JP2002020132A - Burner for manufacturing molten quartz glass - Google Patents

Burner for manufacturing molten quartz glass

Info

Publication number
JP2002020132A
JP2002020132A JP2000195042A JP2000195042A JP2002020132A JP 2002020132 A JP2002020132 A JP 2002020132A JP 2000195042 A JP2000195042 A JP 2000195042A JP 2000195042 A JP2000195042 A JP 2000195042A JP 2002020132 A JP2002020132 A JP 2002020132A
Authority
JP
Japan
Prior art keywords
oxygen gas
burner
hydrogen gas
hydrogen
gaseous
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2000195042A
Other languages
Japanese (ja)
Other versions
JP4388206B2 (en
Inventor
Shinichi Sato
新一 佐藤
Yoshihiko Goto
吉彦 後藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tosoh Quartz Corp
Original Assignee
Tosoh Quartz Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tosoh Quartz Corp filed Critical Tosoh Quartz Corp
Priority to JP2000195042A priority Critical patent/JP4388206B2/en
Publication of JP2002020132A publication Critical patent/JP2002020132A/en
Application granted granted Critical
Publication of JP4388206B2 publication Critical patent/JP4388206B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B19/00Other methods of shaping glass
    • C03B19/14Other methods of shaping glass by gas- or vapour- phase reaction processes
    • C03B19/1415Reactant delivery systems
    • C03B19/1423Reactant deposition burners
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B2207/00Glass deposition burners
    • C03B2207/04Multi-nested ports
    • C03B2207/06Concentric circular ports
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B2207/00Glass deposition burners
    • C03B2207/04Multi-nested ports
    • C03B2207/12Nozzle or orifice plates
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B2207/00Glass deposition burners
    • C03B2207/04Multi-nested ports
    • C03B2207/14Tapered or flared nozzles or ports angled to central burner axis
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B2207/00Glass deposition burners
    • C03B2207/20Specific substances in specified ports, e.g. all gas flows specified
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B2207/00Glass deposition burners
    • C03B2207/20Specific substances in specified ports, e.g. all gas flows specified
    • C03B2207/24Multiple flame type, e.g. double-concentric flame
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B2207/00Glass deposition burners
    • C03B2207/36Fuel or oxidant details, e.g. flow rate, flow rate ratio, fuel additives
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B2207/00Glass deposition burners
    • C03B2207/42Assembly details; Material or dimensions of burner; Manifolds or supports

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Gas Burners (AREA)
  • Glass Melting And Manufacturing (AREA)

Abstract

PROBLEM TO BE SOLVED: To manufacture large-sized quartz glass ingots which are good in melting of siliceous glass powder and are free of the generation of foam with good production efficiency. SOLUTION: Gaseous hydrogen enters an annular gaseous hydrogen chamber 30 from a gaseous hydrogen supply pipe 3 and is sent along a tapered external wall 22 of a gaseous oxygen chamber 2 into a barrel 1. The gaseous hydrogen flowing down at the outer peripheral side of the barrel 1 withdraws the siliceous glass powder into gaseous hydrogen flow and is released from the aperture of the barrel 1. The gaseous hydrogen introduced by being deflected in a central direction by colliding against a gaseous hydrogen guide plate 5 is released from the aperture of the barrel 1 through the clearances of plural gaseous oxygen nozzles 21 arrayed on a concentric circle disposed on the lower side of a gaseous oxygen chamber 20 and is immediately mixed with the oxygen released from a gaseous oxyhydrogen nozzle. The oxyhydrogen flames are formed to a wide range by the hydrogen released from the outer periphery of the barrel and the hydrogen released from the clearances of the gaseous oxygen nozzles. by which the siliceous glass powder in the gaseous hydrogen flow is uniformly melted and deposited on a target and the large-sized quartz glass ingots are efficiently formed.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、シリカ質粉末を燃
焼ガスの火炎で溶融して大型の溶融石英ガラスを製造す
る際に使用する溶融石英ガラス製造用バーナーに関す
る。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a burner for producing fused silica glass, which is used for producing large-sized fused silica glass by fusing siliceous powder with a flame of a combustion gas.

【0002】[0002]

【従来の技術】石英ガラス製造法の一つである火炎溶融
法は、水晶や珪石などシリカ質の粉末原料を酸水素ガス
やプロパンガスの燃焼熱で溶融して石英ガラスを製造す
るもので、バーナーが必要である。金属製バーナーを使
用すると、噴出する高温の燃焼ガスの炎と共に、金属製
バーナーから遊離した金属蒸気や金属酸化物が生成する
石英ガラスに付着、または、混入し、石英ガラスの純度
を低下させるため好ましくない。このため、本出願人に
よる図7に示す、特公昭46−42113号公報に示さ
れるような構造の石英ガラス製のバーナーが用いられて
いる。火炎溶融法の燃焼ガスとしてプロパンガス等も使
用できるが、純度、雰囲気制御、及び高品質石英ガラス
の製造という観点において水素を燃焼ガスとした酸水素
火炎溶融が好ましく、以下、酸水素火炎溶融の場合につ
いて説明する。
2. Description of the Related Art The flame melting method, which is one of the methods for producing quartz glass, is a method for producing quartz glass by fusing siliceous powder raw materials such as quartz and silica stone with the combustion heat of oxyhydrogen gas or propane gas. You need a burner. When a metal burner is used, along with the flame of the high-temperature combustion gas that gushes, the metal vapor or metal oxide released from the metal burner adheres to or mixes with the generated quartz glass, lowering the purity of the quartz glass. Not preferred. For this reason, a burner made of quartz glass having a structure as shown in Japanese Patent Publication No. 46-42113 shown in FIG. 7 by the present applicant is used. Although propane gas and the like can be used as the combustion gas of the flame melting method, oxyhydrogen flame fusion using hydrogen as a combustion gas is preferable from the viewpoint of purity, atmosphere control, and production of high quality quartz glass. The case will be described.

