JP2002018478A - Method for treating yeast waste liquid - Google Patents

Method for treating yeast waste liquid

Info

Publication number
JP2002018478A
JP2002018478A JP2000202855A JP2000202855A JP2002018478A JP 2002018478 A JP2002018478 A JP 2002018478A JP 2000202855 A JP2000202855 A JP 2000202855A JP 2000202855 A JP2000202855 A JP 2000202855A JP 2002018478 A JP2002018478 A JP 2002018478A
Authority
JP
Japan
Prior art keywords
treatment
waste liquid
methane fermentation
day
temperature
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2000202855A
Other languages
Japanese (ja)
Inventor
Kenji Kida
建次 木田
Shigeru Morimura
茂 森村
Shinobu Kuwae
忍 桑江
Kaoru Kobayashi
薫 小林
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Pharma Corp
Original Assignee
Mitsubishi Pharma Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Pharma Corp filed Critical Mitsubishi Pharma Corp
Priority to JP2000202855A priority Critical patent/JP2002018478A/en
Publication of JP2002018478A publication Critical patent/JP2002018478A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E50/00Technologies for the production of fuel of non-fossil origin
    • Y02E50/30Fuel from waste, e.g. synthetic alcohol or diesel

Landscapes

  • Removal Of Specific Substances (AREA)
  • Purification Treatments By Anaerobic Or Anaerobic And Aerobic Bacteria Or Animals (AREA)
  • Treatment Of Water By Oxidation Or Reduction (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a method for treating more efficiently and in more higher grade yeast waste liquid by further improving and developing a double phase type methane fermentation treatment which is traditionally known. SOLUTION: In a method wherein yeast waste liquid is treated by a double phase type methane fermentation treatment containing liquefaction treatment and gasification treatment, oxidization treatment is carried out before the double phase type methane fermentation treatment.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、酵母菌体を含む廃
液(以下「酵母廃液」という)の処理方法に関する。
TECHNICAL FIELD The present invention relates to a method for treating a waste liquid containing yeast cells (hereinafter referred to as "yeast waste liquid").

【0002】[0002]

【従来の技術】酵母菌体は、ビール、日本酒、焼酎、ウ
イスキー、ワイン、工業用エタノールなどの醸造の際、
または酵母を宿主とした組換え蛋白質を生産する際に副
産物として得られる。酵母菌体の一部は、医薬品、食
品、飼料などの原料として利用されるがその量は限られ
ており、余剰の酵母菌体は廃棄処分されている。廃棄処
分の方法としては、海洋などへの投棄や焼却処理などが
行われている。しかし、環境汚染、処理コストの高騰な
どの問題から、より経済的かつ効率的な処理方法の探索
が待たれている。
2. Description of the Related Art Yeast cells are used for brewing beer, sake, shochu, whiskey, wine, and industrial ethanol.
Alternatively, it is obtained as a by-product when producing a recombinant protein using yeast as a host. Some yeast cells are used as raw materials for pharmaceuticals, foods, feeds and the like, but the amount is limited, and excess yeast cells are discarded. Disposal methods include dumping into the ocean and incineration. However, due to problems such as environmental pollution and soaring treatment costs, search for more economical and efficient treatment methods has been awaited.

【0003】酵母廃液の処理方法として、二相式メタン
発酵法を用いる方法(特開平7−241593号公
報)、固定床型リアクターを用いて液化処理を行う方法
(特開平9−150187号公報)などが公表されてい
る。
As a method for treating yeast waste liquid, a method using a two-phase methane fermentation method (JP-A-7-241593) and a method of liquefaction using a fixed-bed reactor (JP-A-9-150187). Etc. have been published.

【0004】[0004]

【発明が解決しようとする課題】本発明の目的は、従来
より知られている二相式メタン発酵法をさらに改善・発
展させて、より効率的かつ高度に酵母廃液を処理する方
法を提供することにある。
SUMMARY OF THE INVENTION An object of the present invention is to provide a method for treating a yeast waste liquid more efficiently and highly by further improving and developing a conventionally known two-phase methane fermentation method. It is in.

【0005】[0005]

【課題を解決するための手段】本発明者らは上記の事情
を考慮してさらに研究を行った結果、二相式メタン発酵
の前処理として酸化処理を導入することにより、有機物
容積負荷をより高く設定することが可能となった。ま
た、必要に応じて、前処理として脱アミノ化処理を導入
することにより、当該機能はさらに改善された。さら
に、二相式メタン発酵の後処理としてリン除去処理およ
び/または生物学的脱窒・硝化処理を導入することによ
り、高度な処理が可能となった。最終的には、従来の方
法よりも効率的かつ高度に酵母廃液を処理できることを
見出して、本発明を完成した。
Means for Solving the Problems As a result of further studies in consideration of the above circumstances, the present inventors have found that by introducing an oxidation treatment as a pretreatment for two-phase methane fermentation, the organic substance volume load can be further reduced. It became possible to set higher. Further, if necessary, the function was further improved by introducing a deamination treatment as a pretreatment. Furthermore, by introducing a phosphorus removal treatment and / or a biological denitrification / nitrification treatment as a post-treatment of the two-phase methane fermentation, advanced treatment became possible. Finally, the present inventors have found that the yeast waste liquid can be treated more efficiently and more highly than the conventional method, and completed the present invention.

