JP2002016204A - Heat-receiving and radiating structure - Google Patents

Heat-receiving and radiating structure

Info

Publication number
JP2002016204A
JP2002016204A JP2000233697A JP2000233697A JP2002016204A JP 2002016204 A JP2002016204 A JP 2002016204A JP 2000233697 A JP2000233697 A JP 2000233697A JP 2000233697 A JP2000233697 A JP 2000233697A JP 2002016204 A JP2002016204 A JP 2002016204A
Authority
JP
Japan
Prior art keywords
heat
temperature
radiating
heat pipe
plate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2000233697A
Other languages
Japanese (ja)
Inventor
Hisateru Akachi
久輝 赤地
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
TS Heatronics Co Ltd
Original Assignee
TS Heatronics Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by TS Heatronics Co Ltd filed Critical TS Heatronics Co Ltd
Priority to JP2000233697A priority Critical patent/JP2002016204A/en
Publication of JP2002016204A publication Critical patent/JP2002016204A/en
Pending legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D15/00Heat-exchange apparatus with the intermediate heat-transfer medium in closed tubes passing into or through the conduit walls ; Heat-exchange apparatus employing intermediate heat-transfer medium or bodies
    • F28D15/02Heat-exchange apparatus with the intermediate heat-transfer medium in closed tubes passing into or through the conduit walls ; Heat-exchange apparatus employing intermediate heat-transfer medium or bodies in which the medium condenses and evaporates, e.g. heat pipes
    • F28D15/0233Heat-exchange apparatus with the intermediate heat-transfer medium in closed tubes passing into or through the conduit walls ; Heat-exchange apparatus employing intermediate heat-transfer medium or bodies in which the medium condenses and evaporates, e.g. heat pipes the conduits having a particular shape, e.g. non-circular cross-section, annular
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D15/00Heat-exchange apparatus with the intermediate heat-transfer medium in closed tubes passing into or through the conduit walls ; Heat-exchange apparatus employing intermediate heat-transfer medium or bodies
    • F28D15/02Heat-exchange apparatus with the intermediate heat-transfer medium in closed tubes passing into or through the conduit walls ; Heat-exchange apparatus employing intermediate heat-transfer medium or bodies in which the medium condenses and evaporates, e.g. heat pipes
    • F28D15/0275Arrangements for coupling heat-pipes together or with other structures, e.g. with base blocks; Heat pipe cores

Landscapes

  • Engineering & Computer Science (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Sustainable Development (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Cooling Or The Like Of Electrical Apparatus (AREA)
  • Cooling Or The Like Of Semiconductors Or Solid State Devices (AREA)

Abstract

PROBLEM TO BE SOLVED: To ensure very high reliability of equipment by providing a heat receiving and radiating structure, which controls the temperature of a heating element to a very low temperature outside of the conventional temperature control area. SOLUTION: The heat-receiving and radiationg structure is constituted, by charging in a low-temperature medium heat pipe as its main constitution element noninflammable working liquid of <=+50 deg.C in critical temperature, <=80 kg/cm2 in critical pressure, 0 for ozone destruction coefficient (ODP), and <=300 in earth anathermal coefficient (GWP), and the temperature of the structure is controlled below the critical temperature of the working temperature. Consequently, the temperature for the operation of the heating element can be lowered to low temperature, which has been conventionally impossible and then the heat receiving and radiating structure is completed, which guarantees high long-term reliability and high safety of equipment. Especially, this effect is very large, when carbon dioxide is used as the working liquid and a Peltier- effect applied temperature controller is used as a heat-radiating means in combination.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【産業上の利用分野】本発明は発熱素子冷却の為の受放
熱構造体の構造に関する。特に本発明は発熱素子温度を
所定の低温度に制御する為の受放熱構造体の構造に関す
るものであって、それにより発熱素子の高信頼性を長期
間保証すると共に構造体の主たる構成要素であるヒート
パイプに不燃性作動流体を採用することにより機器の高
い安全性をも保証する受放熱構造体を提供する。なお本
発明の受放熱構造体は地球環境に悪影響を及ぼすことの
無い構成であることを基本思想としている。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a structure of a heat receiving / radiating structure for cooling a heating element. In particular, the present invention relates to the structure of a heat receiving and radiating structure for controlling the temperature of a heating element to a predetermined low temperature, thereby guaranteeing high reliability of the heating element for a long period of time, and is a main component of the structure. Provided is a heat receiving and radiating structure that also guarantees high safety of equipment by employing a non-combustible working fluid in a certain heat pipe. The basic idea is that the heat receiving and radiating structure of the present invention has a configuration that does not adversely affect the global environment.

【0002】[0002]

【従来の技術】小型で且つ効率的な受放熱構造に適用さ
れる熱輸送手段としてその高い信頼性と感度の良好さか
らヒートパイプ技術応用構造が欠くことの出来ない基本
構造となりつつある。然しヒートパイプ技術は京都国際
会議(モントリオール議定書締約国会議)以後は重大な
危機に直面している。それは軽量なアルミヒートパイプ
用作動液としては欠く事の出来ないフロン冷媒が同会議
において総て規制対象となった事により、アルミ素材と
の適合性の良好な物性を有する二相凝縮性冷媒、及び低
温用熱媒流体としての二相凝縮性冷媒が殆ど使用不可能
になった事による。即ちオゾン破壊係数(ODP)が極
めて大きいCFC(クロロフルオロカーボン)系のフロ
ン冷媒の全廃は論外として、ODPが小さい事により代
替フロンとして世界的規模で用いられてきたHCFC
(ハイドロクロロフルオロカーボン)系のフロン冷媒ま
でも2020年までに全廃する事が決定されたことによ
る。
2. Description of the Related Art As a heat transport means applied to a small and efficient heat receiving / radiating structure, a heat pipe technology application structure is becoming an indispensable basic structure because of its high reliability and good sensitivity. However, heat pipe technology has faced a serious crisis since the Kyoto International Conference (Montreal Protocol Parties). It is a two-phase condensable refrigerant with good physical properties that is compatible with aluminum materials, because Freon refrigerant, which is indispensable as a lightweight working fluid for aluminum heat pipes, was subject to regulation at the meeting. And the fact that the two-phase condensable refrigerant as the low-temperature heat transfer fluid has become almost unusable. In other words, the total elimination of CFC (chlorofluorocarbon) based chlorofluorocarbon refrigerants having an extremely large ozone depletion potential (ODP) is out of the question, and HCFCs that have been used on a global scale as alternative chlorofluorocarbons due to their small ODP.
This is due to the decision to completely abolish (hydrochlorofluorocarbon) refrigerants by 2020.

