JP2002014474A - Pattern forming method - Google Patents

Pattern forming method

Info

Publication number
JP2002014474A
JP2002014474A JP2000198469A JP2000198469A JP2002014474A JP 2002014474 A JP2002014474 A JP 2002014474A JP 2000198469 A JP2000198469 A JP 2000198469A JP 2000198469 A JP2000198469 A JP 2000198469A JP 2002014474 A JP2002014474 A JP 2002014474A
Authority
JP
Japan
Prior art keywords
film
pattern
resist
processed
forming method
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2000198469A
Other languages
Japanese (ja)
Other versions
JP3971088B2 (en
Inventor
Yasuhiko Sato
康彦 佐藤
Toru Gokochi
透 後河内
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP2000198469A priority Critical patent/JP3971088B2/en
Publication of JP2002014474A publication Critical patent/JP2002014474A/en
Application granted granted Critical
Publication of JP3971088B2 publication Critical patent/JP3971088B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Abstract

PROBLEM TO BE SOLVED: To provide a pattern forming method by which a pattern of a film to be worked with a good worked shape can be formed. SOLUTION: The pattern forming method has a step for forming an underlayer film 202 by coating the top of a film 201 to be worked with a solution for the underlayer film prepared by dissolving a novolak compound obtained by dehydration condensation of a naphthol derivative and formaldehyde or a novolak compound obtained by dehydration condensation of an anthracene derivative and formaldehyde in a solvent, a step for forming a resist film 203 on the underlayer film 202, a step for forming a resist pattern 204 by patternwise exposing the resist film 203, a step for forming a pattern 205 of the underlayer film by transferring the resist pattern 204 to the underlayer film 202 and a step for forming a pattern 206 of the film to be worked by transferring the pattern 205 to the film 201 to be worked.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、半導体装置の製造
プロセスにおけるパターン形成方法に関する。
The present invention relates to a pattern forming method in a semiconductor device manufacturing process.

【0002】[0002]

【従来の技術】半導体装置の製造プロセスにおいては、
シリコンウェハー上に被加工膜として複数の物質を堆積
し、これを所望のパターンにパターニングする工程を多
く含んでいる。被加工膜のパターニングに当たっては、
まず、一般にレジストと呼ばれる感光性物質を被加工膜
上に堆積してレジスト膜を形成し、このレジスト膜の所
定の領域に露光を施す。次いで、レジスト膜の露光部ま
たは未露光部を現像処理により除去してレジストパター
ンを形成し、更にこのレジストパターンをエッチングマ
スクとして被加工膜をドライエッチングする。
2. Description of the Related Art In a semiconductor device manufacturing process,
The method includes many steps of depositing a plurality of substances as a film to be processed on a silicon wafer and patterning the same into a desired pattern. In patterning the film to be processed,
First, a photosensitive material generally called a resist is deposited on a film to be processed to form a resist film, and a predetermined region of the resist film is exposed. Next, the exposed portion or the unexposed portion of the resist film is removed by a development process to form a resist pattern, and the film to be processed is dry-etched using the resist pattern as an etching mask.

【0003】このようなプロセスにおいて、レジスト膜
に露光を施すための露光光源としては、KrF、ArF
エキシマレーザなどの紫外光が用いられているが、LS
Iの微細化に伴い、必要な解像度が波長以下になると、
露光量裕度、フォーカス裕度などの露光プロセス裕度が
不足してきている。これらのプロセスマージンを補うに
は、レジスト膜の膜厚を薄くして解像性を向上させるこ
とが有効であるが、一方で被加工膜のエッチングに必要
なレジスト膜厚を確保できなくなってしまうという問題
が生じる。
In such a process, KrF, ArF is used as an exposure light source for exposing a resist film.
Ultraviolet light such as excimer laser is used.
With the miniaturization of I, if the required resolution is below the wavelength,
Exposure process latitude such as exposure latitude and focus latitude is becoming insufficient. To compensate for these process margins, it is effective to improve the resolution by reducing the thickness of the resist film, but on the other hand, the resist film thickness required for etching the film to be processed cannot be secured. The problem arises.

【0004】この問題を解決するため、被加工膜上に下
層膜を形成し、レジストパターンを一旦、下層膜に転写
した後、下層膜パターンをエッチングマスクとして用い
て被加工膜に転写するプロセスの検討が行われている。
このようなプロセスにおいて、下層膜としてはエッチン
グ耐性を有する材料が好ましく、従来、エッチング中の
エネルギーを吸収し、エッチング耐性があることで知ら
れるベンゼン環を含む樹脂が用いられてきた。
In order to solve this problem, a process for forming a lower layer film on a film to be processed, temporarily transferring a resist pattern to the lower layer film, and then transferring the resist pattern to the film to be processed using the lower layer film pattern as an etching mask. Considerations are being made.
In such a process, a material having etching resistance is preferable for the lower layer film. Conventionally, a resin containing a benzene ring, which is known to absorb energy during etching and has etching resistance, has been used.

【0005】[0005]

【発明が解決しようとしている課題】しかしながら、A
rFエキシマレーザーを用いてパターン露光を行なった
場合、下層膜中のべンゼン環の消衰係数が大き過ぎて、
露光光の反射がかえって高くなってしまうという問題が
あった。
SUMMARY OF THE INVENTION However, A
When pattern exposure is performed using an rF excimer laser, the extinction coefficient of the benzene ring in the underlayer film is too large,
There is a problem that the reflection of the exposure light is rather high.

【0006】本発明は、以上の事情に鑑みてなされ、A
rFエキシマレーザ波長領域において効果的に反射を抑
え、かつエッチング耐性を有する下層膜を用いることに
より、良好な加工形状を有する被加工膜パターンを形成
を可能とするパターン形成方法を提供することを目的と
する。
[0006] The present invention has been made in view of the above circumstances,
An object of the present invention is to provide a pattern forming method capable of forming a film pattern to be processed having a good processing shape by using a lower layer film that effectively suppresses reflection in an rF excimer laser wavelength region and has etching resistance. And

【0007】[0007]

【課題を解決するための手段】上記課題を解決するた
め、本発明は、ナフトール誘導体とホルムアルデヒドを
脱水縮合したノボラック化合物、またはアントラセン誘
導体とホルムアルデヒドを脱水縮合したノボラック化合
物を溶媒に溶解して調製した下層膜溶液を被加工膜上に
塗布して下層膜を形成する工程と、前記下層膜上にレジ
スト膜を形成する工程と、前記レジスト膜に対してパタ
ーン露光を行なってレジストパターンを形成する工程
と、前記レジストパターンを前記下層膜に転写して下層
膜パターンを形成する工程と、前記下層膜パターンを前
記被加工膜に転写して被加工膜パターンを形成する工程
とを具備することを特徴とするパターン形成方法を提供
する。
Means for Solving the Problems In order to solve the above-mentioned problems, the present invention was prepared by dissolving a novolak compound obtained by dehydrating and condensing a naphthol derivative and formaldehyde or a novolak compound obtained by dehydrating and condensing an anthracene derivative and formaldehyde in a solvent. Forming a lower layer film by applying a lower layer film solution on a film to be processed, forming a resist film on the lower film, and forming a resist pattern by performing pattern exposure on the resist film Transferring the resist pattern to the lower film to form a lower film pattern, and transferring the lower film pattern to the film to be processed to form a film pattern to be processed. And a pattern forming method.

【0008】本発明の方法において、ナフトール誘導体
として、下記式(1)により表される化合物を用いるこ
とが出来る。
In the method of the present invention, a compound represented by the following formula (1) can be used as a naphthol derivative.

【0009】[0009]

【化6】 (式中、R〜Rは、水素原子、水酸基、炭素数
1〜6のアルキレン基、または炭素数1〜6のヒドロキ
シアルキル基を示す)
Embedded image (Wherein, R 1 to R 8 represent a hydrogen atom, a hydroxyl group, an alkylene group having 1 to 6 carbon atoms, or a hydroxyalkyl group having 1 to 6 carbon atoms)

【0010】また、アントラセン誘導体として、下記式
(2)により表される化合物を用いることが出来る。
[0010] As the anthracene derivative, a compound represented by the following formula (2) can be used.

【0011】[0011]

【化7】 (式中、R〜R10は、水素原子、水酸基、炭素数
1〜6のアルキレン基、または炭素数1〜6のヒドロキ
シアルキル基を示す)
Embedded image (Wherein, R 1 to R 10 represent a hydrogen atom, a hydroxyl group, an alkylene group having 1 to 6 carbon atoms, or a hydroxyalkyl group having 1 to 6 carbon atoms)

【0012】本発明の方法において、下層膜溶液を構成
するノボラック化合物としては、下記式(3)〜(9)
により表されるナフトールノボラックを挙げることが出
来る。
In the method of the present invention, the novolak compounds constituting the underlayer film solution are represented by the following formulas (3) to (9).
And a naphthol novolak represented by

【0013】[0013]

【化8】 Embedded image

【0014】[0014]

【化9】 Embedded image

【0015】[0015]

【化10】 (式中、R20〜R29は、水素原子または水酸基を含
む置換基を示し、R は、炭素数1〜6のアルキレン
基を示し、nは正の整数を示す。)
Embedded image (Wherein, R 20 to R 29 represents a substituent containing a hydrogen atom or a hydroxyl group, R 3 0 is an alkylene group having 1 to 6 carbon atoms, n represents a positive integer.)

【0016】本発明に使用されるノボラック化合物の平
均分子量は、500〜200,000であることが好ま
しい。また、下層膜パターンを形成する工程は、O2
2 、CO、およびCO2 からなる群から選ばれた少な
くとも一種を含むソースガスを用いたドライエッチング
により行うことが出来る。
The novolak compound used in the present invention preferably has an average molecular weight of 500 to 200,000. Further, the step of forming the lower layer film pattern includes O 2 ,
Dry etching using a source gas containing at least one selected from the group consisting of N 2 , CO, and CO 2 can be performed.