【0006】すなわち、本発明は、1)酵母廃液を液化
処理およびガス化処理を含む二相式メタン発酵法により
処理する方法において、二相式メタン発酵処理の前に酸
化処理を行う当該処理方法、2)前記の処理方法におい
て、二相式メタン発酵処理の前にさらに脱アミノ化処理
を行う当該処理方法、3)前記の処理方法において、二
相式メタン発酵処理の後にリン除去処理および/または
生物学的脱窒・硝化処理を行う当該処理方法、に関する
ものである。以下に詳細を説明する。
That is, the present invention provides 1) a method for treating a yeast waste liquid by a two-phase methane fermentation method including liquefaction treatment and gasification treatment, wherein the oxidation treatment is performed before the two-phase methane fermentation treatment. 2) In the above treatment method, the deamination treatment is further performed before the two-phase methane fermentation treatment. 3) In the treatment method, the phosphorus removal treatment and / or Or a biological denitrification / nitrification treatment method. The details will be described below.

【0007】[0007]

【発明の実施の態様】本明細書において用いられる略語
の定義は以下の通りである。 TVS(Total Volatile Soli
d):総揮発性物質 SS(Suspended Solid):浮遊物質 VSS(Volatile Suspended So
lid):揮発性浮遊物質 MLVSS(Mixed Liquid Volati
le Suspended Solid):混合液揮発
性浮遊物質 TOC(Total Organic Carbo
n):溶解性の全有機炭素 IC(Inorganic Carbon) VFA(Volatile Fatty Acid):
揮発性有機酸 TS(Total Solid)
DESCRIPTION OF THE PREFERRED EMBODIMENTS The definitions of the abbreviations used in this specification are as follows. TVS (Total Volatile Soli)
d): Total volatile substance SS (Suspended Solid): Suspended substance VSS (Volatile Suspended So)
lid): Volatile floating substance MLVSS (Mixed Liquid Volati)
le Suspended Solid: Volatile suspended solids in the mixture TOC (Total Organic Carbo)
n): Soluble total organic carbon IC (Inorganic Carbon) VFA (Volatile Fatty Acid):
Volatile organic acids TS (Total Solid)

【0008】A.酵母廃液 本発明において処理され得る酵母菌体の種類は、特に限
定されず、既に公知文献記載のものの他、今後開発され
る組換え体などにも適宜利用することができる。具体的
には、サッカロマイセス属、ピキア属、シゾサッカロマ
イセス属、クルイベロマイセス属、カンジダ属、ハンゼ
ヌラ属などが挙げられる。特に、本発明においては、G
418感受性株であるサッカロマイセス・セレビシエ
(Saccharomyces cerevisia
e)AH22株(a、his4、leu2、can
1)、ピキア・パストリス(Pichia pasto
ris)GTS115株(his4)などを宿主とした
組換え体(形質転換体)が好適に利用される。
A. Yeast waste liquid The kind of yeast cells that can be treated in the present invention is not particularly limited, and can be appropriately used for recombinants to be developed in the future, in addition to those already described in known documents. Specific examples include the genera Saccharomyces, Pichia, Schizosaccharomyces, Kluyveromyces, Candida and Hansenula. In particular, in the present invention, G
418-sensitive strain Saccharomyces cerevisiae
e) AH22 strain (a, his4, leu2, can)
1), Pichia pasto (Pichia pasto)
ris) A recombinant (transformant) using GTS115 strain (his4) or the like as a host is preferably used.

【0009】これらの酵母菌体は、生菌の状態か、また
は既に公知の方法もしくはそれに準じた方法で殺菌処理
された後、水または適当な水溶液に懸濁されて下記の方
法により処理される。
[0009] These yeast cells are in the state of viable cells, or after being sterilized by a known method or a method analogous thereto, suspended in water or an appropriate aqueous solution, and treated by the following method. .

【0010】B.酸化処理 酸化処理は酸化により廃液中に固形分として含まれてい
る酵母のメタン発酵での消化率(特にVSS消化率)を
上げるために行われる。酸化の様式としては、オゾン酸
化、フェントン酸化などが挙げられる。
B. Oxidation Treatment Oxidation treatment is performed to increase the digestibility (particularly VSS digestibility) of yeast contained as a solid content in the waste liquid by oxidation in methane fermentation. Oxidation modes include ozone oxidation and Fenton oxidation.

【0011】オゾン酸化はオゾンの酸化力を利用するも
のである。処理条件としては、オゾンの添加量は処理溶
液1L当たり1〜100mg、処理時間は20〜180
分間、Fe2+濃度は0.01〜1g/L、温度は15〜
100℃程度が各々例示される。
Ozone oxidation utilizes the oxidizing power of ozone. As the processing conditions, the amount of ozone added is 1 to 100 mg per liter of the processing solution, and the processing time is 20 to 180.
Min, the Fe 2+ concentration is 0.01 to 1 g / L, and the temperature is 15 to
About 100 ° C. is exemplified.

【0012】フェントン酸化はFe2+と過酸化水素を酸
性pH条件下で反応することにより生じるヒドロキシラ
ジカルの強力な酸化力を利用するものである。処理条件
としては、Fe2+濃度は0.025〜0.5g/L、温
度は50〜105℃、処理時間は30分〜2時間、過酸
化水素濃度は1〜50g/L、pHは3〜7.5、好ま
しくは3〜4.5程度が例示される。
Fenton oxidation utilizes the strong oxidizing power of hydroxyl radicals generated by reacting Fe 2+ with hydrogen peroxide under acidic pH conditions. The treatment conditions were as follows: Fe 2+ concentration: 0.025 to 0.5 g / L; temperature: 50 to 105 ° C .; treatment time: 30 minutes to 2 hours; hydrogen peroxide concentration: 1 to 50 g / L; To 7.5, preferably about 3 to 4.5.