【0003】現在代替フロンとしてはODPがゼロのH
FC系フロン冷媒に移行しつつある。然し、例えばHF
C134aの地球温暖化係数(GWP)は1300(C
=1とした係数)である如く、CFC系フロン冷媒
に比較すれば大幅に減少したものの、同会議においては
HFC系フロン冷媒のGWPの減少も未だ不足であると
云うことになり、HFC系冷媒も排出量規制対象とする
ことが決定された。これに起因してHFC系フロン冷媒
は世界的規模で主たるユーザーからその使用が忌避され
つつある。一部の分野ではHFC系冷媒に替わる二相流
体冷媒としてブタン(C10)を初めとする天然ガ
ス系冷媒が推奨されている。然しこれらの多くは爆発限
界(燃焼性)を有するので、安全保証の点から密閉筐体
内における発熱体の冷却に適用することは不可能であ
る。現在各国で各種のHFE(ハイドロフルオロエーテ
ル)系冷媒の開発が進められているが、開発完了のHF
E系冷媒のGWPは600前後と決して低い値ではない
点、また一部の洗浄用HFE系冷媒を除きヒートパイプ
用としては未だ試検段階を脱却していない点、臨界圧力
が高くヒートパイプの基本構造を変更する必要がある等
の点からヒートパイプ用冷媒として実用化されるまでに
は今後10年以上を要すると云われている。
At present, as an alternative chlorofluorocarbon, H with ODP of zero is used.
It is shifting to FC-based refrigerants. However, for example, HF
The global warming potential (GWP) of C134a is 1300 (C
O 2 = 1), although it has been greatly reduced as compared with CFC-based chlorofluorocarbon refrigerants, at the same meeting, the reduction in GWP of HFC-based chlorofluorocarbon refrigerants is still insufficient. It was decided that system refrigerants would also be subject to emission control. Due to this, the use of HFC-based refrigerants is being avoided by major users on a worldwide scale. In some fields, natural gas-based refrigerants such as butane (C 4 H 10 ) are recommended as two-phase fluid refrigerants instead of HFC-based refrigerants. However, many of them have an explosive limit (flammability), and therefore cannot be applied to cooling of a heating element in a sealed enclosure from the viewpoint of safety assurance. At present, various HFE (hydrofluoroether) based refrigerants are being developed in various countries.
The point that the GWP of the E-based refrigerant is not as low as about 600, and that the heat pipe has not escaped from the test stage except for some cleaning HFE-based refrigerants. It is said that it will take 10 years or more to be put into practical use as a heat pipe refrigerant because of the need to change the basic structure.

【0004】[0004]

【発明が解決しようとする課題】ヒートパイプ用作動液
の選択に際し、対象とする冷媒がフロン規制により直面
する最も大きな課題は冷媒の各種物性の適切なバランス
である。規制対象となったフロン系冷媒は何れもアルミ
ニゥムを素材とするヒートパイプに対する良好な適合性
を備えており、従来はそれらの中からアルミヒートパイ
プの適用条件にとり、最も適切な物性バランスを有する
冷媒を選択することが可能であった。然し現在のフロン
規制条件下においてはヒートパイプに適用可能な冷媒の
選択範囲は極めて狭いものとなった。
When selecting a working fluid for a heat pipe, the most important problem facing the refrigerant under regulation due to chlorofluorocarbon is an appropriate balance of various physical properties of the refrigerant. All of the restricted fluorocarbon-based refrigerants have good compatibility with heat pipes made of aluminum.Conventionally, the refrigerants that have the most appropriate balance of physical properties based on the application conditions of aluminum heat pipes from among them It was possible to choose. However, under the current CFC regulations, the selection range of the refrigerant applicable to the heat pipe has become extremely narrow.

【0005】現時点における適用可能な冷媒を選択する
為の物性条件は以下の通りとなっている。(1)ODP
=0であること。(2)GWP≦300(現時点では6
00でも認められている)で且つ可能な限り0に近いこ
と。(3)臨界温度は作動中ヒートパイプの最高温度部
(受熱面に近接した部分)が到達する最高温度に適切な
温度上昇余裕率を乗じた温度より可能な限り高温である
こと。(4)臨界圧力は適用される構造のヒートパイプ
が安全に作動する圧力以下であること。(5)沸点はヒ
ートパイプが目標とするする最低作動温度に適切な温度
降下余裕率を乗じた温度以下であること。(6)ヒート
パイプ適用条件内には爆発限界を有しないこと。(7)
人畜に対し毒性を有しないこと。(8)アルミニゥム素
材で構成されたヒートパイプの作動流体としての適合性
が良好であること。(9)市場で容易に入手出来る事。
現時点ではヒートパイプに要求されるこのような選択条
件の総てを満足せしめる物性を備えた二相凝縮性冷媒は
殆ど存在しない。特に困難な条件はGWP、臨界温度、
沸点であり、ヒートパイプの適用領域に制限を加えるこ
とにより妥協せざるを得ない状態である。
At present, the physical conditions for selecting an applicable refrigerant are as follows. (1) ODP
= 0. (2) GWP ≦ 300 (currently 6
00 is allowed) and as close to 0 as possible. (3) The critical temperature is as high as possible than the temperature obtained by multiplying the maximum temperature reached by the highest temperature portion of the heat pipe during operation (the portion close to the heat receiving surface) by an appropriate temperature rise margin. (4) The critical pressure must be lower than the pressure at which the heat pipe of the applicable structure operates safely. (5) The boiling point is not higher than the temperature obtained by multiplying the minimum operating temperature targeted by the heat pipe by an appropriate temperature drop margin. (6) There is no explosion limit within the heat pipe application conditions. (7)
Not toxic to humans and animals. (8) The heat pipe made of aluminum material has good suitability as a working fluid. (9) Be readily available on the market.
At present, there are almost no two-phase condensable refrigerants having physical properties that satisfy all of such selection conditions required for heat pipes. Particularly difficult conditions are GWP, critical temperature,
It is the boiling point, a condition that must be compromised by limiting the application area of the heat pipe.

【0006】従来フロン冷媒は低温用ヒートパイプの作
動流体として不可欠な冷媒であり、フロン冷媒の優れた
物性に依存してきた低温用ヒートパイプは性能維持の面
でも、応用技術の面、製造販売の面でも致命的な打撃を
蒙りつつある。このような低温用ヒートパイプを良好に
作動せしめる現用の唯一の冷媒としてアンモニアがある
が、この冷媒には毒性及び爆発限界があり、製造工程が
危険作業であるとして製造条件に厳しい規制が設けられ
てあり、宇宙用ヒートパイプ以外では殆ど使用不可能な
状態である。
Conventionally, chlorofluorocarbon refrigerants are indispensable as working fluids for low-temperature heat pipes, and low-temperature heat pipes, which have relied on the excellent physical properties of chlorofluorocarbon refrigerants, are not only required to maintain performance, but also in terms of applied technology, production and sales. A fatal blow is also taking place. Ammonia is the only refrigerant currently used to make such a low-temperature heat pipe work well.However, this refrigerant has toxic and explosive limits, and strict regulations are imposed on manufacturing conditions assuming that the manufacturing process is dangerous. It is almost unusable except for space heat pipes.

【0007】他方では、近来の電子機器は小型化の一途
を辿り、またそれに適用される半導体素子の集積度は製
造技術及び実装技術の進歩につれて、6年に10倍のペ
ースで高密度化の一途を辿ってきた。また半導体素子の
作動速度もクロック動作周波数の増大に従って高速化し
てきた。素子の発熱量は高密度化と高速化に従って大幅
に増大しつつあり。更に機器の機能に対する要求は、高
密度化、高速化、小型化とは背反する高い信頼性が要求
されるようになっている。これに対して現在の実装技術
による高密度化は殆ど限界に近づきつつあり、更に半導
体素子そのものの素子密度の高密度化も限界に近づきつ
つある。更にまた信頼性向上の為の発熱減少対策も限界
に近づきつつある。本発明はこれらの諸問題点を解決す
る受放熱構造体を提供すると共に問題点を解決する為新
規な冷媒を提案すると共に優れた熱媒体機能を備えた受
放熱構造体を提供する。
On the other hand, in recent years, electronic devices have been steadily miniaturized, and the degree of integration of semiconductor devices applied thereto has been increasing at a rate of ten times in six years with the progress of manufacturing technology and packaging technology. I've been going all the way. In addition, the operating speed of the semiconductor device has been increased as the clock operating frequency is increased. The amount of heat generated by the element is increasing significantly with higher density and higher speed. Further, the demand for the function of the device is required to be high reliability which is contrary to high density, high speed, and miniaturization. On the other hand, the increase in density by the current mounting technology is almost approaching the limit, and the increase in the element density of the semiconductor element itself is approaching the limit. Furthermore, measures to reduce heat generation for improving reliability are approaching their limits. The present invention provides a heat receiving and radiating structure that solves these problems, proposes a novel refrigerant to solve the problems, and provides a heat receiving and radiating structure having an excellent heat medium function.