【0017】以上のように、本発明は、多環芳香族化合
物を含む下層膜を用いることを特徴とする。多環芳香族
化合物は、波長193nmにおけるk値が高過ぎないた
め、レジストとの複素屈折率のずれが小さい。その結
果、レジストへの露光光の反射光を好適に抑えることが
できるという利点を有する。また、下層膜が多環芳香族
化合物を含んでいるため、被加工膜のエッチングの際
に、下層膜は、エッチングマスクとして好適に作用し、
寸法制御性良く被加工膜を加工することが可能である。
As described above, the present invention is characterized by using a lower film containing a polycyclic aromatic compound. Since the polycyclic aromatic compound does not have a too high k value at a wavelength of 193 nm, the deviation of the complex refractive index from the resist is small. As a result, there is an advantage that reflected light of exposure light to the resist can be suitably suppressed. Further, since the lower film contains a polycyclic aromatic compound, the lower film suitably acts as an etching mask when etching the film to be processed,
It is possible to process the film to be processed with good dimensional controllability.

【0018】[0018]

【発明の実施の形態】以下、図面を参照して、本発明に
ついて詳細に説明する。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS The present invention will be described below in detail with reference to the drawings.

【0019】まず、図1(a)に示すように、ウェハー
基板100上に形成された被加工膜101上に下層膜1
02を形成する。被加工膜101としては、特に限定さ
れることはないが、例えば、ポリメタクリレート、ポリ
アリーレン、ポリアリーレンエーテル、カーボンなどの
有機材料、酸化シリコン、窒化シリコン、酸窒化シリコ
ン、ポリシロキサンなどの絶縁膜、アモルファスシリコ
ン、ポリシリコン、シリコン基板などのシリコン系材
料、アルミニウム、アルミニウムシリサイド、タングス
テン、タングステンシリサイド、カッパー、チタンナイ
トライドなどの金属材料などを挙げることができる。
First, as shown in FIG. 1A, a lower film 1 is formed on a film 101 to be processed formed on a wafer substrate 100.
02 is formed. The film to be processed 101 is not particularly limited. For example, an organic material such as polymethacrylate, polyarylene, polyarylene ether, carbon, or an insulating film such as silicon oxide, silicon nitride, silicon oxynitride, or polysiloxane And silicon-based materials such as amorphous silicon, polysilicon, and silicon substrates; and metal materials such as aluminum, aluminum silicide, tungsten, tungsten silicide, copper, and titanium nitride.

【0020】下層膜102の膜厚は20〜5000nm
の範囲にあることが好ましい。その理由は、膜厚が20
nm以下では、被加工膜101のエッチングの途中で下
層膜102が削れてなくなってしまい、被加工膜101
を所望の寸法で加工することが困難になり、一方、膜厚
が5000nmより厚いと、レジストパターンをドライ
エッチング法で下層膜102にパターン転写する際に、
寸法変換差が発生し易いためである。
The thickness of the lower film 102 is 20 to 5000 nm.
Is preferably within the range. The reason is that the film thickness is 20
If the thickness is smaller than or equal to nm, the lower film 102 will not be removed during the etching of the film 101 to be processed, and
Is difficult to process in a desired size. On the other hand, when the film thickness is more than 5000 nm, when the resist pattern is transferred to the lower film 102 by the dry etching method,
This is because a dimensional conversion difference easily occurs.

【0021】また、下層膜102の露光波長における消
衰係数kは、好ましくは0.02≦k≦0.5、より好
ましくは0.05≦k≦0.4の範囲にあることがよ
く、0.02未満では吸収が低すぎて反射防止能が低下
し、逆に0.5を越えると吸収が高くなりすぎて反射が
高くなってしまうためである。
The extinction coefficient k at the exposure wavelength of the lower film 102 is preferably in the range of 0.02 ≦ k ≦ 0.5, more preferably 0.05 ≦ k ≦ 0.4, If it is less than 0.02, the absorption is too low and the antireflection ability is reduced. If it exceeds 0.5, the absorption becomes too high and the reflection becomes high.

【0022】下層膜102の形成方法は、塗布法を用い
ることが好ましい。その理由は、CVD法と比べると塗
布法はプロセスが簡易で、プロセスコストを低く抑える
ことができるからである。
The lower layer 102 is preferably formed by a coating method. The reason is that the application method has a simpler process than the CVD method, and the process cost can be reduced.

【0023】ここで、塗布法による下層膜102の形成
方法について詳述する。まず、ナフトール誘導体とホル
ムアルデヒドを脱水縮合したノボラック化合物、または
アントラセン誘導体とホルムアルデヒドを脱水縮合した
ノボラック化合物を溶媒に溶解して下層膜溶液を調製す
る。
Here, a method of forming the lower layer film 102 by a coating method will be described in detail. First, a lower layer film solution is prepared by dissolving a novolak compound obtained by dehydrating and condensing a naphthol derivative and formaldehyde or a novolak compound obtained by dehydrating and condensing an anthracene derivative and formaldehyde in a solvent.

【0024】なお、ナフトール誘導体としては、上記式
(1)により表わされる化合物を、アントラセン誘導体
としては、上記式(2)により表わされる化合物を挙げ
ることができる。
The naphthol derivative may be a compound represented by the above formula (1), and the anthracene derivative may be a compound represented by the above formula (2).

【0025】このようなノボラック化合物としては、上
記式(3)〜(9)により表わされる樹脂を挙げること
が出来る。ここで、上記式式(3)〜(9)において、
〜R29は、水素原子または水酸基を含む置換基
を示し、R30は、炭素数1〜6のアルキレン基である
が、R21〜R29は、炭素数1ないし6のアルキル基
であることが好ましく、その理由は、溶媒に対する樹脂
の溶解性が増し、塗布性が向上するためである。さら
に、R21〜R29は、炭素数1ないし6のアルキレン
基であることが好ましく、それは、塗布後、べーキング
した段階で、ヒドロキシアルキル基中の水酸基が架橋す
るためである。
Examples of such a novolak compound include resins represented by the above formulas (3) to (9). Here, in the above equations (3) to (9),
R 2 1 to R 29 represents a substituent containing a hydrogen atom or a hydroxyl group, R 30 is an alkylene group having 1 to 6 carbon atoms, R 21 to R 29 is an alkyl group having 1 to 6 carbon atoms Is preferable, because the solubility of the resin in the solvent is increased, and the coating property is improved. Further, R 21 to R 29 are preferably an alkylene group having 1 to 6 carbon atoms, because a hydroxyl group in the hydroxyalkyl group is crosslinked at the stage of baking after coating.

【0026】式(3)〜(9)により表わされる樹脂の
分子量は、特に限定されることはないが、500〜20
0,000が好ましい。その理由は、分子量が500未
満では、レジストの溶剤に下層膜が溶解してしまい、一
方、200,000を超えると、溶剤に溶解しにくく、
溶液材料を作成しにくくなるためである。
The molecular weight of the resin represented by the formulas (3) to (9) is not particularly limited, but is preferably 500 to 20.
000 is preferred. The reason is that if the molecular weight is less than 500, the underlayer film is dissolved in the solvent of the resist, while if it exceeds 200,000, it is difficult to dissolve in the solvent,
This is because it becomes difficult to prepare a solution material.

【0027】また、必要に応じて貯蔵安定性をはかるた
めに、熱重合防止剤、被加工膜への密着性を向上させる
ための密着性向上剤、導電性物質、光、熱で導電性が生
じる物質、塗布性を向上させるために界面活性剤を添加
してもよい。上記添加剤を添加する場合、下層膜の固形
分を100重量部とすると、樹脂が70重量部以上含ま
れるようにするのが好ましい。
In order to improve the storage stability as required, a thermal polymerization inhibitor, an adhesion enhancer for improving the adhesion to the film to be processed, a conductive substance, and an electric conductivity by light and heat. A surfactant may be added to improve the resulting substance and coatability. When the above additive is added, it is preferable that the resin is contained in an amount of 70 parts by weight or more, when the solid content of the lower layer film is 100 parts by weight.

【0028】樹脂を溶解する溶剤は、特に限定されるこ
とはないが、例えばアセトン、メチルエチルケトン、メ
チルイソブチルケトン、シクロへキサノン等のケトン系
溶剤、メチルセロソルブ、メチルセロソルブアセテー
ト、エチルセロソルブアセテート等のセロソルブ系溶
剤、乳酸エチル、酢酸エチル、酢酸ブチル、酢酸イソア
ミル等のエステル系溶剤、メタノール、エタノール、イ
ソプロパニール等のアルコール系溶剤、その他アニソー
ル、トルエン、キシレン、ナフサ、水などを挙げること
ができる。
The solvent for dissolving the resin is not particularly limited. For example, ketone solvents such as acetone, methyl ethyl ketone, methyl isobutyl ketone and cyclohexanone, and cellosolves such as methyl cellosolve, methyl cellosolve acetate and ethyl cellosolve acetate. Examples thereof include system solvents, ester solvents such as ethyl lactate, ethyl acetate, butyl acetate, and isoamyl acetate; alcohol solvents such as methanol, ethanol, and isopropanyl; and anisole, toluene, xylene, naphtha, and water.

【0029】以上の方法で下層膜溶液を調製し、被加工
膜101上に、例えばスピンコーテング法などで塗布し
た後、加熱して溶剤を気化することにより、下層膜10
2を形成することが出来る。
The underlayer film solution is prepared by the above-described method, applied to the film to be processed 101 by, for example, a spin coating method, and then heated to evaporate the solvent to thereby form the underlayer film 10.
2 can be formed.