【0003】[0003]

【発明が解決しようとする課題】近年、半導体ウェーハ
が5インチ、6インチ径から8インチ、12インチ径へ
と大型化され、それに伴い、半導体ウェーハ製造に使用
される石英ガラス部材や半導体ウェーハを収容して熱処
理するウェーハ保持・収納治具や炉芯管、各種基板など
が必然的に大きなものへと移行してきた。これらの石英
ガラス部材の原材料である石英ガラスインゴットもより
大型のものが要求されるようになってきている。
In recent years, semiconductor wafers have been increased in size from 5 inch and 6 inch diameters to 8 inch and 12 inch diameters. As a result, quartz glass members and semiconductor wafers used in semiconductor wafer manufacturing have been increasingly used. Wafer holding / holding jigs, furnace core tubes, and various substrates to be housed and heat-treated have inevitably shifted to larger ones. Larger quartz glass ingots, which are the raw materials of these quartz glass members, are also required.

【0004】前記の特公昭46−42113号公報のバ
ーナーは、シリカ質粉末をバーナー中心部の1ケ所から
供給するものではなく、分配管によってバーナー内の数
カ所から水素などのキャリアガスと共に供給する構造で
あり、シリカ質粉末を大量に供給できるという利点があ
り、石英ガラスインゴットのある程度までの大型化に対
応することが可能であった。
The burner disclosed in Japanese Patent Publication No. Sho 46-42113 does not supply the siliceous powder from one place at the center of the burner, but supplies the powder together with a carrier gas such as hydrogen from several places in the burner by a distribution pipe. This has the advantage that a large amount of siliceous powder can be supplied, and it has been possible to cope with an increase in the size of the quartz glass ingot to a certain extent.

【0005】石英ガラスインゴットの大型化に対し、バ
ーナーを大型化して対処しようと、外筒を大きくして酸
素ガスノズルの本数を増やしたり、酸素ガス及び水素ガ
スのノズル径を大口径化してバーナー内のシリカ質粉
末、及び燃焼ガス流量を増大させることを試みた。
In order to cope with the increase in size of the quartz glass ingot by increasing the size of the burner, the number of oxygen gas nozzles is increased by enlarging the outer cylinder, or the nozzle diameter of oxygen gas and hydrogen gas is increased by increasing the nozzle diameter of oxygen gas and hydrogen gas. And to increase the flow rate of combustion gas.

【0006】しかし、従来の構造のバーナーでは、外筒
からの水素ガス流は、供給された位置である外筒の外周
から直接バーナー外へ放出され、外筒内部の複数の酸素
ガスノズルから放出された酸素ガスと、バーナー外のか
なり長い距離を焦点(収れん点)として混合されてい
た。このため、混合するまでの間にガスが分散されて燃
焼に寄与する混合ガス量が低下するためか、供給した酸
水素ガスが全て熱に変換されずエネルギー損失が大きか
った。また、バーナーの酸水素ガスの焦点が、生成イン
ゴット表面に合わせて点スポットとなっており、大型の
インゴットでは一様な溶融状態が得られなかった。
However, in the burner having the conventional structure, the hydrogen gas flow from the outer cylinder is directly discharged from the outer periphery of the outer cylinder, which is the supplied position, to the outside of the burner, and is discharged from a plurality of oxygen gas nozzles inside the outer cylinder. Was mixed with oxygen gas at a focal point (convergence point) over a considerable distance outside the burner. For this reason, the supplied oxyhydrogen gas was not entirely converted into heat, and the energy loss was large, probably because the gas was dispersed before mixing and the amount of the mixed gas contributing to combustion was reduced. Further, the focus of the oxyhydrogen gas on the burner was a point spot in accordance with the surface of the produced ingot, and a uniform molten state could not be obtained with a large ingot.

【0007】また、インゴット径が400mmを超える
場合、シリカ質粉末供給量を増大すると、従来のバーナ
ーではシリカ質粉末供給ノズルが水素ガス流路を妨げる
構造となっているため、水素ガス流に大きな乱れを生じ
させ、シリカ質粉末が酸水素ガス流中に均一に分散され
なくなり、溶けが不均一となり生成した石英ガラスに泡
が発生し、品質劣下を招くことがあり、単純なバーナー
の大型化では限界があった。したがって、バーナーの構
造自体を変更し、シリカ質粉末の溶けの効率化を図るこ
とが必要となってきた。
When the ingot diameter exceeds 400 mm and the supply amount of the siliceous powder is increased, the conventional burner has a structure in which the siliceous powder supply nozzle obstructs the hydrogen gas flow path. This causes turbulence, the siliceous powder is no longer uniformly dispersed in the oxyhydrogen gas stream, and the melting is uneven and bubbles are generated in the generated quartz glass, which may lead to poor quality. There was a limit in the conversion. Therefore, it has become necessary to change the structure of the burner itself to improve the efficiency of melting the siliceous powder.

【0008】本発明は、以上の従来のバーナーの欠点を
改善し、大型石英ガラスインゴットの生成に際し、シリ
カ質粉末の溶融が良好で、泡の発生がなく、かつ、生産
効率の高い溶融石英ガラス製造用バーナーを提供するも
のである。
The present invention improves the above-mentioned drawbacks of the conventional burner and, when producing a large quartz glass ingot, melts the silica-based powder well, generates no bubbles, and has a high production efficiency. A manufacturing burner is provided.