【0013】C.二相式メタン発酵(液化処理・ガス化
処理) 二相式メタン発酵法は、液化処理とガス化処理とを含む
ものであり、公知の手法が利用できる。上述の特開平7
−241593号公報、同9−150187号公報を参
照のこと。好ましくは、液化処理は高温(50〜60℃
程度)、ガス化処理は中温(30〜40℃程度)で行
う。ガス化処理は液化処理水を2〜10倍程度に希釈し
て行うことが好ましい。また、両処理とも固定床型リア
クター(UAFP)を用いることがより好ましい。
C. Two-phase methane fermentation (liquefaction treatment / gasification treatment) The two-phase methane fermentation method includes liquefaction treatment and gasification treatment, and a known method can be used. JP-A-7
See JP-A-241593 and JP-A-9-150187. Preferably, the liquefaction treatment is at a high temperature (50-60 ° C).
Degree), and gasification is performed at a medium temperature (about 30 to 40 ° C.). The gasification treatment is preferably performed by diluting the liquefied treatment water to about 2 to 10 times. It is more preferable to use a fixed bed reactor (UAFP) for both processes.

【0014】D.その他の廃液の処理方法 酵母廃液の処理方法は、二相式メタン発酵の前処理とし
て、上記の酸化処理の他に、脱アミノ化処理などが例示
される。これらの処理は、二相式メタン発酵処理時の有
機物容積負荷をより高く設定できるという長所があるた
めに前処理として有用である。また、二相式メタン発酵
の後処理としてリン除去処理、生物学的脱窒・硝化処理
などが例示される。
D. Other Waste Liquid Treatment Methods As a pretreatment for two-phase methane fermentation, examples of the method for treating yeast waste liquid include deamination treatment and the like in addition to the above oxidation treatment. These treatments are useful as pretreatments because they have the advantage that the organic substance volume load during the two-phase methane fermentation treatment can be set higher. Examples of the post-treatment of the two-phase methane fermentation include a phosphorus removal treatment and a biological denitrification / nitrification treatment.

【0015】a.脱アミノ化処理 脱アミノ化は廃液中にチオウレア様物質が含まれる場合
に、当該物質を無毒化するために行われる。具体的には
亜硝酸処理により、廃液中に存在するチオウレア様物質
の1級アミンを脱アミノ化する。処理条件としては、p
Hは2.5〜4、好ましくは2.7〜3程度が挙げられ
る。pH条件は一定に保つことがより好ましい。また、
NO2 -濃度はチオウレア様物質1モルに対して、0.5
〜5モル、温度は15〜40℃、処理時間は5〜60分
間、好ましくは20〜60分間程度が各々例示される。
A. Deamination treatment Deamination is performed to detoxify a thiourea-like substance when the waste liquid contains the substance. Specifically, the primary amine of the thiourea-like substance present in the waste liquid is deaminated by nitrous acid treatment. Processing conditions include p
H is about 2.5 to 4, preferably about 2.7 to 3. More preferably, the pH conditions are kept constant. Also,
The NO 2 - concentration was 0.5 to 1 mole of the thiourea-like substance.
55 mol, the temperature is 154040 ° C., and the treatment time is 55〜60 minutes, preferably about 20〜60 minutes.

【0016】b.リン除去処理 本処理は廃液中のリン分、特にリン酸イオン(P
4 3-)を除去するものである。具体的には、Mg2+
添加により、廃液中のPO4 3-をNH4MgPO4(MA
P)として沈殿形成させて除去する。その処理条件とし
ては、pHは8.3〜9.2、Mg2+濃度はPO4 3-
モルに対して1〜2モル、温度は15〜30℃、処理時
間は10分〜2時間程度が例示される。本処理に先立っ
てIC除去、あるいは脱炭酸のために曝気しておくこと
が好ましい。
B. Phosphorus removal treatment This treatment involves phosphorus content in waste liquid, especially phosphate ions (P
O 4 3- ) is removed. Specifically, by adding Mg 2+ , PO 4 3- in the waste liquid is converted into NH 4 MgPO 4 (MA
P) is removed by precipitation. As the processing conditions, pH is from 8.3 to 9.2, Mg 2+ concentration PO 4 3- 1
The temperature is 15 to 30 ° C., and the treatment time is about 10 minutes to 2 hours. Prior to this treatment, it is preferable to perform aeration for IC removal or decarboxylation.

【0017】c.脱窒処理 本処理は廃液中のNO3 -およびNO2 -を除去するもので
ある。具体的には生物学的脱窒処理により行う。ガス化
処理水を2〜10倍程度希釈したものを用いることが例
示される。pHは6〜9、好ましくは、7.4〜8.2
程度、処理温度は30〜40℃程度が例示される。
C. Denitrified this process NO 3 in the effluent - it is to remove - and NO 2. Specifically, it is performed by a biological denitrification treatment. The use of water obtained by diluting gasification-treated water by about 2 to 10 times is exemplified. pH is 6-9, preferably 7.4-8.2.
And the processing temperature is about 30 to 40 ° C.