【0008】[0008]

【課題を解決する為の手段】このような状勢における機
器の発熱問題の解決手段としては発熱素子温度を大幅に
低下せしめ、0℃以下可能な限り低温化せしめることが
効果的である。作動中の電子機器の発熱素子温度を0℃
以下可能な限り低温化することには以下の作用がある。
(1)…大部分の発熱素子は低温化により熱入力時の損
失電力が大幅に減少することが経験的に広く知られてい
る。損失電力の低下は発熱素子の発熱量を低下せしめ、
その低温化に必要なエネルギー消費をも減少せしめ、二
重の効果により発熱素子の冷却を益々容易ならしめる。
(2)…発熱素子の低温化は素子寿命を大幅に延長せし
める。温度が10℃低下する毎に化学反応速度は1/2
に減速するから、50℃温度が低下すると素子の温度依
存分寿命は2=32倍に伸びる。然し素子の寿命は温
度に依存するだけでなく熱応力にも依存するから、熱応
力減少分による寿命延長もある。夫々に設計の異なる各
種発熱素子について温度低下による寿命の延長割合を推
定することは正確には不可能であるが、50℃の温度低
下は素子の寿命を少なくも10倍以上は延長させると考
えられている。これは機器の総合的な信頼性を10倍以
上向上させると考えても良い。
As a means for solving the problem of heat generation of the equipment in such a situation, it is effective to greatly lower the temperature of the heat generating element and to lower the temperature as low as possible below 0 ° C. Heating element temperature of operating electronic equipment is 0 ° C
In the following, lowering the temperature as much as possible has the following effects.
(1) It is widely known empirically that most of the heat-generating elements greatly reduce the power loss at the time of heat input by lowering the temperature. The reduction in power loss reduces the amount of heat generated by the heating element,
The energy consumption required for the lowering of the temperature is also reduced, and the cooling of the heating element is further facilitated by the double effect.
(2). Lowering the temperature of the heating element greatly extends the life of the element. Each time the temperature drops by 10 ° C., the chemical reaction rate is reduced by half.
When the temperature is lowered by 50 ° C., the temperature-dependent life of the element is extended to 25 = 32 times. However, the life of the element depends not only on the temperature but also on the thermal stress. Although it is impossible to accurately estimate the life extension ratio due to the temperature decrease for various types of heating elements having different designs, it is considered that a temperature decrease of 50 ° C. extends the element life at least ten times or more. Have been. This may be considered to improve the overall reliability of the device by a factor of 10 or more.

【0009】現在の厳しいフロン規制下における冷媒選
択範囲内においては、実用化されている冷媒の物性その
ままで低温用ヒートパイプ作動液として選択することの
可能な冷媒は皆無と云いっても過言ではない。本願発明
者は、例えば二酸化炭素COの如く臨界温度が低いこ
とにより、ヒートパイプ用冷媒として選択範囲から除外
されてきた冷媒に着目した。例えば二酸化炭素CO
冷媒とするヒートパイプは冷媒の臨界温度+31℃以上
に温度上昇せしめることは不可能であり、それに起因し
て強制空冷等の通常の放熱手段では、放熱能力が不足し
ヒートパイプとしての機能を充分に発揮することが出来
なかった。然しこの放熱部に例えばペルチエ効果素子の
如き温度制御手段を組合わせ併用すれば、ヒートパイプ
受熱部温度を+31℃以下の低温に維持したままで放熱
部温度を+90℃の如く上昇せしめることが可能となり
強制空冷能力を充分に向上せしめることが可能となる。
Exactly speaking, there is no refrigerant that can be selected as a low-temperature heat pipe working fluid without changing the physical properties of a practically used refrigerant within the refrigerant selection range under the current strict Freon regulations. Absent. The inventor of the present application has focused on a refrigerant that has been excluded from the selection range as a heat pipe refrigerant due to its low critical temperature, for example, carbon dioxide CO 2 . For example, a heat pipe using carbon dioxide CO 2 as a refrigerant cannot raise the temperature to a temperature higher than the critical temperature of the refrigerant + 31 ° C. The function as a pipe could not be fully exhibited. However, if a temperature control means such as a Peltier effect element is used in combination with the heat radiating portion, the temperature of the heat radiating portion can be increased to + 90 ° C. while the temperature of the heat pipe heat receiving portion is maintained at a low temperature of + 31 ° C. or less. Therefore, the forced air cooling capacity can be sufficiently improved.

【0010】更にまた本願発明者はヒートパイプコンテ
ナの如き密閉容器内においては冷媒の飽和蒸気圧により
内圧が上昇し、例えば沸点−50℃の如き低沸点冷媒で
あっても、+30℃の如き温度で容易に液化し、即ち−
50〜+30℃の如き幅広い低温領域でヒートパイプ用
二相凝縮性作動流体として適用できる点に着目した。但
しこの場合はコンテナが臨界圧力に耐える構造に構成さ
れてあることが必須条件となる。更にまた冷媒作動流体
は、作動状態において最高温度が常に低温の臨界温度以
下に制御されてあるから、温度制御装置により−20℃
以下の如き低温度に冷却することが容易である点にも着
目した。これらの着眼点に基づく問題点解決の手段の基
本構成は以下の通りである。
Furthermore, the inventor of the present application has found that in a closed vessel such as a heat pipe container, the internal pressure rises due to the saturated vapor pressure of the refrigerant, and even if the refrigerant has a low boiling point such as -50 ° C., the temperature may be as high as + 30 ° C. Liquefaction easily, ie-
Attention was paid to the fact that it can be applied as a two-phase condensable working fluid for heat pipes in a wide low temperature range such as 50 to + 30 ° C. However, in this case, it is an essential condition that the container is configured to withstand the critical pressure. Furthermore, since the maximum temperature of the refrigerant working fluid is always controlled to be equal to or lower than the low critical temperature in the operating state, the temperature controller controls the temperature to -20 ° C.
It was also noted that it is easy to cool to a low temperature as described below. The basic configuration of the means for solving the problem based on these viewpoints is as follows.

【0011】受放熱構造体の基本構成は、半導体発熱素
子を主体とする発熱体を熱量発生源(1)とし、この熱
量発生源から供給される熱量を放熱手段の所定の位置ま
で輸送すると共に、所定の面内均一に拡散せしめ、また
放熱手段から供給される冷熱を所定の位置まで輸送する
と共に、熱量発生源に集熱供給する機能を有するヒート
パイプを熱媒手段(2)とし、このヒートパイプは、臨
界温度が+50℃以下、臨界圧力が80Kg/cm
下であり、沸点が−100℃〜+50℃の間にあり、そ
のオゾン破壊係数(ODP)はゼロであり、地球温暖化
係数(GWP)は300以下である二相凝縮性流体が作
動流体として封入されてあるヒートパイプであり、ヒー
トパイプは放熱手段と伝熱良好な状態に接続され、その
温度は常に作動流体の臨界温度を超えることなく制御さ
れてあり、且つその所定の部分の温度は作動流体の液相
化温以下の所定の温度に制御されてあり、このような機
能の温度制御装置を備えた放熱構造体である放熱手段
(3)と、これらの三要素を必須構成要素として構成さ
れてあり、熱媒手段であるヒートパイプは、作動流体の
軸方向振動を主たる熱輸送原理とする蛇行細管ヒートパ
イプであるか、二相流体の相変化による受放熱を主たる
熱輸送原理とし且つ耐内圧強度強化手段が施されてある
通常型ヒートパイプであるか、の何れかのヒートパイプ
またはそれらを内蔵したプレートヒートパイプであるこ
とを特徴とする受放熱構造体。
The basic structure of the heat receiving and radiating structure is that a heat generating element mainly composed of a semiconductor heat generating element is used as a heat generating source (1), and the heat supplied from the heat generating source is transported to a predetermined position of the heat radiating means. A heat pipe having a function of dispersing the heat supplied from the heat radiating means to a predetermined position, diffusing the heat uniformly from the heat dissipating means to a predetermined position, and collecting and supplying heat to the heat generation source; The heat pipe has a critical temperature of + 50 ° C. or less, a critical pressure of 80 Kg / cm 2 or less, a boiling point between −100 ° C. and + 50 ° C., an ozone depletion potential (ODP) of zero, and global warming. A heat pipe in which a two-phase condensable fluid having a coefficient (GWP) of 300 or less is sealed as a working fluid, and the heat pipe is connected to a heat radiating means in a good heat transfer state. The temperature is controlled without exceeding the critical temperature of the body, and the temperature of the predetermined portion is controlled to a predetermined temperature equal to or lower than the liquidus temperature of the working fluid, and a temperature control device having such a function is provided. The heat dissipating means (3), which is a heat dissipating structure, and these three elements are configured as essential components, and the heat pipe, which is a heat medium means, is a meandering thin tube that uses axial vibration of a working fluid as a main heat transfer principle. Either a heat pipe, or a normal heat pipe with the principle of heat transport based on receiving and radiating heat due to a phase change of a two-phase fluid, and a means for enhancing internal pressure resistance, or a built-in heat pipe A heat receiving and radiating structure, characterized in that it is a plate heat pipe.