【0009】[0009]

【課題を解決するための手段】熱効率を上げるためにバ
ーナーの外筒開口端に近い距離で、溶融点が面スポット
となる領域を選び、例えば加熱径が60mmφの位置で
酸水素ガスを燃焼させて石英ガラスを生成させたとこ
ろ、石英ガラスの表面温度が上がらず、溶融点の加熱径
が二重になり、内部が黒っぽく色ずみ、溶けの悪さが目
立った。
In order to enhance the thermal efficiency, a region where the melting point is a surface spot is selected at a distance close to the outer cylinder opening end of the burner, and for example, oxyhydrogen gas is burned at a heating diameter of 60 mmφ. When the quartz glass was formed by heating, the surface temperature of the quartz glass did not rise, the heating diameter at the melting point was doubled, the inside became dark and discolored, and poor melting was conspicuous.

【0010】加熱径が二重になる原因を調査した結果、
溶融点の外側に比べ内側が酸素ガス過剰な状態、言い換
えると水素ガスの供給不足によるものであると判明し
た。従来のバーナー構造では、水素ガスがバーナー内側
へ拡散供給されにくく、大型化に伴う酸素ガスノズルの
本数の増加によってこの傾向が更に強まったためと思わ
れる。そこでバーナーの構造を以下の構成とする本発明
を完成した。
As a result of investigating the cause of the double heating diameter,
It was found that the oxygen gas was excessive in the inside compared to the outside of the melting point, in other words, the supply of hydrogen gas was insufficient. It is considered that in the conventional burner structure, hydrogen gas is hardly diffused and supplied to the inside of the burner, and this tendency is further strengthened by the increase in the number of oxygen gas nozzles accompanying the increase in size. Thus, the present invention, in which the structure of the burner is configured as follows, has been completed.

【0011】バーナーの外筒内にテーパー状に拡径され
た酸素ガスチャンバーを設け、酸素ガスチャンバー端部
に複数の酸素ガスノズルを設け、外筒と酸素ガスチャン
バーの間にシリカ質粉末供給ノズルをその端部が外筒内
に位置するように配置し、酸素ガスチャンバー外壁に沿
って水素ガスを供給するようにし、ガスの流れを良く
し、均等な方向性をもって拡散された安定したガスの送
給を行えるようにして、大型の高品質石英ガラスインゴ
ットを製造できるようにした。
A tapered oxygen gas chamber is provided in the outer cylinder of the burner, a plurality of oxygen gas nozzles are provided at the end of the oxygen gas chamber, and a siliceous powder supply nozzle is provided between the outer cylinder and the oxygen gas chamber. Disposed so that its end is located in the outer cylinder, supply hydrogen gas along the outer wall of the oxygen gas chamber, improve the gas flow, and send a stable gas diffused with uniform directionality. Supply, and a large, high-quality quartz glass ingot can be manufactured.

【0012】シリカ質粉末供給ノズルを、外筒周辺部に
同心円上に均等間隔配列とし、従来バーナーのように水
素ガス流路を妨げることを防止して、原料のシリカ質粉
末が均一に供給されるようにした。酸素ガスノズルを同
心円上に多重に複数個配置し、水素ガスの一部を複数の
酸素ガスノズルの間隙に導入し、酸素ガスノズルの出口
近傍で酸素ガスと水素ガスの混合をおこなわせ、中央部
における酸素ガス過剰状態を解消し、均一な溶融がおこ
なわれるようにした。
The siliceous powder supply nozzles are arranged concentrically at equal intervals around the outer cylinder to prevent obstruction of the hydrogen gas flow path unlike a conventional burner, so that the raw material siliceous powder is uniformly supplied. It was to so. A plurality of oxygen gas nozzles are arranged in multiple concentric circles, a part of the hydrogen gas is introduced into the gap between the plurality of oxygen gas nozzles, and oxygen gas and hydrogen gas are mixed near the outlet of the oxygen gas nozzle, and the oxygen in the center is The excess gas state was eliminated, and uniform melting was performed.

【0013】そして、酸素ガスノズルと外筒内壁の間に
水素ガス案内板を設け、水素ガスの一部をバーナー中央
部に偏向させ、水素ガスの一部を酸素ガスノズルの間隙
に導入した。また、酸素ガス供給管を二重管構造とし、
二重管となる同心円上の内外酸素ガス管路の間に水素ガ
ス供給用の管路を設けて水素を供給するようにし、酸素
ガスノズルの間隙に水素ガスを導入して酸素と水素の混
合が均一におこなわれるようにした。
Then, a hydrogen gas guide plate is provided between the oxygen gas nozzle and the inner wall of the outer cylinder, a part of the hydrogen gas is deflected toward the center of the burner, and a part of the hydrogen gas is introduced into the gap between the oxygen gas nozzles. In addition, the oxygen gas supply pipe has a double pipe structure,
A hydrogen gas supply pipe is provided between the inner and outer oxygen gas pipes on the concentric circle which is a double pipe to supply hydrogen, and hydrogen gas is introduced into the gap of the oxygen gas nozzle to mix oxygen and hydrogen. It was done evenly.

【0014】水素ガス供給管にリング状水素ガスチャン
バーを設け、リング状水素ガスチャンバーから水素ガス
を酸素ガス供給管の周囲方向から酸素ガスチャンバー外
壁に沿わせて外筒内へ導入させ、水素ガスの供給量を安
定させて水素と酸素の均一混合を図った。
A hydrogen gas supply pipe is provided with a ring-shaped hydrogen gas chamber, and hydrogen gas is introduced from the ring-shaped hydrogen gas chamber into the outer cylinder along the outer wall of the oxygen gas chamber from the peripheral direction of the oxygen gas supply pipe. The amount of hydrogen supplied was stabilized to achieve uniform mixing of hydrogen and oxygen.