【0018】d.硝化処理 本処理は廃液中の窒素分、特にNH4 +を除去し、NO3 -
を生成するものである。具体的には生物学的硝化処理
(主に硝化菌の作用による)により行う。ガス化処理水
を2〜10倍程度希釈したものを用いることが例示され
る。pHは6〜9、好ましくは7.4〜8.2程度、処
理温度は30〜40℃程度が例示される。
D. Nitrification treatment This treatment nitrogen content in the effluent, in particular removing the NH 4 +, NO 3 -
Is generated. Specifically, it is performed by a biological nitrification treatment (mainly by the action of nitrifying bacteria). The use of water obtained by diluting gasification-treated water by about 2 to 10 times is exemplified. The pH is, for example, about 6 to 9, preferably about 7.4 to 8.2, and the treatment temperature is about 30 to 40 ° C.

【0019】[0019]

【実施例】本発明をより詳細に説明するために、実施例
および実験例を挙げるが、本発明はこれらにより何ら限
定されるものではない。
EXAMPLES The present invention will be described in more detail with reference to Examples and Experimental Examples, but the present invention is not limited thereto.

【0020】参考例 ピキア・パストリス(Pichia pastori
s)GTS115株にヒト血清アルブミン(HSA)発
現用プラスミドpMM042を導入し、形質転換体UH
G42−3株を得た。特開平4−299984号公報を
参照のこと。
Reference Example Pichia pastoris (Pichia pastori)
s) The plasmid pMM042 for human serum albumin (HSA) expression was introduced into the GTS115 strain, and the transformant UH
G42-3 strain was obtained. See JP-A-4-299984.

【0021】当該形質転換体を通気攪拌培養し、培養終
了後に培養液1m3(菌体として乾燥重量で100k
g)を68℃で30分間熱処理した後に蒸留水で2倍に
希釈し、酢酸10Lを添加した。ストリームラインカラ
ムを用いてHSAを回収する際のパス画分(酵母菌体を
含む)2m3に、50mM塩化ナトリウムを含有する5
0mM酢酸緩衝液(pH4.5)1.5m3によりカラ
ムを洗浄した液を合せて酵母廃液として以下の実施例お
よび実験例に供した。ストリームラインを用いたHSA
の精製については特開平8−116985号公報を参照
のこと。
The transformant is cultured under aeration and agitation, and after completion of the culture, 1 m 3 of a culture solution (100 k dry weight as cells)
g) was heat-treated at 68 ° C. for 30 minutes, diluted twice with distilled water, and 10 L of acetic acid was added. 5 m2 containing 50 mM sodium chloride in 2 m 3 of the pass fraction (including yeast cells) when recovering HSA using a stream line column
The solutions obtained by washing the column with 1.5 mM 3 of 0 mM acetate buffer (pH 4.5) were combined and used as yeast waste liquid in the following Examples and Experimental Examples. HSA using stream line
See JP-A-8-116985 for the purification of.

【0022】得られた酵母廃液の組成を表1に示す。The composition of the obtained yeast waste liquid is shown in Table 1.

【0023】[0023]

【表1】 [Table 1]

【0024】実施例1 酵母廃液のpHを3に調整し、NO2 -濃度を廃液中のチ
オウレア様物質に対してモル比で1:1.5となるよう
に亜硝酸ナトリウムを添加し、30分間反応させた。こ
の脱アミノ化処理後に、固定床型リアクター(UAF
P)を用いて液化処理およびガス化処理(メタン生成反
応)を行った。
Example 1 The pH of a yeast waste solution was adjusted to 3, and sodium nitrite was added so that the NO 2 - concentration was 1: 1.5 in molar ratio with respect to the thiourea-like substance in the waste solution. Allowed to react for minutes. After this deamination treatment, the fixed bed reactor (UAF)
Liquefaction treatment and gasification treatment (methane production reaction) were performed using P).

【0025】液化処理:高温消化シード(嫌気性植種汚
泥)としては有機物容積負荷3g/L/日、54℃の条
件下で、下水混合汚泥を用いてdraw−and−fi
ll方式により馴養したものを用いた。
Liquefaction treatment: As a high-temperature digestive seed (anaerobic planting sludge), draw-and-fi using sewage mixed sludge under the conditions of an organic substance volume load of 3 g / L / day and 54 ° C.
The one that had been acclimated by the ll method was used.

【0026】0.78L容の固定床型リアクター(UA
FP)に、馴養した高温消化シードをMLVSSで10
g/Lとなるように投入した。なお、固定床型リアクタ
ーに充填した担体は、リアポア(粘土を焼いて粉砕した
もの)と粉砕した高密度ポリエチレンとを45:55に
混合し、100〜230℃でハニカム構造に焼成したも
のである。当該担体は、親水的な性質を(リアポア)と
疎水的な性質(高密度ポリエチレン)とを併せ持ち、ま
た、非常にポーラスであり、細孔分布は1〜2mmの細
孔が20%、0.1〜0.35mmの細孔が60%、
0.1μm〜0.1mmの細孔が20%である。
A 0.78 L fixed bed reactor (UA)
FP), acclimated high-temperature digested seeds with MLVSS for 10
g / L. The carrier filled in the fixed-bed reactor was prepared by mixing rear pores (obtained by burning clay and pulverized) and pulverized high-density polyethylene at a ratio of 45:55, and firing the mixture at 100 to 230 ° C. to form a honeycomb structure. . The carrier has both a hydrophilic property (rear pore) and a hydrophobic property (high-density polyethylene), is very porous, and has a pore distribution of 20% of pores having a diameter of 1 to 2 mm and a pore distribution of 0.2%. 60% of 1-0.35mm pores,
The pores of 0.1 μm to 0.1 mm are 20%.

