducing charge migration losses
CN104864619A (en) * 2015-06-19 2015-08-26 苏州医电神空调设备工程有限公司 Refrigerating system with stepless regulation return air temperature
CN104864619B (en) * 2015-06-19 2017-12-22 苏州医电神空调设备工程有限公司 Can step-less adjustment suction temperature refrigeration system

Similar Documents

Publication Publication Date Title
US6698217B2 (en) Freezing device
JP4459776B2 (en) Heat pump device and outdoor unit of heat pump device
US10401047B2 (en) Refrigeration cycle apparatus
JP2007155230A (en) Air conditioner
JP2009270822A (en) Heat pump device and outdoor unit of heat pump device
KR101901540B1 (en) Air conditioning device
JP2010139157A (en) Refrigeration apparatus
JP4418936B2 (en) Air conditioner
JP4407012B2 (en) Refrigeration equipment
JP2008025901A (en) Air conditioner
US7624590B2 (en) Multi-type air conditioner
CN111503854B (en) Air conditioning system, anti-condensation control method and device thereof, and storage medium
JP2002022289A (en) Refrigerator
JPH11287524A (en) Natural circulation combination type air-conditioner
JPH07190515A (en) Freezer
JP2003207220A (en) Cooling device
JPH10232073A (en) Air conditioner
JP2009115336A (en) Refrigeration system
JP2006138612A (en) Heat pump system
JP6581822B2 (en) Air conditioner
JP2004061056A (en) Oil level detecting method and device for compressor
JPH11201565A (en) Air conditioner
JPH10253171A (en) Air conditioner
JP2564980B2 (en) Air conditioner
KR100324359B1 (en) Refrigerator using two-stage expansion