【0030】次に、図1(b)に示すように、必要に応
じて、下層膜102上に中間膜103を形成する。中間
膜103としては、特に限定されることはないが、無機
酸化物を好適に用いることができる。無機酸化物として
は、酸化チタン、酸化アルミナ、酸化タングステンなど
を挙げることが出来る。中間膜103としてポリシロキ
サンを用いることも出来る。
Next, as shown in FIG. 1B, an intermediate film 103 is formed on the lower film 102 as required. The intermediate film 103 is not particularly limited, but an inorganic oxide can be preferably used. Examples of the inorganic oxide include titanium oxide, alumina oxide, and tungsten oxide. Polysiloxane can also be used for the intermediate film 103.

【0031】中間膜103の形成方法は、塗布法が好ま
しい。その理由は、CVD法と比べると塗布法はプロセ
スが簡易でプロセスコストを低く抑えることができるか
らである。中間膜103の膜厚は、10〜3000nm
の範囲が好ましく、その理由は、中間膜103の膜厚が
10nm未満では、下層膜102のエッチング途中で中
間膜103が削れてなくなり、3000nmを越える
と、レジストパターンを中間膜103に転写する際に、
加工変換差が顕著に発生してしまうためである。
The method of forming the intermediate film 103 is preferably a coating method. The reason is that the coating method has a simple process and can keep the process cost low as compared with the CVD method. The thickness of the intermediate film 103 is 10 to 3000 nm.
The reason is that, when the thickness of the intermediate film 103 is less than 10 nm, the intermediate film 103 is not removed during the etching of the lower film 102, and when the thickness exceeds 3000 nm, the resist pattern is transferred to the intermediate film 103. To
This is because a processing conversion difference occurs remarkably.

【0032】次に、図1(c)に示すように、中間膜1
03上にレジスト溶液を塗布して、加熱処埋を行い、レ
ジスト膜104を形成する。レジスト膜104の膜厚を
簿くすれば、それだけ、露光時の露光量裕度、フォーカ
ス裕度、或は解像度を向上させることができる。そのた
め、レジスト膜104の膜厚は、中間膜103を寸法制
御性よくエッチングできる膜厚であれば薄い方がよく、
10〜10000nmの範囲が好ましい。
Next, as shown in FIG.
A resist solution is applied on the substrate 03 and heat-treated to form a resist film 104. If the thickness of the resist film 104 is reduced, the exposure latitude, the focus latitude, or the resolution can be improved. Therefore, the thickness of the resist film 104 is preferably small as long as the intermediate film 103 can be etched with good dimensional control.
The range of 10 to 10000 nm is preferred.

【0033】レジストの種類は、特に限定されることは
なく、目的に応じて、ポジ型またはネガ型を選択して使
用することができる。具体的には、ポジ型レジストとし
ては、例えば、ナフトキノンジアジドとノボラック系樹
脂とからなるレジスト(IX−770、日本合成ゴム社
製)、t−BOCで保護したポリビニルフェノール系樹
脂と酸発生剤とからなる化学増幅型レジスト(APEX
−E、シップレー社製)などが挙げられる。
The type of the resist is not particularly limited, and a positive type or a negative type can be selected and used according to the purpose. Specifically, as the positive resist, for example, a resist (IX-770, manufactured by Nippon Synthetic Rubber Co., Ltd.) composed of naphthoquinonediazide and a novolak resin, a polyvinylphenol resin protected with t-BOC, and an acid generator Amplified Resist (APEX)
-E, manufactured by Shipley Co., Ltd.).

【0034】また、ネガ型のレジストとしては、例え
ば、ポリビニルフェノールとメラミン樹脂および光酸発
生剤からなる化学増幅型レジスト(SNR200、シッ
プレー社製)、ポリビニルフェノールとビスアジド化合
物とからなるレジスト(RD−2000N、日立化成社
製)などが挙げられるが、これらに限定されることはな
い。
As the negative resist, for example, a chemically amplified resist (SNR200, manufactured by Shipley Co., Ltd.) comprising polyvinyl phenol, a melamine resin and a photoacid generator, and a resist (RD-RD) comprising polyvinyl phenol and a bisazide compound 2000N, manufactured by Hitachi Chemical Co., Ltd.), but are not limited thereto.

【0035】これらのレジスト溶液を中間膜103上
に、例えばスピンコーテング法、ディップ法などで塗布
した後、加熱して溶媒を気化させることでレジスト膜1
04を作成する。そして、レジスト膜に対してパターン
露光を行い、現像することにより、図1(d)に示すよ
うに、レジストパターン105を形成する。
These resist solutions are applied onto the intermediate film 103 by, for example, a spin coating method or a dipping method, and then heated to evaporate the solvent, thereby forming the resist film 1.
04 is created. Then, the resist film is subjected to pattern exposure and developed to form a resist pattern 105 as shown in FIG.

【0036】露光光源については、水銀灯のg線(43
6nm)、i線(365nm)、或はXeF(波長=3
51nm)、XeCl(波長=308nm),KrF
(波長=248nm),KrCl(波長=222n
m),ArF(波長=193nm)、F2 (波長=15
7nm)等のエキシマレーザーを挙げることができる。
Regarding the exposure light source, the g-line (43
6 nm), i-line (365 nm), or XeF (wavelength = 3
51 nm), XeCl (wavelength = 308 nm), KrF
(Wavelength = 248 nm), KrCl (wavelength = 222 n)
m), ArF (wavelength = 193 nm), F 2 (wavelength = 15
7 nm).

【0037】本発明の方法に使用される下層膜は、露光
光源として紫外光を用いた場合、反射防止膜として好適
に作用するが、露光光源としては、X線、電子ビーム、
イオンビームなどを用いることも可能である。露光終了
後、必要に応じてポストエスクポジャーベーキングを行
った後、TMAH、コリンなどのアルカリ現像液で現像
処理を行って、レジストパターン105を形成する。
The underlayer film used in the method of the present invention suitably acts as an anti-reflection film when ultraviolet light is used as an exposure light source.
It is also possible to use an ion beam or the like. After the exposure is completed, post-exposure baking is performed as necessary, and then development processing is performed with an alkali developing solution such as TMAH or choline to form a resist pattern 105.

【0038】次いで、図2(e)に示すように、ドライ
エッチング法を用いてレジスト膜パターン105を中間
膜103に転写して、中間膜パタ一ン106を形成す
る。エッチング方式としては、例えば反応性イオンエッ
チング、マグネトロン型反応性イオンエッチング、電子
ビームイオンエッチング、ICPエッチング、またはE
CRイオンエッチングなど、微細加工可能なものであれ
ば、特に限定されることはない。
Next, as shown in FIG. 2E, the resist film pattern 105 is transferred to the intermediate film 103 by using a dry etching method, and an intermediate film pattern 106 is formed. Examples of the etching method include reactive ion etching, magnetron type reactive ion etching, electron beam ion etching, ICP etching, and E etching.
There is no particular limitation as long as it can be finely processed, such as CR ion etching.

【0039】その後、図2(f)に示すように、ドライ
エッチング法を用いて中間膜パターン106を下層膜1
02に転写して、下層膜パターン107を形成する。エ
ッチング方式としては、中間膜103をエッチングしだ
場合と同様のものを用いることができる。ソースガスと
しては、特に限定されることはないが、例えばO2 、C
O、CO2 などの酸素原子を含むガス、He、N2 、A
rなどの不活性ガス、Cl2 、BCl3 などの塩素系ガ
ス、その他H2 、NHなどを使用することができ、
これらのガスを混合して用いても良い。
Thereafter, as shown in FIG. 2F, the intermediate film pattern 106 is formed by using the dry etching method.
02 to form a lower layer film pattern 107. As the etching method, the same method as used when the intermediate film 103 is etched can be used. Although the source gas is not particularly limited, for example, O 2 , C
Gases containing oxygen atoms such as O and CO 2 , He, N 2 , A
For example, an inert gas such as r, a chlorine-based gas such as Cl 2 or BCl 3 , H 2 , and NH 3 can be used.
These gases may be mixed and used.

【0040】次に、図2(g)に示すように、ドライエ
ッチング法を用いて下層膜パターン107を被加工膜1
01に転写して、被加工膜パターン108を形成する。
エッチング方式としては、中間膜103をエッチングし
た場合と同様のものを用いることができる。ソースガス
としては、特に限定されることはなく、高いマスク耐性
が得られるため、被加工膜101を異方性良く加工する
ことができる。
Next, as shown in FIG. 2 (g), a lower layer film pattern 107 is formed by dry etching.
01 to form a film pattern 108 to be processed.
As an etching method, the same method as used when the intermediate film 103 is etched can be used. The source gas is not particularly limited, and high mask resistance can be obtained, so that the target film 101 can be processed with good anisotropy.

【0041】上述の実施形態では、下層膜102とレジ
スト膜104との間に中間膜103を介在させた場合に
ついて説明しだが、中間膜を介在させることなく、下層
膜に直接、レジスト膜を形成してもよい。レジストの種
類は特に限定されることはないが、下層膜とのエッチン
グ選択比をとるために、無機原子、特にシリコン原子を
含むレジストを好適に用いることができる。レジスト膜
の膜厚、レジストパターン形成方法、下層膜のエッチン
グ方法については上述の中間層を用いた場合と同様であ
る。
In the above embodiment, the case where the intermediate film 103 is interposed between the lower film 102 and the resist film 104 has been described. However, the resist film is formed directly on the lower film without the intermediate film. May be. The type of the resist is not particularly limited, but a resist containing an inorganic atom, particularly a silicon atom, can be suitably used in order to obtain an etching selectivity with respect to the underlying film. The thickness of the resist film, the method of forming the resist pattern, and the method of etching the lower layer film are the same as those in the case where the above-described intermediate layer is used.