【0027】槽内液は循環ポンプを用いて10.5cm
/分で循環した。酵母廃液は供給ポンプにより連続的に
供給した。高温消化シードを0.8L添加し、ローラー
ポンプで槽内液を一晩循環した。処理温度は54℃、有
機物容積負荷1g/L/日で8日間、次いで1.5g/
L/日で17日間液化処理を行った。
The liquid in the tank is 10.5 cm using a circulation pump.
/ Min circulation. The yeast waste liquid was continuously supplied by a supply pump. 0.8 L of the high-temperature digestive seed was added, and the solution in the tank was circulated overnight with a roller pump. The treatment temperature was 54 ° C., the organic substance volume load was 1 g / L / day for 8 days, and then 1.5 g / L
Liquefaction treatment was performed for 17 days at L / day.

【0028】ガス化処理:中温消化シード(嫌気性植種
汚泥)としては有機物容積負荷1g/L/日、37℃の
条件下で、下水混合汚泥を用いてdraw−and−f
ill方式により馴養したものを用いた。
Gasification treatment: Medium-temperature digested seeds (anaerobic planting sludge) are drawn-and-f using sewage mixed sludge under the conditions of an organic substance volume load of 1 g / L / day and 37 ° C.
The one acclimated by the ill system was used.

【0029】反応リアクターは液化処理と同じものを用
いた。槽内温度は約37℃に維持した。このリアクター
に中温消化シードを0.8L添加し、馴養期間中はグル
コース合成廃水を200mL/日(有機物容積負荷とし
て0.5g/L/日)で供給した。その後に液化処理水
を5倍希釈したものを、有機物容積負荷として1g/L
/日(22日間)→2g/L/日(18日間)→4g/
L/日(18日間)→6g/L/日(35日間)→8g
/L/日(15日間)まで段階的に上げていった。
The same reactor as used in the liquefaction treatment was used. The temperature in the tank was maintained at about 37 ° C. 0.8 L of medium-temperature digestive seeds were added to this reactor, and during the acclimation period, glucose synthesis wastewater was supplied at 200 mL / day (0.5 g / L / day as an organic substance volume load). After that, the liquefied water was diluted 5 times, and the volume of the organic substance was reduced to 1 g / L.
/ Day (22 days) → 2g / L / day (18 days) → 4g /
L / day (18 days) → 6g / L / day (35 days) → 8g
/ L / day (15 days).

【0030】その結果、液化処理では有機物容積負荷
1.5g/L/日で70〜80%のVSS消化率が得ら
れた。また、当該処理水のガス化処理ではTOC容積負
荷4g/L/日においてもTOC除去率70%と良好な
処理結果を示した。
As a result, in the liquefaction treatment, a VSS digestibility of 70 to 80% was obtained at an organic substance volume load of 1.5 g / L / day. In addition, the gasification treatment of the treated water showed a good treatment result with a TOC removal rate of 70% even at a TOC volume load of 4 g / L / day.

【0031】実施例2 酵母廃液に対して、初発pH3、Fe2+無添加(ただ
し、廃液中にはFe2+が0.05〜0.1g/L濃度で
存在する。以下同様)、過酸化水素濃度5g/L、10
5℃、1時間の条件で、フェントン酸化処理を行った。
その後は実施例1に準じて、脱アミノ化処理およびメタ
ン発酵法を実施した。メタン発酵処理時の有機物容積負
荷は1.5g/L/日で18日→2g/L/日で20日
→3g/L/日で40日に設定した。その結果、有機物
容積負荷2g/L/日においても液化処理でのVSS消
化率は57%、廃酵母に対するVSS消化率は74%で
あった。
Example 2 Initial pH 3 and no addition of Fe 2+ to the yeast waste liquid (Fe 2+ is present in the waste liquid at a concentration of 0.05 to 0.1 g / L; the same applies hereinafter). Hydrogen oxide concentration 5 g / L, 10
The Fenton oxidation treatment was performed at 5 ° C. for 1 hour.
Thereafter, a deamination treatment and a methane fermentation method were carried out according to Example 1. The organic substance volume load during the methane fermentation treatment was set at 18 days at 1.5 g / L / day → 20 days at 2 g / L / day → 40 days at 3 g / L / day. As a result, even at an organic substance volume load of 2 g / L / day, the VSS digestibility in the liquefaction treatment was 57%, and the VSS digestibility for waste yeast was 74%.

【0032】実施例3 処理時間として2時間でフェントン酸化処理を行い、有
機物容積負荷を5g/L/日で液化処理を行う以外は実
施例2に準じて行った。
Example 3 The procedure of Example 2 was repeated except that the Fenton oxidation treatment was performed for 2 hours as the treatment time, and the liquefaction treatment was performed at an organic substance volume load of 5 g / L / day.

【0033】実施例4 実施例2の方法に準じて、得られたガス化処理水を6時
間曝気してICを除去した。曝気によりガス化処理水の
pHは8.3→9.1に上昇した。次いで、10600
×g、10分間で遠心分離を行い、得られた上澄液に2
0%塩化マグネシウム溶液をMg2+:PO4 3-モル比で
1.5:1となるように添加し、攪拌しながら室温で1
時間反応させることによりMAP法を実施した。反応終
了後に遠心分離して生成したNH4MgPO4を分離し
た。
Example 4 According to the method of Example 2, the obtained gasified water was aerated for 6 hours to remove IC. The pH of the gasified water increased from 8.3 to 9.1 due to the aeration. Then 10600
× g, centrifugation was performed for 10 minutes, and 2
A 0% magnesium chloride solution was added at a molar ratio of Mg 2+ : PO 4 3- of 1.5: 1, and stirred at room temperature for 1: 1.
The MAP method was performed by reacting for hours. After the reaction was completed, NH 4 MgPO 4 produced by centrifugation was separated.