【0015】[0015]

【実施例】実施例1 図1に示すように、石英ガラス製のバーナーは、外筒1
に酸素ガス供給管2、水素ガス供給管3及びシリカ質粉
末供給管4が連結される。各供給管は補強棒6で相互に
連結され、補強されている。酸素ガス供給管2は、外筒
1内部でテーパー状に拡径している酸素ガスチャンバー
20に連結され、酸素ガスチャンバー20の端部は、外
筒1の中間部まで延び、図3に示すようにその端部には
同心円上に複数の酸素ガスノズル21が等間隔に配列し
てあり、酸素ガスノズル21の端部は外筒の開口端部ま
で延びている。
EXAMPLE 1 As shown in FIG. 1, a burner made of quartz glass was provided with an outer cylinder 1.
An oxygen gas supply pipe 2, a hydrogen gas supply pipe 3, and a siliceous powder supply pipe 4 are connected to the supply port. The supply pipes are interconnected by a reinforcing rod 6 and reinforced. The oxygen gas supply pipe 2 is connected to an oxygen gas chamber 20 having a tapered diameter inside the outer cylinder 1, and an end of the oxygen gas chamber 20 extends to an intermediate portion of the outer cylinder 1, as shown in FIG. As described above, a plurality of oxygen gas nozzles 21 are arranged concentrically at the end at equal intervals, and the end of the oxygen gas nozzle 21 extends to the opening end of the outer cylinder.

【0016】水素ガス供給管3は、外筒1の上部に設け
たリング状チャンバー30に接続され、リング状チャン
バー30からは複数の分配管が分岐し、酸素ガスチャン
バー20のテーパー壁面に沿って水素ガスが流れるよう
に配置してある。
The hydrogen gas supply pipe 3 is connected to a ring-shaped chamber 30 provided on the upper part of the outer cylinder 1. A plurality of distribution pipes branch from the ring-shaped chamber 30 and extend along the tapered wall surface of the oxygen gas chamber 20. It is arranged so that hydrogen gas flows.

【0017】シリカ質粉末供給管4は、水素ガスと同様
にリング状チャンバー40に接続されており、図2に示
すように分配管が4つに分岐して外筒1の外周円上に等
間隔で配置されているシリカ質粉末ノズル41に連結さ
れている。シリカ質粉末ノズル41の端部は、外筒1の
中間部に位置するように配置されている。
The siliceous powder supply pipe 4 is connected to a ring-shaped chamber 40 in the same manner as the hydrogen gas, and the distribution pipe is branched into four as shown in FIG. It is connected to a siliceous powder nozzle 41 arranged at intervals. The end of the siliceous powder nozzle 41 is disposed so as to be located in the middle of the outer cylinder 1.

【0018】最外周の酸素ガスノズル21とシリカ質粉
末ノズル41の間に、円環状の水素ガス案内板5が設け
てあり、水素ガス案内板5は、外筒1中心に向かって傾
斜している。
An annular hydrogen gas guide plate 5 is provided between the outermost oxygen gas nozzle 21 and the siliceous powder nozzle 41, and the hydrogen gas guide plate 5 is inclined toward the center of the outer cylinder 1. .

【0019】酸素ガスは、酸素ガス供給管2よりテーパ
ー状に拡径された酸素ガスチャンバー20に入り、流速
がスムースに低下するので内部のガス圧の変動が少なく
なり、続く同心円上に多重に配置された複数の酸素ガス
ノズル21から一定量を均等に放出することができる。
水素ガスは、水素ガス供給管3からチャンバー30に入
り、均等分岐されて酸素ガスチャンバー20のテーパー
壁面22に衝突し、壁面22に沿ってスムースに減速し
ながら外筒1外周方向に向かい、拡散されて外筒1開口
部より放出される。
The oxygen gas enters the oxygen gas chamber 20 whose diameter has been increased in a tapered manner from the oxygen gas supply pipe 2, and the flow velocity smoothly decreases, so that the internal gas pressure fluctuates less. A fixed amount can be uniformly discharged from the plurality of oxygen gas nozzles 21 arranged.
The hydrogen gas enters the chamber 30 from the hydrogen gas supply pipe 3, is equally branched and collides with the tapered wall surface 22 of the oxygen gas chamber 20, and moves toward the outer cylinder 1 outer peripheral direction while smoothly decelerating along the wall surface 22 to diffuse. And is released from the opening of the outer cylinder 1.

【0020】テーパー壁面22を流下する水素ガスの一
部は、水素ガス案内板5に衝突して案内板に沿うように
導かれ中心方向に偏向され、酸素ガスノズル21の間隙
に導かれ、間隙を図1に示すように外筒1の開口部に向
かって流れる。
A part of the hydrogen gas flowing down the tapered wall surface 22 collides with the hydrogen gas guide plate 5, is guided along the guide plate, is deflected toward the center, is guided to the gap of the oxygen gas nozzle 21, and As shown in FIG. 1, the fluid flows toward the opening of the outer cylinder 1.

【0021】原料のシリカ質粉末は、シリカ質粉末供給
管4を通ってリング状チャンバー40で外筒1の外周方
向に均等に分配され、シリカ質粉末供給ノズル41から
外筒1の高さの中央部付近に噴出され、外筒1の外周を
下方に向かって流れる水素ガス流に乗り、酸素ガスノズ
ルに向かう。シリカ質粉末供給ノズル41の先端は、外
側に向かって斜めに切断してあり、シリカ質粉末が外筒
1に沿って均一な状態で流れるようにしてある。
The raw material siliceous powder passes through the siliceous powder supply pipe 4 and is evenly distributed in the ring-shaped chamber 40 in the outer circumferential direction of the outer cylinder 1. Riding on the hydrogen gas flow which is ejected near the center and flows downward on the outer circumference of the outer cylinder 1, the hydrogen gas flows toward the oxygen gas nozzle. The tip of the siliceous powder supply nozzle 41 is cut obliquely outward, so that the siliceous powder flows uniformly along the outer cylinder 1.