【0042】[0042]

【実施例】以下、本発明の種々の実施例と比較例を示
し、本発明の効果について、より具体的に説明する。 実施例1 図3(a)〜(e)を参照して、シリコンウエハー上に
SiO2 パターンを形成した例について説明する。ま
ず、図3(a)に示すように、シリコンウェハー200
上に、被加工膜として、LPCVD法にて膜厚500n
mのSiO2 膜201を形成した。
EXAMPLES Hereinafter, various examples and comparative examples of the present invention will be shown, and the effects of the present invention will be described more specifically. Example 1 An example in which an SiO 2 pattern is formed on a silicon wafer will be described with reference to FIGS. First, as shown in FIG.
A film to be processed is formed to a thickness of 500 n by an LPCVD method.
m SiO 2 film 201 was formed.

【0043】次いで、被加工膜201上に、以下の(S
1)〜(S4)に示す方法で、下層膜202を形成し
た。下層膜202の膜厚は、300nmである。分光エ
リプソを用いて測定した各下層膜202の露光波長19
3nmにおける複素屈折率の測定結果を下記表2に示
す。
Next, on the film 201 to be processed, the following (S
1) to (S4), the lower film 202 was formed. The thickness of the lower layer film 202 is 300 nm. Exposure wavelength 19 of each lower layer film 202 measured using a spectral ellipsometer
The measurement results of the complex refractive index at 3 nm are shown in Table 2 below.

【0044】(S1):平均重量分子量12,000の
下記式(10−1)により表わされるノボラック系樹脂
10gを乳酸エチル90gに溶解して下層膜溶液を調製
した後、スピンコーテング法を用いて被加工膜201上
に塗布した後、250℃で2分間べーキングを行なっ
て、下層膜202を形成した。
(S1): A lower layer solution is prepared by dissolving 10 g of a novolak resin represented by the following formula (10-1) having an average weight molecular weight of 12,000 in 90 g of ethyl lactate, and then using a spin coating method. After coating on the film 201 to be processed, baking was performed at 250 ° C. for 2 minutes to form a lower layer film 202.

【0045】(S2):(S1)において、平均重量分
子量10,000の下記式(10−2)により表わされ
るノボラック系樹脂10gを乳酸エチル90gに溶解し
て調製した下層膜溶液を用いた。
(S2): An underlayer film solution prepared by dissolving 10 g of a novolak resin represented by the following formula (10-2) having an average weight molecular weight of 10,000 in 90 g of ethyl lactate in (S1).

【0046】(S3):(S1)において、平均重量分
子量11,000の下記式(10−3)により表わされ
るフェノール系樹脂10gを乳酸エチル90gに溶解し
て調製した下層膜溶液を用いた。
(S3): An underlayer film solution prepared by dissolving 10 g of a phenolic resin represented by the following formula (10-3) having an average weight molecular weight of 11,000 in 90 g of ethyl lactate in (S1).

【0047】(S4):(S1)において、平均重量分
子量8,000の下記式(10−4)により表わされる
フェノール系樹脂10gを乳酸エチル90gに溶解して
調製した下層膜溶液を用いた。
(S4): An underlayer film solution prepared by dissolving 10 g of a phenolic resin represented by the following formula (10-4) having an average weight molecular weight of 8,000 in 90 g of ethyl lactate in (S1) was used.

【0048】[0048]

【化11】 Embedded image

【0049】次に、下層膜202上に、下記式(11)
により表される、平均重量分子量12,000の溶解抑
止剤9gと、下記式(12)により表される酸発生剤1
gを乳酸エチル90gに溶解して調製したレジストをス
ピンコーテング法で塗布した後、ホットプレートを用い
て140℃で90秒間ベーキングを行って、図3(b)
に示すように、膜厚200nmのレジスト膜203を形
成した。
Next, on the lower film 202, the following formula (11)
9 g of a dissolution inhibitor having an average weight molecular weight of 12,000 and an acid generator 1 represented by the following formula (12)
g was dissolved in 90 g of ethyl lactate, and the resist was applied by a spin coating method, and baked at 140 ° C. for 90 seconds using a hot plate to obtain a resist as shown in FIG.
As shown in FIG. 7, a resist film 203 having a thickness of 200 nm was formed.

【0050】[0050]

【化12】 Embedded image

【0051】更に、ArFエキシマレーザーを用いて、
レジスト膜203に対してパターン露光を行った後、1
40℃で90秒間べーキングを行った。続いて、0.2
1規定のテトラヒドロキシアンモニウムを用いて現像処
理を行って、図3(c)に示すように、直径0.15μ
mのコンタクトホールパターンを有するレジストパター
ン204形成した。その結果、何れの下層膜202上に
形成したレジストパターン204の側壁にも、定在波に
よる波打ち形状は見られなかった。
Further, using an ArF excimer laser,
After pattern exposure is performed on the resist film 203, 1
Baking was performed at 40 ° C. for 90 seconds. Then, 0.2
A developing process is performed using 1N tetrahydroxyammonium, and as shown in FIG.
A resist pattern 204 having an m contact hole pattern was formed. As a result, no wavy shape due to the standing wave was found on the side wall of the resist pattern 204 formed on any of the lower films 202.

【0052】レジスト膜203と下層膜202の界面で
の光強度反射率を、下層膜202の膜厚に対して計算し
た。その際、計算に用いた各層の波長193nmにおけ
る複素屈折率は、下記表1に示す通りである。計算結果
を下記表2に示す。
The light intensity reflectance at the interface between the resist film 203 and the lower film 202 was calculated with respect to the thickness of the lower film 202. At that time, the complex refractive index at a wavelength of 193 nm of each layer used in the calculation is as shown in Table 1 below. The calculation results are shown in Table 2 below.

【0053】下記表2から、本実施例における何れの下
層膜(S1、S2、S3、S4)を用いた場合も、反射
率は1.3%以下と低いことが分かる。従って、レジス
トパターンの側壁に定在波による波打ち形状が見られな
かったのは、下層膜からレジスト膜への露光光の反射を
充分に抑えることができたためと考えることができる。
From Table 2 below, it can be seen that the reflectance is as low as 1.3% or less in any of the lower layers (S1, S2, S3 and S4) in this embodiment. Therefore, it can be considered that the reason why the wavy shape due to the standing wave was not observed on the side wall of the resist pattern was that the reflection of the exposure light from the lower film to the resist film could be sufficiently suppressed.

【0054】次に、図3(d)に示すように、ドライエ
ッチング法を用いて、レジストパターン204を下層膜
202に転写して、下層膜パターン205を形成した。
エッチャーとしては、マグネトロン型反応性イオンエッ
チング装置を用い、エッチングガスとしてN2 /O2
10/100sccmを用い、真空度75mT、励起密
度1.3W/cm2 、基板温度40℃の条件で、エッチ
ングを行なった。その結果、何れの下層膜(S1、S
2、S3、S4)を用いた場合も、図3(d)に示すよ
うに、異方性良く加工を行なうことができた。
Next, as shown in FIG. 3D, the resist pattern 204 was transferred to the lower film 202 by using a dry etching method to form a lower film pattern 205.
As the etcher, a magnetron-type reactive ion etching apparatus was used, and N 2 / O 2 =
Etching was performed using 10/100 sccm under the conditions of a vacuum degree of 75 mT, an excitation density of 1.3 W / cm 2 , and a substrate temperature of 40 ° C. As a result, any of the lower layers (S1, S
2, S3, and S4), processing could be performed with good anisotropy as shown in FIG.

【0055】次に、図3(e)に示すように、ドライエ
ッチング法を用いて、下層膜パターン205を被加工膜
201に転写して、被加工膜パターン206を形成し
た。エッチャーとしてはマグネトロン型反応性イオンエ
ッチング装置を用い、エッチングガスとしてCF4 /O
2 /Ar=5/10/100sccmを用い、真空度7
5mT、励起密度1.3W/cm2 、基板温度40℃の
条件で、エッチングを行なった。
Next, as shown in FIG. 3 (e), the lower layer film pattern 205 was transferred to the film 201 by dry etching to form a film pattern 206 to be processed. A magnetron-type reactive ion etching apparatus was used as an etcher, and CF 4 / O was used as an etching gas.
2 / Ar = 5/10/100 sccm, vacuum degree 7
Etching was performed under the conditions of 5 mT, an excitation density of 1.3 W / cm 2 , and a substrate temperature of 40 ° C.

【0056】このようにして得た被加工膜パターン20
6のテーパー角を測定した。その結果を下記表2に示
す。下記表2から、被加工膜パターン206のテーパー
角は、いずれの下層膜(S1、S2、S3、S4)を用
いた場合も、許容値の87°以上であり、被加工膜が異
方性良く加工されていることが分かる。
The film pattern to be processed 20 thus obtained
6 was measured. The results are shown in Table 2 below. From Table 2 below, the taper angle of the film pattern 206 to be processed is more than the allowable value of 87 ° when any of the lower layers (S1, S2, S3, S4) is used. It turns out that it is processed well.

【0057】下層膜及び被加工膜のエッチングレートを
調べ、被加工膜の下層膜に対するエッチング選択比(=
被加工膜のエッチレート/下層膜のエッチレート)を算
出した結果を下記表2に示す。下記表2から、いずれの
下層膜(S1、S2、S3、S4)を用いた場合も、ほ
ぼ9.2以上もの選択比が得られており、被加工膜の良
好な加工形状が得られたのは、下層膜のエッチング耐性
が充分高かったためと考えられる。
The etching rates of the lower film and the film to be processed are examined, and the etching selectivity (=
Table 2 below shows the result of calculating (etch rate of the film to be processed / etch rate of the lower layer film). From Table 2 below, when any of the lower layer films (S1, S2, S3, S4) was used, a selectivity of about 9.2 or more was obtained, and a good processed shape of the film to be processed was obtained. This is probably because the etching resistance of the lower layer film was sufficiently high.