【0034】実施例5 実施例2の方法に準じて、得られたガス化処理水の4倍
希釈液(トータルでは20倍希釈)を用いて、以下に示
すような脱窒槽、硝化槽を直列に連結し、生物学的脱窒
・硝化処理を行った。
Example 5 According to the method of Example 2, a denitrification tank and a nitrification tank as shown below were connected in series using the obtained 4-fold diluted solution of the gasification-treated water (diluted 20-fold in total). And subjected to biological denitrification / nitrification treatment.

【0035】生物学的脱窒処理:脱窒槽は約450mL
容であり、アクリル製の塔型リアクター(内径60mm
×高さ500mm)である。ウオータージャケットに恒
温水を通水することにより約37℃に維持した。槽内液
は循環ポンプ(PERISTAPUMP SJ121
1)により循環流量6mL/分で循環した。供給液は冷
蔵庫に保管され、供給ポンプ(上記と同じもの)により
連続的に供給した。生成したガスはビニールチューブを
通してガスホルダーに捕集され、生成量を測定した。
Biological denitrification treatment: Denitrification tank is about 450 mL
Acrylic tower reactor (60 mm inner diameter)
X height 500 mm). The temperature was maintained at about 37 ° C. by passing constant temperature water through the water jacket. The liquid in the tank is a circulation pump (PERISTAPUMP SJ121
Circulation was performed at a circulation flow rate of 6 mL / min according to 1). The feed was stored in a refrigerator and continuously fed by a feed pump (same as above). The generated gas was collected in a gas holder through a vinyl tube, and the generated amount was measured.

【0036】生物学的硝化処理:硝化槽は1.6Lの充
填部を有する2.5L容の反応槽で、充填剤として市販
のカーラを半分に切り(径20mm×20mm)充填し
た。コンプレッサーからボールフィルターを通して、通
気量2L/分で曝気することにより槽内液を旋回した。
槽内pHはpHコントローラーにより7.4〜8.2
に、水槽内温度はヒーターにより30℃になるように制
御した。一晩通気した後、合成廃水を通水することによ
り馴養を行い、処理試験を実施した。
Biological nitrification treatment: The nitrification tank was a 2.5 L reaction tank having a 1.6 L filling section, and a commercially available curler was cut in half as a filler (20 mm × 20 mm in diameter) and filled. The liquid in the tank was swirled by aeration at a flow rate of 2 L / min from a compressor through a ball filter.
The pH in the tank is 7.4 to 8.2 by a pH controller.
The temperature in the water tank was controlled to 30 ° C. by a heater. After aeration overnight, acclimation was performed by passing synthetic wastewater through, and a treatment test was performed.

【0037】実験例1 フェントン酸化における各種処理条件を検討した。過酸
化水素濃度:初発pH4.5、Fe2+添加量0.1g/
L、105℃、2時間の条件下で処理を行った際の過酸
化水素濃度と、VSS消化率・色度の関係を表2に示
す。
Experimental Example 1 Various treatment conditions in Fenton oxidation were examined. Hydrogen peroxide concentration: Initial pH 4.5, Fe 2+ added 0.1 g /
Table 2 shows the relationship between the concentration of hydrogen peroxide and the VSS digestibility / chromaticity when the treatment was performed under the conditions of L, 105 ° C., and 2 hours.

【0038】[0038]

【表2】 [Table 2]

【0039】反応温度:初発pH4.5、過酸化水素濃
度10g/L、Fe2+無添加、2時間の条件下で処理を
行った際の反応温度とVSS消化率の関係を表3に示
す。
Reaction temperature: Table 3 shows the relationship between the reaction temperature and the VSS digestibility when the treatment was performed under the conditions of initial pH 4.5, hydrogen peroxide concentration of 10 g / L, no addition of Fe 2+ , and 2 hours. .

【0040】[0040]

【表3】 [Table 3]

【0041】pH:過酸化水素10g/L、Fe2+無添
加、105℃、2時間の条件下で処理を行った際の初発
pHとVSS消化率の関係を表4に示す。
PH: Table 4 shows the relationship between the initial pH and the VSS digestibility when the treatment was performed under the conditions of 10 g / L of hydrogen peroxide, no addition of Fe 2+ , and 105 ° C. for 2 hours.

【0042】[0042]

【表4】 [Table 4]

【0043】反応時間:初発pH3、過酸化水素5g/
L、Fe2+無添加、105℃の条件下で処理を行った際
の反応時間とVSS消化率の関係を表5に示す。
Reaction time: initial pH 3, hydrogen peroxide 5 g /
Table 5 shows the relationship between the reaction time and the VSS digestibility when the treatment was performed under the conditions of L, Fe 2+ -free and 105 ° C.

【0044】[0044]

【表5】 [Table 5]

【0045】実験例2 脱アミノ化における各種処理条件を検討した。pH:p
Hを制御せずに30℃、30分、チオウレア様物質とN
2 -のモル比1:2の条件下で処理を行った際の当該物
質の分解率との関係を表6に示す。
Experimental Example 2 Various treatment conditions in deamination were examined. pH: p
30 ° C. for 30 minutes without controlling H, thiourea-like substance and N
Table 6 shows the relationship with the decomposition rate of the substance when the treatment was performed under the condition of a molar ratio of O 2 - of 1: 2.