【0012】[0012]

【作用】本願発明の受放熱構造体を構成する熱量発生源
(1)、熱媒手段(2)、温度制御装置を備えた放熱手
段(3)は夫々の相互作用によって従来の受放熱構造体
では発揮し得なかった独特の機能を発揮する。以下にそ
れらの特殊な機能について説明する。 1、熱量発生源の作用…熱量発生源が半導体素子を主体
とする発熱体である事の作用…熱量発生源は電気、電子
部品としての夫々の機能を発揮して作動するに際して電
力を消費しながら熱量を発生する。この発生熱量には有
効な仕事の為の消費電力による発熱と無為な損失電力に
よる発熱とがあり、この損失電力による発熱は必要以上
の温度上昇として各種の障害の原因となる。これらの電
気、電子部品は作動時の温度が低ければ低いほど損失発
熱量が減少する。この損失発熱量(損失電力量)の減少
は機器の消費電力低下に大きく寄与する。 2、熱媒手段の作用…熱媒手段として極低温用ヒートパ
イプが適用されてあることの作用…従来極低温において
良好な熱媒機能を発揮することの出来るヒートパイプは
少なく、特に最近の厳しいフロン規制状態においては低
温用冷媒の使用が極めて困難になり、低温用ヒートパイ
プの製造は不可能に近かった。本願発明は従来の低温用
冷媒の選択領域を拡大せしめ、極低温領域においても熱
媒機能の極めて優れたヒートパイプの製造が可能になっ
た。特に本願発明の新規な冷媒選択領域…臨界温度が+
50℃以下、臨界圧力が80Kg/cm以下であり、
沸点が−100℃〜+50℃の間にあり、そのオゾン破
壊係数(ODP)はゼロであり、地球温暖化係数(GW
P)は300以下である二相凝縮性流体…一例を挙げれ
ば二酸化炭素の如く従来はヒートパイプ用作動流体とし
ては適用不可能とされた領域まで選択範囲を拡大するも
のであり、低温領域におけるヒートパイプの熱媒機能を
画期的に改善するものである。 3、選択冷媒の臨界温度が+50℃以下であることの作
用…温度制御には上限、下限の間の温度差には限界幅が
あり、その幅を拡大するには大きな困難を伴う。臨界温
度は作動時の冷媒温度の上限温度と見なされるから、臨
界温度が低い程冷媒温度を低くすることが容易になる。
一例を挙げればペルチエ効果応用温度制御の制御幅は現
在技術では約50℃であるから、臨界温度+30℃の冷
媒を使用したヒートパイプは−20℃まで容易に温度制
御することが可能になる。 4、選択冷媒の臨界圧力が80Kg/cm以下である
ことの作用…ヒートパイプが蛇行細管ヒートパイプであ
る場合は飽和蒸気圧が高いほど熱輸送性能が向上し、ま
た飽和蒸気圧が高いほど長いヒートパイプの製作が可能
になる。冷媒の飽和蒸気圧は臨界圧力が高いほど高圧と
なる。また本発明の受放熱構造体で最も適用効果の高い
ヒートパイプは蛇行細管ヒートパイプである。 5、臨界温度が+50℃であり沸点が−100℃〜+5
0℃の間にあることの作用…蛇行細管ヒートパイプは核
沸騰を作動の為のエネルギー源とし、臨界温度を作動温
度の上限とする。臨界温度が+50℃であり沸点が−1
00℃〜+50℃の間にあることはこのヒートパイプの
低温度における作動領域の幅広さを示している。 6、放熱手段の作用…放熱手段は温度制御装置との組合
わせ構造である。この温度制御装置は熱媒手段であるヒ
ートパイプ温度を冷媒の臨界温度以下に制御する機能を
併せ持っている。従って本願発明の放熱手段は、本願発
明の重要機能である低い臨界温度に起因する放熱能力不
足を補完してヒートパイプを冷却する作用を主たる目的
としている。
According to the present invention, the heat generating / generating source (1), the heat medium means (2), and the heat radiating means (3) provided with the temperature control device, which constitute the heat receiving / radiating structure of the present invention, interact with the conventional heat receiving / radiating structure. Exhibit unique functions that could not be demonstrated. Hereinafter, those special functions will be described. 1. Function of the calorific power source: The calorific power source is a heating element mainly composed of a semiconductor element. The calorific power source consumes electric power when operating to exhibit its respective functions as electric and electronic components. While generating heat. The amount of generated heat includes heat generated by power consumption for effective work and heat generated by unnecessary power loss. The heat generated by the power loss causes an unnecessary rise in temperature and causes various troubles. The lower the operating temperature of these electric and electronic components, the lower the heat loss. This decrease in the amount of heat loss (loss of power) greatly contributes to a reduction in power consumption of the device. 2. Function of heat medium means: function of cryogenic heat pipe applied as heat medium means: There are few heat pipes that can exhibit a good heat medium function at cryogenic temperatures, especially in recent years. Under the regulation of CFCs, it became extremely difficult to use a low-temperature refrigerant, and it was almost impossible to manufacture a low-temperature heat pipe. According to the present invention, the selection range of the conventional low-temperature refrigerant has been expanded, and it has become possible to manufacture a heat pipe having an extremely excellent heat medium function even in an extremely low temperature region. In particular, the novel refrigerant selection region of the present invention: the critical temperature is +
50 ° C. or less, critical pressure is 80 Kg / cm 2 or less,
It has a boiling point between -100 ° C and + 50 ° C, its ozone depletion potential (ODP) is zero, and its global warming potential (GW)
P) is a two-phase condensable fluid of 300 or less. For example, carbon dioxide is used to expand the selection range to a region which has not been conventionally applicable as a working fluid for heat pipes. This is a revolutionary improvement in the heat transfer function of the heat pipe. 3. The effect that the critical temperature of the selected refrigerant is equal to or lower than + 50 ° C. There is a limit in the temperature difference between the upper limit and the lower limit in temperature control, and there is a great difficulty in expanding the range. Since the critical temperature is regarded as the upper limit temperature of the refrigerant temperature during operation, the lower the critical temperature, the easier it is to lower the refrigerant temperature.
For example, the control range of the Peltier effect applied temperature control is about 50 ° C. in the present technology, so that a heat pipe using a refrigerant having a critical temperature of + 30 ° C. can easily control the temperature to −20 ° C. 4. The effect that the critical pressure of the selected refrigerant is 80 kg / cm 2 or less. When the heat pipe is a meandering thin tube heat pipe, the higher the saturated vapor pressure, the better the heat transport performance, and the higher the saturated vapor pressure, Production of long heat pipes becomes possible. The saturated vapor pressure of the refrigerant becomes higher as the critical pressure becomes higher. The heat pipe having the highest application effect in the heat receiving and radiating structure of the present invention is a meandering thin tube heat pipe. 5. Critical temperature is + 50 ° C and boiling point is -100 ° C to +5
The effect of being between 0 ° C.—the meandering thin tube heat pipe uses nucleate boiling as the energy source for its operation, and the critical temperature is the upper limit of the operation temperature. Critical temperature is + 50 ° C and boiling point is -1
Being between 00 ° C and + 50 ° C indicates the breadth of the operating area of the heat pipe at low temperatures. 6. Function of heat radiating means: The heat radiating means is a structure combined with a temperature control device. This temperature control device also has a function of controlling the temperature of the heat pipe, which is the heat medium means, to be lower than the critical temperature of the refrigerant. Therefore, the main purpose of the heat radiating means of the present invention is to cool the heat pipe by complementing the insufficient heat radiating ability due to the low critical temperature, which is an important function of the present invention.