【0022】酸素ガスノズル21の間隙に水素ガスの一
部を導入することにより、水素ガスが酸素ガスノズル2
1から放出された位置で混合され、バーナー外の至近距
離で酸水素火炎が形成される。また、外筒1外周部から
噴出される水素ガスは、酸素ガスと混合されて火炎が形
成されるので、外部混合方式と内部混合類似方式の組合
せとなって酸水素火炎幅が広がり、熱エネルギーの損失
を少なくし、加熱径が大きくなってバーナーの熱効率が
飛躍的に向上した。
By introducing a part of the hydrogen gas into the gap between the oxygen gas nozzles 21, the hydrogen gas is
The mixture is mixed at the position discharged from 1 and an oxyhydrogen flame is formed at a short distance outside the burner. Further, since the hydrogen gas ejected from the outer peripheral portion of the outer cylinder 1 is mixed with oxygen gas to form a flame, a combination of the external mixing method and the internal mixing method is used to increase the oxyhydrogen flame width, and the thermal energy is increased. The heat loss was reduced, the heating diameter was increased, and the thermal efficiency of the burner was dramatically improved.

【0023】実施例2 図4に示すように、基本的構造は実施例1と同じであ
る。水素ガス案内板5が外筒1の外周まで延びてシリカ
質粉末ノズル41と外筒1の間の外周空間へ水素ガスを
導いている。水素ガス案内板5には、孔50が設けてあ
り、この孔50を通ってシリカ質粉末ノズル41の先端
が水素ガス案内板5の下側に突出している。また、孔5
0はシリカ質粉末ノズル41より大きいので間隙があ
り、この間隙を通って外筒に流入した水素ガスが外筒1
外周に沿って開口部方向に流れていき、酸素ガスノズル
の包囲する流れを形成し、火炎を生成する。また、水素
ガス案内板5よって中央方向へ導かれた水素流は、酸素
ガスノズル21の間隙を通って外筒1開口に流れてい
き、酸素ガスノズル21から放出された酸素ガスとノズ
ルの直近で混合され、火炎を生成する。
Embodiment 2 As shown in FIG. 4, the basic structure is the same as that of Embodiment 1. The hydrogen gas guide plate 5 extends to the outer periphery of the outer cylinder 1 and guides hydrogen gas to the outer peripheral space between the siliceous powder nozzle 41 and the outer cylinder 1. A hole 50 is provided in the hydrogen gas guide plate 5, and the tip of the siliceous powder nozzle 41 protrudes below the hydrogen gas guide plate 5 through the hole 50. Hole 5
No. 0 has a gap because it is larger than the silica powder nozzle 41, and hydrogen gas flowing into the outer cylinder through this gap is
It flows along the outer periphery in the direction of the opening, and forms a flow surrounding the oxygen gas nozzle to generate a flame. Further, the hydrogen flow guided toward the center by the hydrogen gas guide plate 5 flows through the gap of the oxygen gas nozzle 21 to the opening of the outer cylinder 1 and mixes with the oxygen gas discharged from the oxygen gas nozzle 21 immediately near the nozzle. And produce a flame.

【0024】実施例3 図5及び図6は、酸素ガス供給管と水素ガス供給管を二
重構造としたものである。内側酸素ガス供給管23及び
外側酸素ガス供給管24の下端にはテーパー状に拡径し
た酸素ガスチャンバー25、26が各々設けてあり、実
施例1及び2と同様に流入してきた酸素ガスはスムース
に減速され、それらの下側に設けられた酸素ガスノズル
21より放出される。シリカ質粉末は、シリカ質粉末供
給管4よりリング状チャンバーを経て4箇所に分岐さ
れ、シリカ質粉末ノズル41より外筒1内に均等に拡散
放出される。
Embodiment 3 FIGS. 5 and 6 show an oxygen gas supply pipe and a hydrogen gas supply pipe having a double structure. At the lower ends of the inner oxygen gas supply pipe 23 and the outer oxygen gas supply pipe 24, oxygen gas chambers 25 and 26 having tapered diameters are provided, respectively. And is discharged from the oxygen gas nozzle 21 provided below them. The siliceous powder is branched into four portions from the siliceous powder supply pipe 4 via a ring-shaped chamber, and is uniformly diffused and discharged into the outer cylinder 1 from the siliceous powder nozzle 41.

【0025】水素ガスは、外側水素ガス供給管32より
外側酸素ガスチャンバー26のテーパー状の外壁に沿っ
て外筒1内に送られ、外筒1の外周においてシリカ質粉
末ノズル41から放出されたシリカ質粉末を水素ガス流
中に引き込み、粉末の分散・拡散性を助長させながら外
筒1開口部から放出される。また、水素ガスは、内外酸
素ガス供給管23、24の間に設けた内側水素ガス供給
管31から内側酸素ガスチャンバー25のテーパー状の
外壁に沿うように送られ、酸素ガスノズル21の空隙部
へ導入させられ、外筒1の開口部から放出される。
The hydrogen gas is sent from the outer hydrogen gas supply pipe 32 along the tapered outer wall of the outer oxygen gas chamber 26 into the outer cylinder 1, and is discharged from the siliceous powder nozzle 41 at the outer periphery of the outer cylinder 1. The siliceous powder is drawn into the hydrogen gas flow, and is discharged from the opening of the outer cylinder 1 while promoting the dispersion and diffusion of the powder. The hydrogen gas is sent from the inner hydrogen gas supply pipe 31 provided between the inner and outer oxygen gas supply pipes 23 and 24 along the tapered outer wall of the inner oxygen gas chamber 25, and is sent to the gap of the oxygen gas nozzle 21. It is introduced and released from the opening of the outer cylinder 1.