【0046】[0046]

【表6】 [Table 6]

【0047】pH制御:pHを制御した場合と制御しな
い場合を比較した。室温(16℃)、30分、チオウレ
ア様物質とNO2 -のモル比1:2の条件下で処理を行っ
た際のチオウレア様物質の分解率との関係を表7に示
す。
PH control: The case where pH was controlled and the case where pH was not controlled were compared. Table 7 shows the relationship between the thiourea-like substance and the decomposition ratio of the thiourea-like substance when the treatment was performed at room temperature (16 ° C.) for 30 minutes at a molar ratio of thiourea-like substance to NO 2 of 1: 2.

【0048】[0048]

【表7】 [Table 7]

【0049】NO2 -添加量:pH3に制御し、室温(1
8℃)、30分の条件下で処理を行った際のチオウレア
様物質の分解率との関係を表8に示す。
The NO 2 - amount: pH 3 to controls, room temperature (1
Table 8 shows the relationship with the decomposition rate of the thiourea-like substance when the treatment was performed under the conditions of 8 ° C.) for 30 minutes.

【0050】[0050]

【表8】 [Table 8]

【0051】実験例3 リン除去処理(MAP法)でのMg2+とPO4 3-のモル
比とリン除去効果の関係を検討した。室温、pH9.
1、1時間の条件下で処理を行った。結果を表9に示
す。
Experimental Example 3 The relationship between the molar ratio of Mg 2+ and PO 4 3- in the phosphorus removal treatment (MAP method) and the phosphorus removal effect was examined. Room temperature, pH9.
The treatment was performed under the conditions of 1, 1 hour. Table 9 shows the results.

【0052】[0052]

【表9】 [Table 9]

【0053】表中の( )の値はPO4 3-除去率%を示
す。
The values in parentheses in the table indicate the PO 4 3− removal ratio%.

【0054】実験例4 ガス化処理水を4倍に希釈(トータルでは20倍希釈)
したものを用いて、実施例5に準じて生物学的脱窒・硝
化処理を行った。処理開始後10日目の結果を表10に
示す。
Experimental Example 4 Gasification-treated water was diluted 4 times (total 20 times dilution)
Using the resulting material, a biological denitrification / nitrification treatment was performed according to Example 5. Table 10 shows the results on the 10th day after the start of the treatment.

【0055】[0055]

【表10】 [Table 10]

【0056】NH4 +が除去され、NO3 -が生成している
ことからチオウレア様物質の脱アミノ化処理によって硝
化菌に対する阻害は消失し、処理が安定して行われてい
ることが判明した。
Since NH 4 + was removed and NO 3 - was produced, the inhibition of nitrifying bacteria was eliminated by the deamination of the thiourea-like substance, indicating that the treatment was performed stably. .

【0057】実施例、実験例における各物質の分析方法
は下記の方法によった。TOC、ICは、遠心分離後の
上澄液を、全有機炭素計を用いた赤外線ガス分析法によ
り測定した。pHはpH計を用いて測定した。VSS、
SSは、遠心分離後の沈殿物を蒸発乾固し、600℃で
バーニングし、各々の重量を測定し、その重量差から算
出した。TVS、TSは、遠心分離せずにそのまま蒸発
乾固し、VSS、SSの測定と同様にして重量を求め
た。NO2 -、NO3 -、PO4 3-はアニオン分離カラムで
処理し、電気伝導度検出器により分析した。NH4 +は、
アンモニウムイオン電極法またはネスラー試薬を用いた
比色法により測定した。色度は白金コバルト法により測
定した。なお、1°の色度標準品は、蒸留水に白金1m
gおよびコバルト0.5mg含むものと定義した。Fe
は原子吸光分析法により測定した。チオウレア様物質
は、澱粉指示液、I2溶液、NaN3液を用いてヨウ素澱
粉反応により青色呈色させたものと混合して脱色反応さ
せ、620nmの吸光度を測定することにより求めた。
The following methods were used to analyze each substance in the examples and experimental examples. TOC and IC measured the supernatant liquid after centrifugation by an infrared gas analysis method using a total organic carbon meter. The pH was measured using a pH meter. VSS,
The SS was obtained by evaporating the precipitate after centrifugation to dryness, burning at 600 ° C., measuring the weight of each, and calculating from the weight difference. TVS and TS were directly evaporated to dryness without centrifugation, and the weight was determined in the same manner as in the measurement of VSS and SS. NO 2 -, NO 3 -, PO 4 3- is treated with an anion separation column and analyzed by conductivity detection. NH 4 +
The measurement was performed by an ammonium ion electrode method or a colorimetric method using a Nessler reagent. The chromaticity was measured by the platinum cobalt method. In addition, 1 ° chromaticity standard product is platinum
g and 0.5 mg of cobalt. Fe
Was measured by atomic absorption spectrometry. Thiourea like substances, starch indicator liquid, I 2 solution was decolorized reaction mixture as obtained by the blue coloration with iodine starch reaction with NaN 3 solution was determined by measuring the absorbance at 620 nm.