【0013】[0013]

【実施例】[第1実施例] 図1は本願発明の基本構造
及び第1実施例の説明図である。図において1は熱量発
生源、2は熱媒手段、3は放熱手段であり、基本構造と
してはこれら3手段を必須構成要素とし、熱媒手段2は
熱輸送及び熱拡散機能を具備するヒートパイプを熱媒体
とし、その中に封入される作動流体は臨界温度が+50
℃以下、臨界圧力が80Kg/cm以下であり、沸点
が−100℃〜+50℃の間にあり、そのオゾン破壊係
数(ODP)はゼロであり、地球温暖化係数(GWP)
は300以下である二相凝縮性流体である事を基本条件
としている。更にヒートパイプの構造としては蛇行細管
ヒートパイプ、耐内圧強度を補強した構造の通常型ヒー
トパイプ、及びそれらを内蔵したプレートヒートパイプ
の何れかである事を基本条件としている。放熱手段とし
ては熱媒手段の温度を制御する機能を有する温度制御装
置が組合わせられた放熱構造体であることも基本条件と
している。このように構成された受放熱構造体は熱量発
生源1で発生した熱量を熱媒手段であるプレートヒート
パイプ2により所定の場所に輸送すると共に放熱手段3
の受熱面に均一に拡散し、効率よく放熱し、熱量発生源
の小型発熱素子1を低温度に冷却保持する。本願発明の
基本的な構造における各種構成条件の基本的な作用は前
述の通りであるが、第1実施例においては選択条件に完
全に適合した作動流体として、二酸化炭素を選択し、放
熱構造体として水冷ジャケットプレート3−2を選択
し、それに組合わせる温度制御装置としてはペルチエ効
果素子集積プレート3−1を採用した。二酸化炭素は作
動流体選択条件に完全に適合するだけでなく、市場で入
手することが容易且つ安価であり、実用化及び量産化に
適していること、更にその物性の詳細データは機械学会
等の出版物で信頼の置けるデータとして業界で活用され
ていること等により信頼性の高いことが信ぜられる高性
能の受放熱構造体が構成できた。本実施例においては水
冷によりペルチエ放熱面温度は+25℃に冷却され、ペ
ルチエ受熱面温度は−25℃に降下し、二酸化炭素プレ
ートヒートパイプ2はこの冷熱を効果的に集熱し、熱量
発生源に冷熱量を集中供給し、その温度を−23℃まで
降下せしめた。この説明は冷熱供給の形で説明したが、
これは熱量発生源1の発生熱量をプレートヒートパイプ
2が効率良く拡散せしめ、この熱量をペルチエ効果素子
集積プレートが極めて効果的に水冷ジャケット内の冷却
水の中に放熱して冷却したことと同意義である。ペルチ
エ効果素子集積プレート3−1は電圧電流による温度制
御が容易であり、小型軽量化が可能な利点がある。この
温度制御装置の制御可能な温度差範囲は現在は50℃程
度であるが、業界では競争状態で性能改善が進められて
おり、特に素材開発の目覚しい進展による大幅な温度制
御範囲の拡大が予測されている。この事から本実施例の
低温用ヒートパイプは将来益々その性能は改善され、適
用の容易性、適用温度範囲の拡大、及び適用熱量の増大
が期待され、本実施例の利用価値が増大すると信じられ
る。この受放熱構造体の熱媒手段プレートヒートパイプ
2に内蔵されるヒートパイプが蛇行細管ヒートパイプで
ある場合は、その優れた耐圧性能により二酸化炭素作動
液の高圧に耐えるだけでなく、その高圧力は細管内圧力
損失を補完し、細管内径を1mmより更に大幅に細径化
させても良好に作動し、更に250mmより大幅に長尺
化しても良好に作動し、プレートヒートパイプの適用領
域の拡大、薄肉化軽量化等に大きく貢献する事も証明さ
れた。これは本発明受放熱構造体の効果として、熱量発
生源1の温度を降下せしめる効果にも匹敵する効果であ
る.
[First Embodiment] FIG. 1 is an explanatory view of a basic structure and a first embodiment of the present invention. In the figure, 1 is a heat generation source, 2 is a heat medium means, 3 is a heat radiating means, and these three means are essential components as a basic structure, and the heat medium means 2 is a heat pipe having heat transport and heat diffusion functions. Is a heat medium, and the working fluid enclosed therein has a critical temperature of +50.
° C or less, critical pressure is 80 Kg / cm 2 or less, boiling point is between -100 ° C and + 50 ° C, its ozone depletion potential (ODP) is zero, and global warming potential (GWP)
Is a basic condition that the fluid is a two-phase condensable fluid of 300 or less. Further, the basic condition is that the heat pipe structure is any of a meandering thin-tube heat pipe, a normal heat pipe having a structure with reinforced internal pressure resistance, and a plate heat pipe incorporating them. A basic condition is that the heat radiating means is a heat radiating structure in which a temperature control device having a function of controlling the temperature of the heat medium means is combined. The heat receiving and radiating structure thus configured transports the heat generated by the heat generating source 1 to a predetermined place by a plate heat pipe 2 which is a heat medium means, and dissipates the heat radiating means 3.
Is uniformly diffused on the heat receiving surface, efficiently dissipates heat, and cools and holds the small heating element 1 as a heat generation source at a low temperature. The basic actions of various constituent conditions in the basic structure of the present invention are as described above. However, in the first embodiment, carbon dioxide is selected as a working fluid that completely conforms to the selected conditions, and the heat dissipation structure The water-cooled jacket plate 3-2 was selected, and a Peltier effect element integrated plate 3-1 was adopted as a temperature control device to be combined therewith. Carbon dioxide is not only completely compatible with the working fluid selection conditions, but also easily and inexpensively available on the market, suitable for practical use and mass production. A high-performance heat receiving and radiating structure, which is believed to be highly reliable due to being used in the industry as reliable data in publications, was constructed. In this embodiment, the temperature of the Peltier heat radiation surface is cooled to + 25 ° C. by water cooling, the temperature of the Peltier heat receiving surface drops to −25 ° C., and the carbon dioxide plate heat pipe 2 effectively collects this cold heat and serves as a heat generation source. A chilled amount of heat was centrally supplied, and the temperature was lowered to -23 ° C. This explanation was given in the form of cold heat supply,
This is the same as that the plate heat pipe 2 efficiently diffuses the heat generated by the heat generating source 1 and the Peltier effect element integrated plate extremely effectively radiates the heat to the cooling water in the water cooling jacket to cool the heat. Significance. The Peltier effect element integrated plate 3-1 has an advantage that temperature control by voltage and current is easy, and the size and weight can be reduced. Although the temperature difference range that can be controlled by this temperature control device is currently about 50 ° C, the performance is being improved in a competitive situation in the industry, and it is expected that the temperature control range will be significantly expanded due to remarkable progress in material development. Have been. From this fact, it is believed that the performance of the low-temperature heat pipe of this embodiment is expected to be improved more and more in the future, and that the ease of application, the expansion of the application temperature range, and the amount of applied heat are expected to increase, and that the utility value of this embodiment will increase. Can be When the heat pipe built into the heat medium means plate heat pipe 2 of the heat receiving and radiating structure is a meandering thin tube heat pipe, not only can it withstand the high pressure of the carbon dioxide working fluid due to its excellent pressure resistance performance, but also its high pressure. Supplements the pressure loss in the thin tube, works well even if the inside diameter of the thin tube is made much smaller than 1 mm, works well even if the inside diameter is made much longer than 250 mm, and the application area of the plate heat pipe It was also proved to greatly contribute to expansion, thinning and weight reduction. This is an effect comparable to the effect of lowering the temperature of the heat generation source 1 as the effect of the heat receiving and radiating structure of the present invention.