【0058】比較例 本比較例は、実施例1において、下層膜として、以下の
方法(R1)、(R2)の方法で作成した、芳香環を一
つ含むノボラック系樹脂、或いはポリビニルフェノール
系樹脂からなる膜を用いた場合の例である。
Comparative Example In this comparative example, a novolak resin containing one aromatic ring or a polyvinylphenol resin prepared by the following method (R1) or (R2) as the lower layer film in Example 1 was used. This is an example in the case of using a film made of.

【0059】(R1):下記式(13―1)により表さ
れる、平均重量分子量11,000のノボラック系樹脂
10gを乳酸エチル90gに溶解し、実施例1の(S
1)と同様の方法で下層膜を形成した。
(R1): 10 g of a novolak resin represented by the following formula (13-1) and having an average weight molecular weight of 11,000 was dissolved in 90 g of ethyl lactate.
A lower layer film was formed in the same manner as in 1).

【0060】(R2):下記式(13―2)により表さ
れる、平均重量分子量12,000のポリビニルフェノ
ール系樹脂10gを乳酸エチル90gに溶解し、実施例
1の(S1)と同様の方法で下層膜を形成した。
(R2): A solution of 10 g of a polyvinylphenol resin having an average weight molecular weight of 12,000 represented by the following formula (13-2) dissolved in 90 g of ethyl lactate, and treated in the same manner as in (S1) of Example 1. To form a lower layer film.

【0061】[0061]

【化13】 Embedded image

【0062】実施例1と同様にして、シリコンウェハー
上に、被加工膜としてSiO2 膜を形成した。次いで、
被加工膜上に、上記(R1)、(R2)に示す方法で、
下層膜を形成した。下層膜の膜厚は、300nmであ
る。分光エリプソを用いて測定した各下層膜の露光波長
193nmにおける複素屈折率の測定結果を、下記表1
に示す。
In the same manner as in Example 1, a SiO 2 film was formed as a film to be processed on a silicon wafer. Then
On the film to be processed, by the method shown in the above (R1) and (R2),
A lower layer film was formed. The thickness of the lower layer film is 300 nm. Table 1 shows the measurement results of the complex refractive index of each underlayer film at an exposure wavelength of 193 nm measured using a spectral ellipsometer.
Shown in

【0063】次に、実施例1と同様にして、レジストパ
ターンを形成し、このレジストパターンを下層膜に転写
して下層膜パターンを形成した後、下層膜パターンを被
加工膜に転写して被加工膜パターンを形成した。被加工
膜パターンのテーパー角を測定した結果を下記表2に示
す。
Next, in the same manner as in Example 1, a resist pattern is formed, and this resist pattern is transferred to an underlayer film to form an underlayer film pattern. Then, the underlayer film pattern is transferred to a film to be processed and covered. A processed film pattern was formed. The results of measuring the taper angle of the film pattern to be processed are shown in Table 2 below.

【0064】下記表2から、何れの下層膜(R1、R
2)を用いた場合も、許容値の87°以下であり、異方
性良く被加工膜を加工することができなかった。被加工
膜の下層模に対するエッチング選択比を算出した結果を
下記表2に示す。下記表2から、エッチング選択比は、
実施例1で用いた下層膜と比べると低く、良好な被加工
膜の加工形状が得られなかったのは、下層膜のエッチン
グ耐性が充分でなかったためと考えられる。
From Table 2 below, it can be seen that any of the lower films (R1, R
Even when 2) was used, the allowable value was 87 ° or less, and the film to be processed could not be processed with good anisotropy. Table 2 below shows the result of calculating the etching selectivity with respect to the lower layer of the film to be processed. From Table 2 below, the etching selectivity is
It is lower than the lower layer film used in Example 1, and it is considered that the reason why a favorable processed shape of the film to be processed was not obtained was that the etching resistance of the lower layer film was not sufficient.

【0065】実施例2 本実施例は、実施例1において、中間膜を用いた多層レ
ジストプロセスにより、被加工膜の加工を行なった場合
の実施例である。図1および図2を参照して説明する。
Embodiment 2 This embodiment is an embodiment in which the processing of the film to be processed is performed by the multilayer resist process using the intermediate film in the embodiment 1. This will be described with reference to FIGS.

【0066】まず、図1(a)に示すように、実施例1
と同様にして、シリコンウェハー100上に被加工膜1
01、下層膜102を順次形成した。
First, as shown in FIG.
The film to be processed 1 is formed on the silicon wafer 100 in the same manner as
01, a lower film 102 was sequentially formed.

【0067】次いで、平均重量分子量12,000の、
下記式(14)により表わされるポリシロキサン10g
をイソプロピルアルコール90gに溶解して調製した中
間膜の溶液材料を、スピンコーテング法を用いて下層膜
102上に塗布した後、ホットプレートを用いて300
℃で90秒間ベーキングを行なって、図1(b)に示す
ように、中間膜103を形成した。
Next, an average weight molecular weight of 12,000,
10 g of a polysiloxane represented by the following formula (14)
Is dissolved in 90 g of isopropyl alcohol, and a solution material for the intermediate film prepared is applied on the lower film 102 by a spin coating method, and then 300 μm is applied using a hot plate.
Baking was performed at 90 ° C. for 90 seconds to form an intermediate film 103 as shown in FIG.

【0068】次に、平均重量分子量11,000の下記
式(15)により表わされる溶解抑止剤9g、下記式
(16)により表わされる酸発生剤1gを乳酸エチルに
溶解して調製したレジスト溶液を、スピンコーテング法
を用いて中間膜103上に塗布した後、ホットプレート
を用いて140℃で90秒間べーキングを行ない、図1
(c)に示すように、レジスト膜104を形成した。
Next, a resist solution prepared by dissolving 9 g of a dissolution inhibitor represented by the following formula (15) having an average molecular weight of 11,000 and 1 g of an acid generator represented by the following formula (16) in ethyl lactate was prepared. After coating on the intermediate film 103 using a spin coating method, baking was performed at 140 ° C. for 90 seconds using a hot plate, and FIG.
As shown in (c), a resist film 104 was formed.

【0069】[0069]

【化14】 Embedded image

【0070】更に、ArFエキシマレーザーを用いてレ
ジスト膜104に対してパターン露光を行った後、14
0℃で90秒間べーキングを行った。続いて、0.21
規定のテトラヒドロキシアンモニウムを用いて現像処理
を行って、図1(d)に示すように、直径0.15μm
のコンタクトホールパターンを有するレジストパターン
105を形成した。
Further, after pattern exposure is performed on the resist film 104 using an ArF excimer laser,
Baking was performed at 0 ° C. for 90 seconds. Subsequently, 0.21
A developing process is performed using a specified tetrahydroxyammonium, and as shown in FIG.
The resist pattern 105 having the contact hole pattern was formed.

【0071】その後、ドライエッチング法を用いて、レ
ジストパターン105を中間膜103に転写して、図2
(e)に示すように、中間膜パターン106を形成し
た。エッチャーとしては、マグネトロン型反応性イオン
エッチング装置を用い、エッチングガスとしてCF4
2 /Ar=10/10/100sccmを用い、真空
度75mT、励起密度1.3W/cm2 、基板温度40
℃の条件で、エッチングを行なった。
Thereafter, the resist pattern 105 is transferred to the intermediate film 103 by using a dry etching method.
As shown in (e), an intermediate film pattern 106 was formed. As the etcher, a magnetron type reactive ion etching apparatus was used, and CF 4 /
O 2 / Ar = 10/10/100 sccm, vacuum degree 75 mT, excitation density 1.3 W / cm 2 , substrate temperature 40
Etching was performed under the condition of ° C.

【0072】次いで、ドライエッチング法を用いて、中
間膜パターン106を下層膜102に転写して、図2
(f)に示すように、下層膜パターン107を形成し
た。使用したエッチャーおよびエッチング条件は、実施
例1で下層膜をエッチングした場合と同様とした。下層
膜パターン107の加工形状を観察したところ、実施例
1と同様に、異方性良く加工することができた。
Next, the intermediate film pattern 106 is transferred to the lower film 102 by using a dry etching method.
As shown in (f), a lower film pattern 107 was formed. The etcher and the etching conditions used were the same as in the case of etching the lower layer film in Example 1. Observation of the processed shape of the lower layer film pattern 107 showed that it could be processed with good anisotropy as in Example 1.

【0073】次に、図2(g)に示すように、ドライエ
ッチング法を用いて、下層膜パターン107を被加工膜
101に転写して、被加工膜パターン108を形成し
た。使用したエッチャーおよびエッチング条件は、実施
例1で被加工膜をエッチングした場合と同様とした。
Next, as shown in FIG. 2G, the lower film pattern 107 was transferred to the film 101 by dry etching to form a film pattern 108. The etcher and etching conditions used were the same as in the case of etching the film to be processed in Example 1.

【0074】このようにして形成した被加工膜パターン
108のテーパー角を測定した結果を下記表2に示す。
下記表2から、何れの下層膜を用いた場合も、許容値の
87°以下で異方性良く加工することができたことがわ
かる。これは、本実施例で用いた下層膜のエッチング耐
性が高いためと考えられる。
The results of measuring the taper angle of the film pattern to be processed 108 thus formed are shown in Table 2 below.
From Table 2 below, it can be seen that, regardless of the use of any of the lower layer films, processing was performed with good anisotropy at an allowable value of 87 ° or less. This is presumably because the lower layer film used in this example has high etching resistance.