【0026】[0026]

【製造例】溶融石英ガラスインゴットの原料のシリカ質
粉末は、珪石、珪砂、水晶粉等を用いる。高純度品を製
造する場合は、α−クォーツ、または、クリストバライ
ト等の高純度の酸化ケイ素源の一種、または、これらの
混合物を使用する。例えば精製した高純度の水晶粉やシ
リコンアルコキシドを塩酸、あるいは、アンモニア触媒
下で加水分解して得たシリカを焼成したもの、アルカリ
金属ケイ酸水溶液と酸を反応させて得たシリカを精製し
て焼成したものなどである。
[Production Example] Silica powder, silica sand, quartz powder and the like are used as the silica powder as the raw material of the fused silica glass ingot. When producing a high-purity product, one kind of a high-purity silicon oxide source such as α-quartz or cristobalite, or a mixture thereof is used. For example, purified high-purity quartz powder or silicon alkoxide is hydrochloric acid, or calcined silica obtained by hydrolysis under an ammonia catalyst, and silica obtained by reacting an alkali metal silicic acid aqueous solution with an acid is purified. Such as fired.

【0027】酸水素火炎溶融法の場合、供給される酸水
素ガスの比を、化学量論的必要量より水素過剰とするこ
とが、生成した石英ガラスの保温効果をよくして溶けの
状態を向上させる上で好ましい。また、溶融雰囲気が還
元雰囲気となり、炉材等の酸化消耗による劣化等を防ぐ
効果がある。水素ガス/酸素ガスのモル比は2.1〜
2.5、より好ましくは2.2〜2.4とする。
In the case of the oxyhydrogen flame melting method, the ratio of the supplied oxyhydrogen gas is made to be an excess of hydrogen over the stoichiometrically required amount, so that the produced quartz glass has an improved heat retaining effect and the molten state is improved. It is preferable in order to improve. Further, the melting atmosphere becomes a reducing atmosphere, which has an effect of preventing deterioration and the like due to oxidative consumption of furnace materials and the like. Hydrogen gas / oxygen gas molar ratio is 2.1 to
2.5, more preferably 2.2 to 2.4.

【0028】製造例1 実施例1の石英ガラス製バーナーの酸素ガスノズル21
の径を6mmφとし、35本設けたものを用い、水晶粉
を原料として水素ガスと酸素ガスのモル比(H 2/O2
を2.3とし、バーナーで霧状に溶融された水晶粉を回
転するターゲット上に吹き付け、溶融堆積し、堆積部を
回転させた状態で定速で降下させ、480mmφ×90
0mmのコラム状の石英ガラスインゴットを得た。
Production Example 1 Oxygen gas nozzle 21 of the quartz glass burner of Example 1
With a diameter of 6 mmφ and 35
The molar ratio of hydrogen gas to oxygen gas (H Two/ OTwo)
Is 2.3, and the quartz powder melted in a mist
Spraying on a rotating target, melting and depositing
Lower at a constant speed while rotating, 480mmφ × 90
A 0 mm column-shaped quartz glass ingot was obtained.

【0029】製造例2 実施例2の石英ガラス製バーナーをメインバーナーとし
て用い、水素ガスと酸素ガスのモル比を2.2の酸水素
火炎で溶融された水晶粉を回転する容器の中へ堆積さ
せ、更に、水素ガスと酸素ガスのモル比を2.3とした
酸水素ガスのサブバーナーで加熱し、生成した石英ガラ
スを容器外周方向へ流動、伸展させて950mm×95
0mm×400mmの角板状の石英ガラスインゴット
(スラブ)を得た。
Production Example 2 The quartz glass burner of Example 2 was used as a main burner, and quartz powder melted by an oxyhydrogen flame having a molar ratio of hydrogen gas to oxygen gas of 2.2 was deposited in a rotating container. The quartz glass was heated with a sub-burner of oxyhydrogen gas having a molar ratio of hydrogen gas to oxygen gas of 2.3, and the generated quartz glass was flowed and extended in the outer peripheral direction of the container to 950 mm × 95.
A square plate-shaped quartz glass ingot (slab) of 0 mm × 400 mm was obtained.

【0030】製造例1、及び製造例2とも集合泡や、イ
ンゴット上部カップエリアが不透明になるクラウン泡の
発生はなく、検査の結果、脈理などの品質も通常品と同
等以上であり良好であった。また、燃焼効率が向上した
ので時間当たりの平均原料供給量を増大することがで
き、従来、スラブの製造では原料供給速度は、製造する
石英ガラスの用途や形状等に応じて1.0〜10Kg/
Hrであったが、この時間当たりの供給速度を品質の低
下を招くことなしに例えば通常2.0Kg/Hrのとこ
ろを4.0Kg/Hrと2倍にすることが可能となり、
生産効率良く大型の溶融石英ガラスインゴットを製造す
ることができた。
In both Production Example 1 and Production Example 2, there was no generation of aggregated foam or crown foam in which the upper cup area of the ingot became opaque. there were. In addition, since the combustion efficiency is improved, the average amount of raw material supplied per hour can be increased. Conventionally, in the production of slabs, the raw material supply rate is 1.0 to 10 kg depending on the use and shape of the quartz glass to be produced. /
Although it was Hr, it is possible to double the supply rate per hour, for example, from 2.0 kg / Hr to 4.0 kg / Hr without causing deterioration in quality,
A large fused silica glass ingot could be manufactured with good production efficiency.