【0014】[第2実施例] 第2実施例は第1実施例
の簡略化された実施例である。図2においては図1にお
ける温度制御装置3−1が省略されてあり小型簡素化が
図られてある。3−3は冷却水量制御装置であって、水
冷ジャケットプレート3−2内を流れる冷却水流量を制
御し、図1における温度制御装置と同等の機能が与えら
れてある。強制対流水冷は非常に冷却効率がよいので流
量制御だけでも相当に幅広い温度範囲の冷却が可能にな
る。本実施例は流量制御手段に加えて水温制御機能手段
を付加することにより冷却効率を更に向上せしめる事も
可能である。この場合冷却水が凍結する恐れある場合は
メタノール添加、エタノール添加等の混合冷媒とするこ
とにより−20℃の低温化も可能である。本実施例は基
本的には放熱手段として高価なペルチエ効果素子集積プ
レートを省略し、構造単純な水冷構造のみを採用するこ
とにより受放熱構造体の価格を大幅に低減せしめる事を
主目的として。従って低温化の目標温度は+5℃〜+1
0℃前後となる。従来のプレートヒートパイプはこの様
な低温においては作動の活性が大きく失われて熱輸送能
力が大幅に低下するものであったが本発明の受放熱構造
体においては熱媒手段プレートヒートパイプの低温冷媒
の低温における飽和蒸気圧の高さにより、活発な作動性
能を失うことが無いので大容量の熱量輸送と放熱が可能
である。これは本実施例の低温到達機能が大きく失われ
ることをカバーする効果がある。また本実施例であって
も熱量発生源の温度降下による効果は全く失われるもの
では無く、従来の熱量発生源温度より20℃〜30℃は
低下するから温度降下による効果は相当程度には残存保
持される。
[Second Embodiment] The second embodiment is a simplified embodiment of the first embodiment. In FIG. 2, the temperature control device 3-1 in FIG. 1 is omitted, and miniaturization and simplification are achieved. A cooling water amount control device 3-3 controls the flow rate of the cooling water flowing through the water cooling jacket plate 3-2, and has the same function as the temperature control device in FIG. Forced convection water cooling has a very high cooling efficiency, so that a considerably wide temperature range can be cooled only by controlling the flow rate. In this embodiment, the cooling efficiency can be further improved by adding a water temperature control function means in addition to the flow rate control means. In this case, if the cooling water is likely to freeze, it is possible to lower the temperature to -20 ° C by using a mixed refrigerant such as methanol addition or ethanol addition. The main purpose of this embodiment is to omit an expensive Peltier effect element integrated plate as a heat radiating means and to largely reduce the price of a heat receiving / radiating structure by adopting only a simple water cooling structure. Therefore, the target temperature for lowering the temperature is + 5 ° C. to +1
It will be around 0 ° C. In such a conventional plate heat pipe, at such low temperatures, the activity of the operation was largely lost, and the heat transport ability was greatly reduced. Due to the high saturated vapor pressure of the refrigerant at low temperature, active operation performance is not lost, so that large-capacity heat transport and heat dissipation are possible. This has the effect of covering that the low temperature reaching function of this embodiment is largely lost. Also in this embodiment, the effect due to the temperature drop of the calorie generation source is not lost at all, and the temperature drop is 20 ° C. to 30 ° C. lower than the conventional calorie source temperature, so that the effect due to the temperature drop remains to a considerable extent. Will be retained.

【0015】[第3実施例] 図3は本願発明の第3実
施例の説明図であり強制対流風3−4による放熱の実施
例である。この放熱手段の放熱部3−5は強制対流フィ
ン群3−5とペルチエ効果素子集積プレート3−1との
組合わせ構造を採用している。強制対流風3−4による
放熱は周囲空気温度以下に冷却することが出来ない欠点
があるが、ペルチエ効果素子はその低温側面の温度は低
くても、高温側面の温度は十分に高温化させることが出
来るから、この面を強制風冷する事により、低温側面の
温度を充分な低温まで冷却することが出来る。例えば作
動流体として二酸化炭素を適用した場合、その臨界温度
は+31℃であるがペルチエ効果素子を有効利用する事
により、放熱部温度を+41℃と上昇せしめ、作動流体
温度を−9℃まで降下せしめ、発熱素子温度を−7℃と
降下せしめる事が容易であった。
[Third Embodiment] FIG. 3 is an explanatory view of a third embodiment of the present invention, showing an embodiment in which heat is radiated by forced convection air 3-4. The heat radiating portion 3-5 of the heat radiating means employs a combination structure of a forced convection fin group 3-5 and a Peltier effect element integrated plate 3-1. There is a drawback that the heat radiation by the forced convection air 3-4 cannot be cooled below the ambient air temperature, but the Peltier effect element requires that the temperature on the high temperature side be sufficiently high even if the temperature on the low temperature side is low. Therefore, by forcibly cooling this surface, the temperature of the low-temperature side surface can be cooled to a sufficiently low temperature. For example, when carbon dioxide is applied as the working fluid, its critical temperature is + 31 ° C., but by effectively using the Peltier effect element, the temperature of the radiator is raised to + 41 ° C. and the working fluid temperature is lowered to −9 ° C. It was easy to lower the heating element temperature to -7 ° C.

【0016】[0016]

【発明の効果】本願発明の受放熱構造体は、その熱媒手
段であるヒートパイプに封入される冷媒の独特な選択条
件と、温度制御装置が併設された放熱手段の作用によ
り、熱量発生源の発熱素子の作動時温度を従来不可能で
あった極低温度まで引き下げることが可能になった。こ
の極めて低温に制御された発熱素子は高い信頼性が長期
間保証されると共に、本願の受放熱構造体が配設された
機器は高い安全性を保証されるものとなった。特に作動
流体として二酸化炭素を適用し、放熱手段としてペルチ
エ効果応用の温度制御装置を併用した実施例は、機器の
用途に対応した温度制御の容易確実な点、軽量小型に構
成出来る点においてその効果は絶大であった。また地球
環境に対する影響の少ない点、安全性の点においても極
めて優れたものとなった。
The heat receiving and radiating structure according to the present invention has a heat generation source which is formed by a unique selection condition of the refrigerant sealed in the heat pipe as the heat medium means and the action of the heat radiating means provided with the temperature control device. It has become possible to lower the operating temperature of the heating element to an extremely low temperature, which was impossible in the past. The heating element controlled to an extremely low temperature guarantees high reliability for a long time, and the equipment provided with the heat receiving and radiating structure of the present application guarantees high safety. In particular, the embodiment in which carbon dioxide is applied as the working fluid and the temperature control device applying the Peltier effect is used in combination with the radiating means is advantageous in that the temperature control corresponding to the use of the device can be easily and reliably performed, and that the device can be configured to be lightweight and compact. Was overwhelming. In addition, it is extremely excellent in terms of little impact on the global environment and safety.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本願発明の受放熱構造体の基本構造及び第1実
施例の説明図である。
FIG. 1 is an explanatory view of a basic structure and a first embodiment of a heat radiation structure according to the present invention.