【0075】[0075]

【表1】 [Table 1]

【0076】[0076]

【表2】 [Table 2]

【0077】[0077]

【発明の効果】以上、詳細に説明したように、本発明に
よると、下層膜として、ノボラック樹脂を用いているた
め、レジストへの露光光の反射光を好適に抑えることが
出来るとともに、被加工膜のエッチングの際に、下層膜
は、エッチングマスクとして好適に作用し、寸法制御性
良く被加工膜を加工することが可能である。
As described in detail above, according to the present invention, the novolak resin is used as the lower layer film, so that the reflected light of the exposure light to the resist can be suitably suppressed, and When the film is etched, the lower layer film suitably acts as an etching mask, and the film to be processed can be processed with good dimensional control.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の一実施形態に係るパターン形成プロセ
スを工程順に示す断面図。
FIG. 1 is a sectional view showing a pattern forming process according to an embodiment of the present invention in the order of steps.

【図2】本発明の一実施形態に係るパターン形成プロセ
スを工程順に示す断面図。
FIG. 2 is a sectional view showing a pattern forming process according to an embodiment of the present invention in the order of steps.

【図3】本発明の他の実施形態に係るパターン形成プロ
セスを工程順に示す断面図。
FIG. 3 is a cross-sectional view showing a pattern forming process according to another embodiment of the present invention in the order of steps.

【符号の説明】[Explanation of symbols]

100,200…基板 101,201…被加工膜 102,202…下層膜 103…中間膜 104,203…レジスト膜 105,204…レジストパターン 106…中間膜パターン 107,205…下層膜パターン 108,206…被加工膜パターン 100, 200 substrate 101, 201 film 102, 202 lower film 103 intermediate film 104, 203 resist film 105, 204 resist pattern 106 intermediate film pattern 107, 205 lower film pattern 108, 206 Processed film pattern

───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.7 識別記号 FI テーマコート゛(参考) H01L 21/302 H Fターム(参考) 2H025 AA02 AA03 AA09 AB16 AC04 AC08 AD01 AD03 DA34 FA41 2H096 AA25 CA05 EA05 HA23 5F004 AA04 BA13 CA03 CA04 DA01 DA23 DA25 DA26 DB26 EA02 EA28 5F046 CA04 CA07 PA07 ──────────────────────────────────────────────────続 き Continued on the front page (51) Int.Cl. 7 Identification code FI Theme coat ゛ (Reference) H01L 21/302 HF term (Reference) 2H025 AA02 AA03 AA09 AB16 AC04 AC08 AD01 AD03 DA34 FA41 2H096 AA25 CA05 EA05 HA23 5F004 AA04 BA13 CA03 CA04 DA01 DA23 DA25 DA26 DB26 EA02 EA28 5F046 CA04 CA07 PA07

Claims (6)

【特許請求の範囲】[Claims] 【請求項1】ナフトール誘導体とホルムアルデヒドを脱
水縮合したノボラック化合物、またはアントラセン誘導
体とホルムアルデヒドを脱水縮合したノボラック化合物
を溶媒に溶解して調製した下層膜溶液を被加工膜上に塗
布して下層膜を形成する工程と、 前記下層膜上にレジスト膜を形成する工程と、 前記レジスト膜に対してパターン露光を行なってレジス
トパターンを形成する工程と、 前記レジストパターンを前記下層膜に転写して下層膜パ
ターンを形成する工程と、 前記下層膜パターンを前記被加工膜に転写して被加工膜
パターンを形成する工程とを具備することを特徴とする
パターン形成方法。
An underlayer film solution prepared by dissolving a novolak compound obtained by dehydrating and condensing a naphthol derivative and formaldehyde or a novolak compound obtained by dehydrating and condensing an anthracene derivative and formaldehyde in a solvent is applied to a film to be processed to form an underlayer film. Forming, forming a resist film on the underlayer film, performing pattern exposure on the resist film to form a resist pattern, and transferring the resist pattern to the underlayer film to form an underlayer film A pattern forming method, comprising: forming a pattern; and transferring the lower layer film pattern to the film to be processed to form a film pattern to be processed.
【請求項2】前記ナフトール誘導体として、下記式
(1)により表される化合物を用いることを特徴とする
請求項1に記載のパターン形成方法。 【化1】 (式中、R〜Rは、水素原子、水酸基、炭素数
1〜6のアルキレン基、または炭素数1〜6のヒドロキ
シアルキル基を示す)
2. The pattern forming method according to claim 1, wherein a compound represented by the following formula (1) is used as the naphthol derivative. Embedded image (Wherein, R 1 to R 8 represent a hydrogen atom, a hydroxyl group, an alkylene group having 1 to 6 carbon atoms, or a hydroxyalkyl group having 1 to 6 carbon atoms)
【請求項3】前記アントラセン誘導体として、下記式
(2)により表される化合物を用いることを特徴とする
請求項1に記載のパターン形成方法。 【化2】 (式中、R〜R10は、水素原子、水酸基、炭素数
1〜6のアルキレン基、または炭素数1〜6のヒドロキ
シアルキル基を示す)
3. The pattern forming method according to claim 1, wherein a compound represented by the following formula (2) is used as the anthracene derivative. Embedded image (Wherein, R 1 to R 10 represent a hydrogen atom, a hydroxyl group, an alkylene group having 1 to 6 carbon atoms, or a hydroxyalkyl group having 1 to 6 carbon atoms)
【請求項4】前記ノボラック化合物は、下記式(3)〜
(9)により表されるナフトールノボラックであること
を特徴とする請求項1に記載のパターン形成方法。 【化3】 【化4】 【化5】 (式中、R20〜R29は、水素原子または水酸基を含
む置換基を示し、R は、炭素数1〜6のアルキレン
基を示し、nは正の整数を示す。)
4. The novolak compound according to the following formula (3):
The pattern forming method according to claim 1, wherein the naphthol novolak is represented by (9). Embedded image Embedded image Embedded image (Wherein, R 20 to R 29 represents a substituent containing a hydrogen atom or a hydroxyl group, R 3 0 is an alkylene group having 1 to 6 carbon atoms, n represents a positive integer.)
【請求項5】前記ノボラック化合物の平均分子量は、5
00〜200,000であることを特徴とする請求項1
に記載のパターン形成方法。
5. The novolak compound has an average molecular weight of 5
2. The method according to claim 1, wherein the number is from 00 to 200,000.
4. The pattern forming method according to 1.
【請求項6】前記下層膜パターンを形成する工程が、O
2 、N2 、CO、およびCO2 からなる群から選ばれた
少なくとも一種を含むソースガスを用いたドライエッチ
ングでなされることを特徴とする請求項1に記載のパタ
ーン形成方法。
6. The step of forming the lower layer film pattern comprises the steps of
2, N 2, CO, and a pattern forming method according to claim 1, characterized in that it is made by dry etching using a source gas containing at least one selected from the group consisting of CO 2.
JP2000198469A 2000-06-30 2000-06-30 Pattern formation method Expired - Fee Related JP3971088B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2000198469A JP3971088B2 (en) 2000-06-30 2000-06-30 Pattern formation method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2000198469A JP3971088B2 (en) 2000-06-30 2000-06-30 Pattern formation method

Publications (2)

Publication Number Publication Date
JP2002014474A true JP2002014474A (en) 2002-01-18
JP3971088B2 JP3971088B2 (en) 2007-09-05

Family

ID=18696630

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000198469A Expired - Fee Related JP3971088B2 (en) 2000-06-30 2000-06-30 Pattern formation method

Country Status (1)

Country Link
JP (1) JP3971088B2 (en)