【0031】[0031]

【発明の効果】シリカ質粉末供給ノズルを外筒と酸素ガ
スチャンバーの間に配置し、ノズル端部を外筒内に位置
させたことにより、原料のシリカ質粉末を外筒外周方向
から均等に拡散供給でき、また、水素ガスの一部を水素
ガス案内板で中央部に偏向させて酸素ガスノズルの間に
導き、酸素ガスに対して水素ガスをバランスよく均一に
供給できるようにしたので、加熱径の大きな安定した火
炎が得られ、シリカ質粉末と火炎を効率良く加熱反応さ
せることができ、泡の発生がなく、また、熱エネルギー
の損失を抑え大型の石英ガラスインゴットを生産効率良
く製造することが可能となった。
The siliceous powder supply nozzle is arranged between the outer cylinder and the oxygen gas chamber, and the end of the nozzle is located in the outer cylinder. It can be diffused and supplied, and a part of the hydrogen gas is deflected to the center by the hydrogen gas guide plate and guided between the oxygen gas nozzles, so that the hydrogen gas can be uniformly supplied to the oxygen gas in a well-balanced manner. A stable flame with a large diameter can be obtained, and the flame can be efficiently heated and reacted with the siliceous powder, there is no generation of bubbles, and the loss of heat energy is suppressed to produce a large quartz glass ingot with high production efficiency. It became possible.

【図面の簡単な説明】[Brief description of the drawings]

【図1】実施例1の正面断面図。FIG. 1 is a front sectional view of a first embodiment.

【図2】実施例1の平面図。FIG. 2 is a plan view of the first embodiment.

【図3】実施例1の下面図。FIG. 3 is a bottom view of the first embodiment.

【図4】実施例2の斜視図。FIG. 4 is a perspective view of a second embodiment.

【図5】実施例3の正面断面図。FIG. 5 is a front sectional view of a third embodiment.

【図6】実施例3の平面図。FIG. 6 is a plan view of a third embodiment.

【図7】従来の石英ガラスバーナーの正面断面図。FIG. 7 is a front sectional view of a conventional quartz glass burner.

【符号の説明】[Explanation of symbols]

1 外筒 2 酸素ガス供給管 3 水素ガス供給管 4 シリカ質粉末供給管 5 水素ガス案内板 30、40 リング状チャンバー 20 酸素ガスチャンバー 21 酸素ガスノズル 22 テーパー壁面 41 シリカ質粉末ノズル Reference Signs List 1 outer cylinder 2 oxygen gas supply pipe 3 hydrogen gas supply pipe 4 siliceous powder supply pipe 5 hydrogen gas guide plate 30, 40 ring-shaped chamber 20 oxygen gas chamber 21 oxygen gas nozzle 22 tapered wall surface 41 siliceous powder nozzle

Claims (6)

【特許請求の範囲】[Claims] 【請求項1】外筒、外筒中心部に設けられ酸素供給管に
連結されたテーパー状に拡径された酸素ガスチャンバ
ー、酸素ガスチャンバー端部に設けられた複数の酸素ガ
スノズル、外筒と酸素ガスチャンバーの間に配置され、
端部が外筒内に位置するシリカ質粉末供給ノズル、及び
酸素ガスチャンバー外壁に沿って水素ガスを供給するよ
うに連結された水素ガス供給管からなる石英ガラス製の
溶融石英ガラス製造用バーナー。
1. An outer cylinder, a tapered oxygen gas chamber provided at the center of the outer cylinder and connected to an oxygen supply pipe, a plurality of oxygen gas nozzles provided at an end of the oxygen gas chamber, and an outer cylinder. Placed between oxygen gas chambers,
A fused silica glass manufacturing burner comprising a silica glass powder supply nozzle having an end located in an outer cylinder and a hydrogen gas supply pipe connected to supply hydrogen gas along an outer wall of an oxygen gas chamber.
【請求項2】請求項1において、シリカ質粉末供給ノズ
ルが、円周上に均等間隔で設けられている溶融石英ガラ
ス製造用バーナー。
2. The burner for producing fused silica glass according to claim 1, wherein the siliceous powder supply nozzles are provided at equal intervals on the circumference.
【請求項3】請求項1または2のいずれかにおいて、酸
素ガスノズルが、同心円上に多重に配置されており、か
つ、水素ガスの一部が酸素ガスノズルの間隙に導入され
る溶融石英ガラス製造用バーナー。
3. The method according to claim 1, wherein the oxygen gas nozzles are arranged in multiple concentric circles, and a part of the hydrogen gas is introduced into the gap between the oxygen gas nozzles. burner.
【請求項4】請求項3において、水素ガス案内板によっ
て水素ガスの一部をバーナー中央部に偏向させるように
した溶融石英ガラス製造用バーナー。
4. A burner for producing fused silica glass according to claim 3, wherein a part of the hydrogen gas is deflected to the center of the burner by the hydrogen gas guide plate.
【請求項5】請求項3において、酸素ガス供給管が二重
管構造であり、二重管構造の酸素ガス管路の間に水素ガ
ス供給管を設けた溶融石英ガラス製造用バーナー。
5. The burner for producing fused silica glass according to claim 3, wherein the oxygen gas supply pipe has a double pipe structure, and a hydrogen gas supply pipe is provided between oxygen gas pipes of the double pipe structure.
【請求項6】請求項1〜5のいずれかにおいて、水素ガ
ス供給管は、リング状チャンバーに連結され、リング状
チャンバーから複数の分配管が水素ガスを酸素ガスチャ
ンバー外壁に沿うように外筒内へ導入させる溶融石英ガ
ラス製造用バーナー。
6. The hydrogen gas supply pipe according to any one of claims 1 to 5, wherein the hydrogen gas supply pipe is connected to a ring-shaped chamber, and a plurality of distribution pipes from the ring-shaped chamber supply hydrogen gas along an outer wall of the oxygen gas chamber. Burner for producing fused silica glass to be introduced into the interior.
JP2000195042A 2000-06-28 2000-06-28 Burner for manufacturing fused silica glass Expired - Lifetime JP4388206B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2000195042A JP4388206B2 (en) 2000-06-28 2000-06-28 Burner for manufacturing fused silica glass