【図2】本願発明の受放熱構造体の第2実施例の説明図
である。
FIG. 2 is an explanatory view of a second embodiment of the heat receiving and radiating structure of the present invention.

【図3】本願発明の受放熱構造体の第3実施例の説明図
である。
FIG. 3 is an explanatory view of a third embodiment of the heat radiation structure of the present invention.

【符号の説明】[Explanation of symbols]

1 熱量発生源(小型半導体素子) 2 熱媒手段(プレートヒートパイプ) 3−1 放熱手段の温度制御装置(ペルチエ効果素子集
積プレート) 3−2 放熱手段の放熱部(水冷ジャケットプレート) 3−3 冷却水流量調整装置 3−4 強制対流風 3−5 放熱手段の放熱部(強制対流フィン群) 4−1 冷却水入口 4−2 冷却水出口
1 Heat generation source (small semiconductor element) 2 Heat medium means (plate heat pipe) 3-1 Temperature control device of heat radiating means (Peltier effect element integrated plate) 3-2 Heat radiating part of heat radiating means (water cooling jacket plate) 3-3 Cooling water flow control device 3-4 Forced convection air 3-5 Heat radiating section of heat radiating means (forced convection fin group) 4-1 Cooling water inlet 4-2 Cooling water outlet

フロントページの続き (51)Int.Cl.7 識別記号 FI テーマコート゛(参考) H05K 7/20 H01L 23/46 B Continued on the front page (51) Int.Cl. 7 Identification symbol FI Theme coat II (Reference) H05K 7/20 H01L 23/46 B

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】 熱量発生源(1)と熱媒手段(2)と放
熱手段(3)を必須構成要素として構成されてあり、発
熱体温度を所定の温度に制御する為の受放熱構造体であ
って、半導体素子を主体とする発熱体を熱量発生源
(1)とし、この熱量発生源により供給される熱量を所
定の位置まで輸送すると共に所定の面内に均一に拡散供
給せしめる機能を有し、且つ放熱部から供給される冷熱
量を所定の部分に輸送すると共に熱量発生源に集熱供給
する機能を併せ持つヒートパイプを主たる熱媒手段
(2)とし、このヒートパイプ内には臨界温度が+50
℃以下、臨界圧力が80Kg/cm以下であり、沸点
が−100℃〜+50℃の間にあり、そのオゾン破壊係
数(ODP)はゼロであり、地球温暖化係数は300以
下である凝縮性二相流体が作動流体として封入されてあ
り、このヒートパイプの温度は温度制御装置により作動
流体の臨界温度を超えることのないよう制御されてあ
り、この温度制御装置にはヒートパイプの冷熱輸送集熱
機能により熱量供給手段の温度を所定の温度以下に制御
する機能をも与えられてあり、このような温度制御装置
を備えた放熱構造体を放熱手段(3)として構成されて
あり、熱媒手段であるヒートパイプは、作動流体の軸方
向振動を主たる熱輸送原理とする蛇行細管ヒートパイプ
であるか、二相流体の相変化による受放熱を主たる熱輸
送原理とし且つ耐内圧強度強化手段が施されてある通常
型ヒートパイプであるか、の何れかのヒートパイプまた
はそれらを内蔵したプレートヒートパイプであることを
特徴とする受放熱構造体。
A heat receiving and radiating structure for controlling a heating element temperature to a predetermined temperature, comprising a heat generation source (1), a heat medium means (2), and a heat radiating means (3) as essential components. A heating element mainly composed of a semiconductor element as a heat generation source (1), and a function of transporting the heat supplied by the heat generation source to a predetermined position and uniformly diffusing and supplying the heat within a predetermined plane. A main heat medium means (2) having a function of transporting the amount of cold supplied from the heat radiating section to a predetermined portion and collecting and supplying heat to a heat generation source is defined as a main heat medium means (2). Temperature is +50
° C or less, critical pressure is 80 kg / cm 2 or less, boiling point is between -100 ° C and + 50 ° C, its ozone depletion potential (ODP) is zero, and its global warming potential is 300 or less. A two-phase fluid is sealed as a working fluid, and the temperature of the heat pipe is controlled by a temperature control device so as not to exceed a critical temperature of the working fluid. A function of controlling the temperature of the calorie supply means to a predetermined temperature or lower by a heat function is also provided, and a heat radiating structure provided with such a temperature control device is configured as a heat radiating means (3). The heat pipe, which is a means, is a meandering thin tube heat pipe that mainly uses the axial vibration of the working fluid as the main heat transport principle, or uses the heat transfer principle that mainly receives and receives heat due to the phase change of the two-phase fluid and has an internal resistance. A heat receiving and radiating structure, wherein the heat receiving and radiating structure is a normal heat pipe provided with a means for enhancing pressure strength, or a heat pipe or a plate heat pipe incorporating them.
【請求項2】 熱量発生源(1)、熱媒手段(2)、放
熱手段(3)の三要素を必須構成要素とする受放熱構造
体において、熱量発生源(1)は小型半導体素子を発熱
体とする熱量発生源であり、熱媒手段(2)としては二
酸化炭素を作動流体とするヒートパイプを内蔵する熱拡
散用薄形耐圧プレートヒートパイプが適用されてあり、
放熱手段(3)としてはペルチエ効果素子集積プレート
からなる温度制御装置と水冷ジャケットプレートからな
る冷却装置とが組合わせられて構成された放熱手段が適
用されてあり、熱量発生源と熱媒手段と放熱手段とは相
互に伝熱性良好な状態に接続一体化されてあることを特
徴とする請求項1に記載の受放熱構造体。
2. A heat receiving and radiating structure having three elements of a heat generating source (1), a heat medium means (2) and a heat radiating means (3) as essential components, wherein the heat generating source (1) is a small semiconductor element. A heat-generating source serving as a heating element, and a thin pressure-resistant plate heat pipe for heat diffusion incorporating a heat pipe using carbon dioxide as a working fluid is applied as a heating medium means (2);
As the heat radiating means (3), a heat radiating means constituted by combining a temperature control device composed of a Peltier effect element integrated plate and a cooling device composed of a water cooling jacket plate is applied. The heat receiving and radiating structure according to claim 1, wherein the heat radiating means is connected to and integrated with the heat radiating means in a state of good heat conductivity.
【請求項3】 放熱手段からはペルチエ効果素子集積プ
レートが省略されてあり、水冷ジャケットプレートから
なる冷却装置と組合わせられる温度制御装置としては、
水冷ジャケットプレートに併設される冷却水流量調整装
置が適用されてあることを特徴とする請求項2に記載の
受放熱構造体。
3. A peltier effect element integrated plate is omitted from the heat radiating means, and a temperature control device combined with a cooling device composed of a water cooling jacket plate includes:
The heat receiving and radiating structure according to claim 2, wherein a cooling water flow rate adjusting device attached to the water cooling jacket plate is applied.
【請求項4】 熱媒手段であるヒートパイプは作動流体
として二酸化炭素が封入されてある大面積の受熱面と放
熱面を有する熱拡散用プレートヒートパイプであって、
その受熱面には小接触面積の発熱素子が熱量発生源とし
て実装されてあり、その放熱面には放熱手段の温度制御
装置として、ペルチエ素子で構成された大面積の電子冷
却プレートの受熱面(低温面)が伝熱的に面接続されて
配置されてあり、この電子冷却プレートの放熱面(高温
面)には空冷放熱器の受熱面が伝熱的に面接続して配置
されてあり、電子冷却プレートの受熱面温度はプレート
ヒートパイプの受熱面温度が+31℃を超えないよう、
且つプレートヒートパイプの他の所定の部分が二酸化炭
素の液相化温度以下の所定の温度になるよう、制御する
事が出来るように構成されて放熱手段としてあることを
特徴とする請求項1に記載の受放熱構造体。
4. A heat pipe as a heat medium means is a heat diffusion plate heat pipe having a large-area heat receiving surface and a heat radiating surface in which carbon dioxide is sealed as a working fluid,
On the heat receiving surface, a heating element having a small contact area is mounted as a heat generation source, and on the heat radiating surface, as a temperature control device of a heat radiating means, a heat receiving surface of a large area electronic cooling plate composed of a Peltier element ( A low-temperature surface) is disposed so as to be conductively connected to a surface thereof, and a heat-receiving surface of an air-cooled radiator is disposed on a heat-dissipating surface (a high-temperature surface) of the electronic cooling plate so as to be thermally connected. The temperature of the heat receiving surface of the electronic cooling plate should be such that the temperature of the heat receiving surface of the plate heat pipe does not exceed + 31 ° C.
2. The heat radiation means according to claim 1, wherein the other predetermined portion of the plate heat pipe is configured to be controlled so as to have a predetermined temperature equal to or lower than the liquidus temperature of carbon dioxide, and serves as a heat radiating means. The heat receiving and radiating structure as described in the above.
JP2000233697A 2000-06-28 2000-06-28 Heat-receiving and radiating structure Pending JP2002016204A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2000233697A JP2002016204A (en) 2000-06-28 2000-06-28 Heat-receiving and radiating structure