Cited By (45)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2006003850A1 (en) 2004-07-02 2006-01-12 Nissan Chemical Industries, Ltd. Lower layer film forming composition for lithography including naphthalene ring having halogen atom
JP2006293207A (en) * 2005-04-14 2006-10-26 Shin Etsu Chem Co Ltd Resist underlayer film material and pattern forming method
WO2006132088A1 (en) * 2005-06-10 2006-12-14 Nissan Chemical Industries, Ltd. Coating-type underlayer film forming composition containing naphthalene resin derivative for lithography
US7214743B2 (en) 2003-06-18 2007-05-08 Shin-Etsu Chemical Co., Ltd. Resist lower layer film material and method for forming a pattern
JP2007165703A (en) * 2005-12-15 2007-06-28 Nec Electronics Corp Patterning method for multi-layered resist film and manufacturing method for semiconductor device
JP2007199653A (en) * 2005-12-27 2007-08-09 Shin Etsu Chem Co Ltd Photoresist underlayer film forming material and pattern forming method
WO2007105776A1 (en) * 2006-03-14 2007-09-20 Jsr Corporation Composition for forming lower layer film and pattern forming method
JP2007300125A (en) * 2006-05-02 2007-11-15 Hynix Semiconductor Inc Method for fabricating fine pattern in semiconductor device
US7303855B2 (en) 2003-10-03 2007-12-04 Shin-Etsu Chemical Co., Ltd. Photoresist undercoat-forming material and patterning process
JP2007316188A (en) * 2006-05-24 2007-12-06 Shin Etsu Chem Co Ltd Antireflection film material and pattern forming method
US7314702B2 (en) * 2003-01-24 2008-01-01 Samsung Electronics Co., Ltd. Composition for a bottom-layer resist
JP2008016839A (en) * 2006-06-30 2008-01-24 Hynix Semiconductor Inc Method of forming fine pattern of semiconductor device
US7326523B2 (en) * 2004-12-16 2008-02-05 International Business Machines Corporation Low refractive index polymers as underlayers for silicon-containing photoresists
JP2008065081A (en) * 2006-09-07 2008-03-21 Jsr Corp Composition for forming resist underlayer film and pattern forming method
US7358025B2 (en) 2005-03-11 2008-04-15 Shin-Etsu Chemical Co., Ltd. Photoresist undercoat-forming material and patterning process
US7416833B2 (en) 2004-07-15 2008-08-26 Shin-Etsu Chemical Co., Ltd. Photoresist undercoat-forming material and patterning process
US7427464B2 (en) 2004-06-22 2008-09-23 Shin-Etsu Chemical Co., Ltd. Patterning process and undercoat-forming material
US7476485B2 (en) 2003-05-28 2009-01-13 Shin-Estu Chemical Co., Ltd. Resist lower layer film material and method for forming a pattern
WO2008142546A3 (en) * 2007-05-22 2009-02-05 Az Electronic Materials Usa An antireflective coating composition comprising fused aromatic rings
JP2009026810A (en) * 2007-07-17 2009-02-05 Asahi Glass Co Ltd Pattern forming method
US7510820B2 (en) 2005-11-28 2009-03-31 Shin-Etsu Chemical Co., Ltd. Resist undercoat-forming material and patterning process
WO2009072465A1 (en) 2007-12-07 2009-06-11 Mitsubishi Gas Chemical Company, Inc. Composition for forming base film for lithography and method for forming multilayer resist pattern
US7632624B2 (en) 2006-05-25 2009-12-15 Shin-Etsu Chemical Co., Ltd. Photoresist undercoat-forming material and patterning process
US7691556B2 (en) 2004-09-15 2010-04-06 Az Electronic Materials Usa Corp. Antireflective compositions for photoresists
US7745104B2 (en) 2006-08-10 2010-06-29 Shin-Etsu Chemical Co., Ltd. Bottom resist layer composition and patterning process using the same
US7807332B2 (en) 2005-07-06 2010-10-05 International Business Machines Corporation Underlayer compositions containing heterocyclic aromatic structures
US7932018B2 (en) 2008-05-06 2011-04-26 Az Electronic Materials Usa Corp. Antireflective coating composition
US7989144B2 (en) 2008-04-01 2011-08-02 Az Electronic Materials Usa Corp Antireflective coating composition
WO2011099235A1 (en) 2010-02-12 2011-08-18 三菱瓦斯化学株式会社 Underlayer film material, and method for formation of multilayer resist pattern
KR20110139118A (en) 2010-06-21 2011-12-28 신에쓰 가가꾸 고교 가부시끼가이샤 Naphthalene derivative, resist bottom layer material, resist bottom layer forming method, and patterning process
WO2012043403A1 (en) * 2010-09-29 2012-04-05 Jsr株式会社 Pattern forming method, resist underlayer film, and composition for forming resist underlayer film
JP2012145897A (en) * 2011-01-14 2012-08-02 Shin Etsu Chem Co Ltd Resist underlayer film material and pattern forming method using the same
KR20120110048A (en) 2011-03-28 2012-10-09 신에쓰 가가꾸 고교 가부시끼가이샤 Biphenyl derivative, resist bottom layer material, bottom layer forming method, and patterning process
US8288073B2 (en) 2006-09-28 2012-10-16 Jsr Corporation Pattern forming method
US8329387B2 (en) 2008-07-08 2012-12-11 Az Electronic Materials Usa Corp. Antireflective coating compositions
US8338078B2 (en) 2008-10-28 2012-12-25 Shin-Etsu Chemical Co., Ltd. Photoresist undercoat-forming material and patterning process
EP1998222B1 (en) * 2007-04-06 2013-03-20 Rohm and Haas Electronic Materials LLC Coating compositions
US8450048B2 (en) 2008-10-20 2013-05-28 Shin-Etsu Chemical Co., Ltd. Method for forming resist underlayer film, patterning process using the same, and composition for the resist underlayer film
US8486609B2 (en) 2009-12-23 2013-07-16 Az Electronic Materials Usa Corp. Antireflective coating composition and process thereof
US8507192B2 (en) 2010-02-18 2013-08-13 Az Electronic Materials Usa Corp. Antireflective compositions and methods of using same
US8846846B2 (en) 2010-09-10 2014-09-30 Shin-Etsu Chemical Co., Ltd. Naphthalene derivative, resist bottom layer material, and patterning process
US9146468B2 (en) 2011-10-11 2015-09-29 Shin-Etsu Chemical Co., Ltd. Resist underlayer film composition and patterning process using the same
JP2017003959A (en) * 2015-06-04 2017-01-05 信越化学工業株式会社 Resist underlay film material and pattern formation method
KR101778742B1 (en) 2015-12-24 2017-09-14 에스케이씨 주식회사 Composition for the formation of a protective thin film having high heat resistance and chemical resistance, and method for preparing a protective thin film using same
KR101788172B1 (en) 2015-12-24 2017-10-19 에스케이씨 주식회사 Composition for the formation of a protective thin film having high heat resistance and chemical resistance, and method for preparing a protective thin film using same