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2000195042A JP4388206B2 (en) 2000-06-28 2000-06-28 Burner for manufacturing fused silica glass

Publications (2)

Publication Number Publication Date
JP2002020132A true JP2002020132A (en) 2002-01-23
JP4388206B2 JP4388206B2 (en) 2009-12-24

Family

ID=18693782

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000195042A Expired - Lifetime JP4388206B2 (en) 2000-06-28 2000-06-28 Burner for manufacturing fused silica glass

Country Status (1)

Country Link
JP (1) JP4388206B2 (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2004083139A1 (en) * 2003-03-19 2004-09-30 Sumitomo Electric Industries Ltd. Method for producing glass material
KR100832906B1 (en) 2007-06-04 2008-05-28 (주) 디에스테크노 Silicon powder feeding apparatus and feeding method using thereof
EP2006256A1 (en) * 2006-02-28 2008-12-24 Shin-Etsu Chemical Company, Ltd. Quartz glass made burner
CN102022732A (en) * 2010-12-11 2011-04-20 巨石集团有限公司 Burner for heating glass metal
JP2013112540A (en) * 2011-11-25 2013-06-10 Tosoh Quartz Corp Method and apparatus for manufacturing quartz glass cylinder material
KR101479539B1 (en) * 2013-05-06 2015-01-07 (주) 디에스테크노 Burner for manufacturing quartz glass ingot
CN113354263A (en) * 2021-07-03 2021-09-07 四川神光石英科技有限公司 Method and equipment for producing synthetic quartz glass

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2004083139A1 (en) * 2003-03-19 2004-09-30 Sumitomo Electric Industries Ltd. Method for producing glass material
EP2006256A1 (en) * 2006-02-28 2008-12-24 Shin-Etsu Chemical Company, Ltd. Quartz glass made burner
EP2006256A4 (en) * 2006-02-28 2012-07-11 Shinetsu Chemical Co Quartz glass made burner
KR100832906B1 (en) 2007-06-04 2008-05-28 (주) 디에스테크노 Silicon powder feeding apparatus and feeding method using thereof
CN102022732A (en) * 2010-12-11 2011-04-20 巨石集团有限公司 Burner for heating glass metal
JP2013112540A (en) * 2011-11-25 2013-06-10 Tosoh Quartz Corp Method and apparatus for manufacturing quartz glass cylinder material
KR101479539B1 (en) * 2013-05-06 2015-01-07 (주) 디에스테크노 Burner for manufacturing quartz glass ingot
CN113354263A (en) * 2021-07-03 2021-09-07 四川神光石英科技有限公司 Method and equipment for producing synthetic quartz glass

Also Published As

Publication number Publication date
JP4388206B2 (en) 2009-12-24

Similar Documents

Publication Publication Date Title
JP3997361B2 (en) Equipment suitable for the production method of quartz glass blanks
US7305852B2 (en) Method for manufacturing quartz glass ingot
JP4646401B2 (en) Roof-mounted oxygen burner of glass melting furnace and method of using oxygen burner
EP2583952B1 (en) Method and burner for producing a porous glass preform
GB2368387A (en) Burner for glass particle synthesis having a port with an extended outer wall
JP4388206B2 (en) Burner for manufacturing fused silica glass
US8567218B2 (en) Burner for chemical vapour deposition of glass
US5516281A (en) Multiple jet burner
JP2006182624A (en) Method for manufacturing glass rod-like body
JP2004331440A (en) Manufacturing method of porous glass particulate-deposited body and burner for glass synthesis used for the same
US8336337B2 (en) Method and device for producing a blank mold from synthetic quartz glass by using a plasma-assisted deposition method
US20060130531A1 (en) Deposition burner for optical fiber preform
JP3264227B2 (en) Manufacturing method of preform for optical fiber
EP2573054B1 (en) Method for manufacturing an optical fiber preform by flame hydrolysis
JPH09100133A (en) Production of porous glass preform for optical fiber
JP2012041231A (en) Synthetic silica glass manufacturing apparatus
JP4861939B2 (en) Synthetic silica glass production apparatus and synthetic silica glass production method using the same
JPH07138028A (en) Production of synthetic quartz glass member and burner for producing synthetic quartz glass
JP2002097031A (en) Method and unit for producing long quartz glass
JP2010064934A (en) Burner for producing synthetic silica glass, and apparatus for producing synthetic silica glass using the burner
CN1186927A (en) Combustion process and apparatus therefore containing separate injection of fuel and oxidant streams
JPH09188522A (en) Torch for synthesizing glass fine particle
CN209481467U (en) A kind of synthetic quartz glass production Seedling height speed burner
JP2009215086A (en) Manufacturing apparatus of synthetic silica glass and manufacturing process of synthetic silica glass using the apparatus
JPS6144728A (en) Burner for producing parent material for optical fiber

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070501

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20090826

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20090915

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20091002

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

Ref document number: 4388206

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121009

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121009

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131009

Year of fee payment: 4

EXPY Cancellation because of completion of term