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2000233697A JP2002016204A (en) 2000-06-28 2000-06-28 Heat-receiving and radiating structure

Publications (1)

Publication Number Publication Date
JP2002016204A true JP2002016204A (en) 2002-01-18

Family

ID=18726182

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000233697A Pending JP2002016204A (en) 2000-06-28 2000-06-28 Heat-receiving and radiating structure

Country Status (1)

Country Link
JP (1) JP2002016204A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006307170A (en) * 2005-03-29 2006-11-09 Asahi Glass Co Ltd Working fluid and working method for latent heat transport apparatus
JP2008311399A (en) * 2007-06-14 2008-12-25 Ibaraki Univ Heat sink
US7895634B2 (en) 2002-11-15 2011-02-22 Sony Corporation Data processing method, data processing apparatus, and program and data recording medium therefor
JP2017031407A (en) * 2002-10-25 2017-02-09 ハネウェル・インターナショナル・インコーポレーテッド Compositions containing fluorine substituted olefins

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS53129502A (en) * 1977-04-18 1978-11-11 Oki Electric Ind Co Ltd Radiating and heating structure of electronic apparatus
JPS60102759A (en) * 1983-11-09 1985-06-06 Fujitsu Ltd Immersion boiling-cooling device
JPH04368156A (en) * 1991-06-17 1992-12-21 Hitachi Ltd Semiconductor cooling structure
JPH0566095A (en) * 1991-04-09 1993-03-19 Akutoronikusu Kk Heat joint device and manufacture thereof
JPH0749157A (en) * 1993-08-04 1995-02-21 Sainikusu:Kk Thermoelectric cooling/heating device
JPH07505703A (en) * 1992-04-22 1995-06-22 スンキョン インダストリーズ カンパニー リミテッド Plate heat exchanger
JPH08102511A (en) * 1994-08-03 1996-04-16 Sumitomo Electric Ind Ltd Diamond heat sink and its fabrication
JPH10220975A (en) * 1997-01-31 1998-08-21 Akutoronikusu Kk Composite plate heat pipe
JPH11257884A (en) * 1998-03-10 1999-09-24 Toshiba Corp Temperature controller employing heat pipe

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS53129502A (en) * 1977-04-18 1978-11-11 Oki Electric Ind Co Ltd Radiating and heating structure of electronic apparatus
JPS60102759A (en) * 1983-11-09 1985-06-06 Fujitsu Ltd Immersion boiling-cooling device
JPH0566095A (en) * 1991-04-09 1993-03-19 Akutoronikusu Kk Heat joint device and manufacture thereof
JPH04368156A (en) * 1991-06-17 1992-12-21 Hitachi Ltd Semiconductor cooling structure
JPH07505703A (en) * 1992-04-22 1995-06-22 スンキョン インダストリーズ カンパニー リミテッド Plate heat exchanger
JPH0749157A (en) * 1993-08-04 1995-02-21 Sainikusu:Kk Thermoelectric cooling/heating device
JPH08102511A (en) * 1994-08-03 1996-04-16 Sumitomo Electric Ind Ltd Diamond heat sink and its fabrication
JPH10220975A (en) * 1997-01-31 1998-08-21 Akutoronikusu Kk Composite plate heat pipe
JPH11257884A (en) * 1998-03-10 1999-09-24 Toshiba Corp Temperature controller employing heat pipe

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017031407A (en) * 2002-10-25 2017-02-09 ハネウェル・インターナショナル・インコーポレーテッド Compositions containing fluorine substituted olefins
US7895634B2 (en) 2002-11-15 2011-02-22 Sony Corporation Data processing method, data processing apparatus, and program and data recording medium therefor
JP2006307170A (en) * 2005-03-29 2006-11-09 Asahi Glass Co Ltd Working fluid and working method for latent heat transport apparatus
JP2008311399A (en) * 2007-06-14 2008-12-25 Ibaraki Univ Heat sink

Similar Documents

Publication Publication Date Title
US5987890A (en) Electronic component cooling using a heat transfer buffering capability
US6658861B1 (en) Cooling of high power density devices by electrically conducting fluids
US7471516B2 (en) Meter with reduced internal temperature rise and associated method
JP2005229047A (en) Cooling system for electronic equipment, and the electronic equipment using same
JP2008085144A (en) Cooler
KR20070112370A (en) A multi-orientational cooling system with a bubble pump
JP2007513506A (en) Cooling system with bubble pump
US20050121180A1 (en) Use of graphite foam materials in pumped liquid, two phase cooling, cold plates
US20210218090A1 (en) Phase-change cooling module and battery pack using same
US20190107333A1 (en) Heat pipes, methods for transferring heat using heat pipes, and heat transfer fluids for use in heat pipes
JP2004071969A (en) Thermoelectric cooling apparatus
Atta Solar thermoelectric cooling using closed loop heat exchangers with macro channels
JP2007010211A (en) Cooling device of electronics device
JP5874935B2 (en) Flat plate cooling device and method of using the same
JP2011009312A (en) Heat transfer device and electronic apparatus
US20050284612A1 (en) Piezo pumped heat pipe
WO2005060370A2 (en) Cooling of high power density devices by electrically conducting fluids
JP2002016204A (en) Heat-receiving and radiating structure
CN112629156A (en) Application of Novec1230 as immersion type insulating cooling liquid
JP2000002493A (en) Cooling unit and cooling structure employing it
Guráš et al. Use of Peltier modules for liquid cooling
Mushan et al. A review of pulsating heat pipes encompassing their dominant factors, flexible structure, and potential applications
JP3695892B2 (en) Loop type heat pipe
JP2001342458A (en) Vaporization-type heat transfer hydraulic fluid
JP2011096983A (en) Cooling device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070627

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20090904

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100112

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100315

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100914

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20110412