Cited By (77)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7314702B2 (en) * 2003-01-24 2008-01-01 Samsung Electronics Co., Ltd. Composition for a bottom-layer resist
US7476485B2 (en) 2003-05-28 2009-01-13 Shin-Estu Chemical Co., Ltd. Resist lower layer film material and method for forming a pattern
US7214743B2 (en) 2003-06-18 2007-05-08 Shin-Etsu Chemical Co., Ltd. Resist lower layer film material and method for forming a pattern
US7303855B2 (en) 2003-10-03 2007-12-04 Shin-Etsu Chemical Co., Ltd. Photoresist undercoat-forming material and patterning process
US7427464B2 (en) 2004-06-22 2008-09-23 Shin-Etsu Chemical Co., Ltd. Patterning process and undercoat-forming material
US8088546B2 (en) 2004-07-02 2012-01-03 Nissan Chemical Industries, Ltd. Underlayer coating forming composition for lithography containing naphthalene ring having halogen atom
WO2006003850A1 (en) 2004-07-02 2006-01-12 Nissan Chemical Industries, Ltd. Lower layer film forming composition for lithography including naphthalene ring having halogen atom
US7416833B2 (en) 2004-07-15 2008-08-26 Shin-Etsu Chemical Co., Ltd. Photoresist undercoat-forming material and patterning process
US7691556B2 (en) 2004-09-15 2010-04-06 Az Electronic Materials Usa Corp. Antireflective compositions for photoresists
KR101270508B1 (en) * 2004-09-15 2013-06-19 에이제토 엘렉토로닉 마티리알즈 가부시키가이샤 Antireflective compositions for photoresists
US7326523B2 (en) * 2004-12-16 2008-02-05 International Business Machines Corporation Low refractive index polymers as underlayers for silicon-containing photoresists
JP2008524382A (en) * 2004-12-16 2008-07-10 インターナショナル・ビジネス・マシーンズ・コーポレーション Low refractive index polymer as the base layer for silicon-containing photoresists
US7358025B2 (en) 2005-03-11 2008-04-15 Shin-Etsu Chemical Co., Ltd. Photoresist undercoat-forming material and patterning process
US8088554B2 (en) 2005-04-14 2012-01-03 Shin-Etsu Chemical Co., Ltd Bottom resist layer composition and patterning process using the same
JP4575220B2 (en) * 2005-04-14 2010-11-04 信越化学工業株式会社 Resist underlayer film material and pattern forming method
JP2006293207A (en) * 2005-04-14 2006-10-26 Shin Etsu Chem Co Ltd Resist underlayer film material and pattern forming method
TWI403850B (en) * 2005-06-10 2013-08-01 Nissan Chemical Ind Ltd Coating type sublayer coating-forming composition containing naphthalene resin derivative for lithography
JP4895049B2 (en) * 2005-06-10 2012-03-14 日産化学工業株式会社 Lithographic coating-type underlayer film forming composition containing naphthalene resin derivative
KR101342024B1 (en) 2005-06-10 2013-12-16 닛산 가가쿠 고교 가부시키 가이샤 Coating-type underlayer film forming composition containing naphthalene resin derivative for lithography
CN101180580B (en) * 2005-06-10 2011-08-10 日产化学工业株式会社 Coating-type underlayer film forming composition containing naphthalene resin derivative for lithography
WO2006132088A1 (en) * 2005-06-10 2006-12-14 Nissan Chemical Industries, Ltd. Coating-type underlayer film forming composition containing naphthalene resin derivative for lithography
US7816067B2 (en) 2005-06-10 2010-10-19 Nissan Chemical Industries, Ltd. Coating-type underlayer coating forming composition for lithography containing naphthalene resin derivative
US7807332B2 (en) 2005-07-06 2010-10-05 International Business Machines Corporation Underlayer compositions containing heterocyclic aromatic structures
US7816068B2 (en) * 2005-07-06 2010-10-19 International Business Machines Corporation Underlayer compositions containing heterocyclic aromatic structures
US7510820B2 (en) 2005-11-28 2009-03-31 Shin-Etsu Chemical Co., Ltd. Resist undercoat-forming material and patterning process
JP4734111B2 (en) * 2005-12-15 2011-07-27 ルネサスエレクトロニクス株式会社 Multilayer resist film patterning method and semiconductor device manufacturing method
JP2007165703A (en) * 2005-12-15 2007-06-28 Nec Electronics Corp Patterning method for multi-layered resist film and manufacturing method for semiconductor device
JP2007199653A (en) * 2005-12-27 2007-08-09 Shin Etsu Chem Co Ltd Photoresist underlayer film forming material and pattern forming method
JP4659678B2 (en) * 2005-12-27 2011-03-30 信越化学工業株式会社 Photoresist underlayer film forming material and pattern forming method
EP1995636A1 (en) * 2006-03-14 2008-11-26 JSR Corporation Composition for forming lower layer film and pattern forming method
US7749681B2 (en) 2006-03-14 2010-07-06 Jsr Corporation Composition for forming lower layer film and pattern forming method
EP1995636A4 (en) * 2006-03-14 2010-01-27 Jsr Corp Composition for forming lower layer film and pattern forming method
JPWO2007105776A1 (en) * 2006-03-14 2009-07-30 Jsr株式会社 Underlayer film forming composition and pattern forming method
WO2007105776A1 (en) * 2006-03-14 2007-09-20 Jsr Corporation Composition for forming lower layer film and pattern forming method
JP5136407B2 (en) * 2006-03-14 2013-02-06 Jsr株式会社 Resist underlayer film forming composition and pattern forming method
JP2007300125A (en) * 2006-05-02 2007-11-15 Hynix Semiconductor Inc Method for fabricating fine pattern in semiconductor device
JP2007316188A (en) * 2006-05-24 2007-12-06 Shin Etsu Chem Co Ltd Antireflection film material and pattern forming method
US7632624B2 (en) 2006-05-25 2009-12-15 Shin-Etsu Chemical Co., Ltd. Photoresist undercoat-forming material and patterning process
JP2008016839A (en) * 2006-06-30 2008-01-24 Hynix Semiconductor Inc Method of forming fine pattern of semiconductor device
US7745104B2 (en) 2006-08-10 2010-06-29 Shin-Etsu Chemical Co., Ltd. Bottom resist layer composition and patterning process using the same
JP2008065081A (en) * 2006-09-07 2008-03-21 Jsr Corp Composition for forming resist underlayer film and pattern forming method
JP2012252343A (en) * 2006-09-28 2012-12-20 Jsr Corp Method for forming resist underlay film, composition for resist underlay film to be used for the method, and pattern forming method
US8288073B2 (en) 2006-09-28 2012-10-16 Jsr Corporation Pattern forming method
US8691496B2 (en) 2006-09-28 2014-04-08 Jsr Corporation Method for forming resist under layer film, pattern forming method and composition for resist under layer film
JP5051133B2 (en) * 2006-09-28 2012-10-17 Jsr株式会社 Resist underlayer film forming method, resist underlayer film composition used therefor, and pattern forming method
EP1998222B1 (en) * 2007-04-06 2013-03-20 Rohm and Haas Electronic Materials LLC Coating compositions
CN101679800B (en) * 2007-05-22 2013-06-26 Az电子材料美国公司 An antireflective coating composition comprising fused aromatic rings
WO2008142546A3 (en) * 2007-05-22 2009-02-05 Az Electronic Materials Usa An antireflective coating composition comprising fused aromatic rings
JP2010528334A (en) * 2007-05-22 2010-08-19 エイゼット・エレクトロニック・マテリアルズ・ユーエスエイ・コーポレイション Anti-reflective coating composition containing fused aromatic ring
US8017296B2 (en) 2007-05-22 2011-09-13 Az Electronic Materials Usa Corp. Antireflective coating composition comprising fused aromatic rings
JP2009026810A (en) * 2007-07-17 2009-02-05 Asahi Glass Co Ltd Pattern forming method
WO2009072465A1 (en) 2007-12-07 2009-06-11 Mitsubishi Gas Chemical Company, Inc. Composition for forming base film for lithography and method for forming multilayer resist pattern
US8592134B2 (en) 2007-12-07 2013-11-26 Mitsubishi Gas Chemical Company, Inc. Composition for forming base film for lithography and method for forming multilayer resist pattern
US7989144B2 (en) 2008-04-01 2011-08-02 Az Electronic Materials Usa Corp Antireflective coating composition
US7932018B2 (en) 2008-05-06 2011-04-26 Az Electronic Materials Usa Corp. Antireflective coating composition
US8329387B2 (en) 2008-07-08 2012-12-11 Az Electronic Materials Usa Corp. Antireflective coating compositions
US8652757B2 (en) 2008-10-20 2014-02-18 Shin-Etsu Chemical Co., Ltd. Method for forming resist underlayer film, patterning process using the same, and composition for the resist underlayer film
US8450048B2 (en) 2008-10-20 2013-05-28 Shin-Etsu Chemical Co., Ltd. Method for forming resist underlayer film, patterning process using the same, and composition for the resist underlayer film
US8338078B2 (en) 2008-10-28 2012-12-25 Shin-Etsu Chemical Co., Ltd. Photoresist undercoat-forming material and patterning process
US8486609B2 (en) 2009-12-23 2013-07-16 Az Electronic Materials Usa Corp. Antireflective coating composition and process thereof
WO2011099235A1 (en) 2010-02-12 2011-08-18 三菱瓦斯化学株式会社 Underlayer film material, and method for formation of multilayer resist pattern
US8507192B2 (en) 2010-02-18 2013-08-13 Az Electronic Materials Usa Corp. Antireflective compositions and methods of using same
KR20110139118A (en) 2010-06-21 2011-12-28 신에쓰 가가꾸 고교 가부시끼가이샤 Naphthalene derivative, resist bottom layer material, resist bottom layer forming method, and patterning process
US8795955B2 (en) 2010-06-21 2014-08-05 Shin-Etsu Chemical Co., Ltd. Naphthalene derivative, resist bottom layer material, resist bottom layer forming method, and patterning process
US8846846B2 (en) 2010-09-10 2014-09-30 Shin-Etsu Chemical Co., Ltd. Naphthalene derivative, resist bottom layer material, and patterning process
US9045587B2 (en) 2010-09-10 2015-06-02 Shin-Etsu Chemical Co., Ltd. Naphthalene derivative, resist bottom layer material, and patterning process
JP5910500B2 (en) * 2010-09-29 2016-04-27 Jsr株式会社 Pattern formation method
WO2012043403A1 (en) * 2010-09-29 2012-04-05 Jsr株式会社 Pattern forming method, resist underlayer film, and composition for forming resist underlayer film
KR101824285B1 (en) * 2010-09-29 2018-01-31 제이에스알 가부시끼가이샤 Pattern forming method, resist underlayer film, and composition for forming resist underlayer film
US8871432B2 (en) 2010-09-29 2014-10-28 Jsr Corporation Pattern-forming method, resist underlayer film, and composition for forming resist underlayer film
JP2012145897A (en) * 2011-01-14 2012-08-02 Shin Etsu Chem Co Ltd Resist underlayer film material and pattern forming method using the same
KR20120110048A (en) 2011-03-28 2012-10-09 신에쓰 가가꾸 고교 가부시끼가이샤 Biphenyl derivative, resist bottom layer material, bottom layer forming method, and patterning process
US8835697B2 (en) 2011-03-28 2014-09-16 Shin-Etsu Chemical Co., Ltd. Biphenyl derivative, resist bottom layer material, bottom layer forming method, and patterning process
US9146468B2 (en) 2011-10-11 2015-09-29 Shin-Etsu Chemical Co., Ltd. Resist underlayer film composition and patterning process using the same
JP2017003959A (en) * 2015-06-04 2017-01-05 信越化学工業株式会社 Resist underlay film material and pattern formation method
KR101778742B1 (en) 2015-12-24 2017-09-14 에스케이씨 주식회사 Composition for the formation of a protective thin film having high heat resistance and chemical resistance, and method for preparing a protective thin film using same
KR101788172B1 (en) 2015-12-24 2017-10-19 에스케이씨 주식회사 Composition for the formation of a protective thin film having high heat resistance and chemical resistance, and method for preparing a protective thin film using same

Also Published As

Publication number Publication date
JP3971088B2 (en) 2007-09-05

Similar Documents

Publication Publication Date Title
JP2002014474A (en) Pattern forming method
KR100816735B1 (en) Hardmask composition having antireflective property, process of producing patterned materials by using the same and integrated circuit devices
US6576562B2 (en) Manufacturing method of semiconductor device using mask pattern having high etching resistance
US7375172B2 (en) Underlayer compositions containing heterocyclic aromatic structures
EP2089770A1 (en) Method of creating photolithographic structures with developer-trimmed hard mask
JP3974295B2 (en) Pattern formation method
JP3504247B2 (en) Manufacturing method of semiconductor device
JPH10209134A (en) Pattern-forming method
US6420271B2 (en) Method of forming a pattern
US6806021B2 (en) Method for forming a pattern and method of manufacturing semiconductor device
US7235490B2 (en) Method of manufacturing semiconductor device
JPH11204392A (en) Manufacture of semiconductor device using antireflection film
KR100599146B1 (en) Antireflective coating material for photoresists
JP3772077B2 (en) Pattern formation method
JP2002198283A (en) Resist pattern formation method
JP2000310863A (en) Pattern forming method
JP2001272786A (en) Pattern forming method
JP2000100700A (en) Pattern formation method and hybrid exposure method
US7968270B2 (en) Process of making a semiconductor device using multiple antireflective materials
JP2001272788A (en) Solution material for underlayer film and pattern forming method using the same
JP2002343767A (en) Pattern forming method
JP2002033257A (en) Method for peeling off silicon-containing two-layer resist
WO2021230185A1 (en) Compound, production method therefor, composition, resist film, and pattern formation method
JP2000100699A (en) Pattern formation method
JP2006163176A (en) Method for forming pattern, and method for manufacturing semiconductor device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20040824

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20070202

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070313

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070514

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20070605

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20070607

R151 Written notification of patent or utility model registration

Ref document number: 3971088

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100615

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100615

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110615

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120615

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120615

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130615

Year of fee payment: 6

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

LAPS Cancellation because of no payment of annual fees