【0058】[0058]

【発明の効果】本発明の方法によれば、二相式メタン発
酵の前処理として酸化処理、脱アミノ化処理を導入する
ことにより、有機物容積負荷をより高く設定することが
可能となり、また、二相式メタン発酵の後処理としてリ
ン除去処理、生物学的脱窒・硝化処理を導入することに
より、高度な処理が可能となった。すなわち、従来の二
相式メタン発酵を単独で実施する場合に比較して、より
効率的かつ高度に酵母廃液を処理することが可能となっ
た。
According to the method of the present invention, by introducing an oxidation treatment and a deamination treatment as a pretreatment of a two-phase methane fermentation, it is possible to set a higher organic substance volume load. Advanced treatment became possible by introducing phosphorus removal treatment and biological denitrification / nitrification treatment as post-treatment of two-phase methane fermentation. That is, compared with the case where the conventional two-phase methane fermentation is carried out alone, it has become possible to treat the yeast waste liquid more efficiently and highly.

───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.7 識別記号 FI テーマコート゛(参考) C02F 3/34 101 C02F 3/34 101A Fターム(参考) 4D038 AA08 AB12 AB48 BB19 4D040 AA02 AA04 AA12 AA23 BB02 BB13 4D050 AA12 AB06 BB02 BB09 CA17 CA20 ──────────────────────────────────────────────────続 き Continued on the front page (51) Int.Cl. 7 Identification code FI Theme coat ゛ (Reference) C02F 3/34 101 C02F 3/34 101A F-term (Reference) 4D038 AA08 AB12 AB48 BB19 4D040 AA02 AA04 AA12 AA23 BB02 BB13 4D050 AA12 AB06 BB02 BB09 CA17 CA20

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】 酵母廃液を液化処理およびガス化
処理を含む二相式メタン発酵法により処理する方法にお
いて、二相式メタン発酵処理の前に酸化処理を行う当該
処理方法。
1. A method for treating a yeast waste liquid by a two-phase methane fermentation method including a liquefaction treatment and a gasification treatment, wherein the oxidation treatment is performed before the two-phase methane fermentation treatment.
【請求項2】 前記の二相式メタン発酵処理の前
に、さらに脱アミノ化処理を行う、請求項1の処理方
法。
2. The treatment method according to claim 1, wherein a deamination treatment is further performed before the two-phase methane fermentation treatment.
【請求項3】 前記の二相式メタン発酵処理の後
にリン除去処理および/または生物学的脱窒処理・硝化
処理を行う、請求項1の処理方法。
3. The treatment method according to claim 1, wherein a phosphorus removal treatment and / or a biological denitrification treatment / nitrification treatment is performed after the two-phase methane fermentation treatment.
JP2000202855A 2000-07-04 2000-07-04 Method for treating yeast waste liquid Pending JP2002018478A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2000202855A JP2002018478A (en) 2000-07-04 2000-07-04 Method for treating yeast waste liquid

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2000202855A JP2002018478A (en) 2000-07-04 2000-07-04 Method for treating yeast waste liquid

Publications (1)

Publication Number Publication Date
JP2002018478A true JP2002018478A (en) 2002-01-22

Family

ID=18700325

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000202855A Pending JP2002018478A (en) 2000-07-04 2000-07-04 Method for treating yeast waste liquid

Country Status (1)

Country Link
JP (1) JP2002018478A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103183437A (en) * 2011-12-27 2013-07-03 安琪酵母股份有限公司 Yeast waste water reutilization method and method for producing yeast by using yeast waste water reutilization method

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103183437A (en) * 2011-12-27 2013-07-03 安琪酵母股份有限公司 Yeast waste water reutilization method and method for producing yeast by using yeast waste water reutilization method

Similar Documents

Publication Publication Date Title
Thomas et al. Optimisation of Noosa BNR plant to improve performance and reduce operating costs
Soares et al. Comparison between disintegrated and fermented sewage sludge for production of a carbon source suitable for biological nutrient removal
Alinsafi et al. Nitrite effect on nitrous oxide emission from denitrifying activated sludge
Bernet et al. Combined anaerobic–aerobic SBR for the treatment of piggery wastewater
Chang et al. Application of oxidation–reduction potential as a controlling parameter in waste activated sludge hydrolysis
Bernet et al. Use of an industrial effluent as a carbon source for denitrification of a high-strength wastewater
DE69009463T2 (en) METHOD FOR CONTROLLING AND / OR REVIEWING BIOLOGICAL PROCESSES.
US5232583A (en) Installation for processing manure, fermented manure and kjeldahl-n containing waste water
EP0192879B1 (en) Methane fermentation process for treating evaporator condensate from pulp making system
CA2066466A1 (en) Method and apparatus for processing manure
WO1996035644A1 (en) Novel method for the control of biodegradation
JP4925208B2 (en) Aerobic granule formation method, water treatment method and water treatment apparatus
Kim et al. Treatment of a metal-cutting-fluids wastewater using an anaerobic GAC fluidized-bed reactor
CN109052618A (en) Activate persulfate, the method for degradation of contaminant, application
Abeling et al. Anaerobic-aerobic treatment of potato-starch wastewater
Drtil et al. Acidobasic balances in the course of heterotrophic denitrification
US10099952B2 (en) Method for treating organic wastewater and organic wastewater treating system
Wendt et al. A chemical-biological treatment process for cellulose nitrate disposal
Bishop et al. Fate of nutrients during aerobic digestion
JP2002018478A (en) Method for treating yeast waste liquid
Bernet et al. SBR as a relevant technology to combine anaerobic digestion and denitrification in a single reactor
Nativ et al. Should wastewater treatment plants' operational mode radically change to minimize GHG emissions?
JP2001252686A (en) Anaerobic treatment method for organic waste water
JP2003039092A (en) Biological denitrification treatment method
Yang et al. Control of biological solids concentration in extended aeration