JP2002006095A - High energy electron beam irradiation device - Google Patents

High energy electron beam irradiation device

Info

Publication number
JP2002006095A
JP2002006095A JP2000191800A JP2000191800A JP2002006095A JP 2002006095 A JP2002006095 A JP 2002006095A JP 2000191800 A JP2000191800 A JP 2000191800A JP 2000191800 A JP2000191800 A JP 2000191800A JP 2002006095 A JP2002006095 A JP 2002006095A
Authority
JP
Japan
Prior art keywords
electron beam
beam irradiation
suction opening
ozone
irradiation
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2000191800A
Other languages
Japanese (ja)
Inventor
Takashi Yamakawa
隆 山川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Heavy Industries Ltd
Original Assignee
Mitsubishi Heavy Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Heavy Industries Ltd filed Critical Mitsubishi Heavy Industries Ltd
Priority to JP2000191800A priority Critical patent/JP2002006095A/en
Publication of JP2002006095A publication Critical patent/JP2002006095A/en
Withdrawn legal-status Critical Current

Links

Abstract

PROBLEM TO BE SOLVED: To provide a high energy electron beam irradiation device capable of effectively removing ozone in an electron beam irradiation area with a simple structure. SOLUTION: In a high energy electron beam irradiation device constituted by providing a suction opening facing to an irradiation area for irradiating high energy electron beam to a solid irradiation object and removing ozone generated in the irradiation area, the suction opening is formed in a hood shape or more specifically a range hood shape and the hood is arranged in an upper space of the electron beam irradiation area. The hood shape openings are arranged in both an upper space and a lower space of the electron beam irradiation area. During operation of the electron beam irradiation, ozone is sucked from the suction opening arranged in the upper space, and during shutdown of the electron beam irradiation operation, residual ozone is locally and effectively sucked from the suction opening given in the lower space of the irradiation area in the constitution.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、例えば飲料水容器
や医療機器等の殺菌処理を必要とする製品に、高エネル
ギの電子線を照射しながら殺菌等の所期の目的を達成す
る電子線照射装置に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an electron beam which achieves an intended purpose such as sterilization while irradiating a product requiring sterilization such as a drinking water container or a medical device with a high energy electron beam. The present invention relates to an irradiation device.

【0002】[0002]

【従来の技術】従来より、一般に、十分な殺菌等の処理
が必要とされている飲料水容器や医療機器等の滅菌処理
には、高圧蒸気滅菌、エチレンオキシドガス滅菌、γ線
滅菌等の処理が施されている。その中でも電子線照射滅
菌法は、電子線の加速電圧を大きくすることで、医療機
器等の滅菌を可能とするもので、被照射物の耐熱性や残
留毒性の心配がなく、更に滅菌処理時間が極めて短時間
で処理が可能であるとともに、電源を切れば、瞬時に照
射を停止し、環境上の安全性が高く、コスト面からも安
価である等の有利性を有す。更に、γ線照射との違い
は、材料劣化が小さいと言われていることである。この
ため、材料選択の範囲が広がる可能性がある。
2. Description of the Related Art Conventionally, sterilization of drinking water containers, medical equipment, and the like, which generally require sufficient sterilization and the like, includes high-pressure steam sterilization, ethylene oxide gas sterilization, and γ-ray sterilization. It has been subjected. Among them, the electron beam irradiation sterilization method enables sterilization of medical equipment and the like by increasing the acceleration voltage of the electron beam. Can be processed in a very short time, and when the power is turned off, the irradiation is stopped instantaneously, which has advantages such as high environmental safety and low cost. Further, the difference from γ-ray irradiation is that it is said that material deterioration is small. For this reason, there is a possibility that the range of material selection may be expanded.

【0003】しかしながらかかる技術においても、次の
ような問題がある。即ち、前記被照射物に5〜10Me
V、25Kwの高エネルギの電子線を照射すると、該電
子線により筒体内の空気(酸素)の合成により、環境基
準(0.1ppm)を大幅に越える30〜40ppm前
後のオゾンが発生する。該オゾンは酸化性が強く人体に
有害な影響を与える可能性がある。また、環境上極めて
問題であるのみならず、照射コンベアに搬送されて装置
外に送られた被照射物交換の際に、作業者が前記オゾン
を吸ってしまう危険があった。
[0003] However, this technique also has the following problems. That is, 5 to 10 Me is applied to the irradiation object.
When a high energy electron beam of V, 25 Kw is irradiated, the electron beam generates ozone of about 30 to 40 ppm which greatly exceeds the environmental standard (0.1 ppm) due to the synthesis of air (oxygen) in the cylinder. The ozone is highly oxidizing and may have harmful effects on the human body. Moreover, not only is it extremely environmentally problematic, but also there is a risk that the worker may inhale the ozone when exchanging an object to be irradiated which has been conveyed to the irradiation conveyor and sent out of the apparatus.

【0004】かかる課題を解決するために、オゾン(分
子量:48)が空気(分子量:略29)より重いことに着
目し、電子線照射装置と被照射体である被照射物との間
の電子線照射空間の下方にレンジフード状の吸引開口を
配し、前記照射域に発生したオゾンの吸引を図っていた
が、必ずしも効果的なオゾン吸引が出来なかった。
In order to solve this problem, attention is paid to the fact that ozone (molecular weight: 48) is heavier than air (molecular weight: about 29), and electrons between an electron beam irradiation apparatus and an object to be irradiated are irradiated. Although a range hood-shaped suction opening is arranged below the line irradiation space to suction ozone generated in the irradiation area, effective ozone suction cannot always be performed.

【0005】又後記実施例に記載のように、高エネルギ
の電子線を照射する電子線照射装置は、電子線の出口側
をホーン状に真空域で形成するとともに、外信空域と照
射域との間に位置する照射窓部に電子線透過膜を張設し
て外界との間で気密シールを行うとともに、該電子線透
過膜の周囲をフランジ状の取付フランジによりホーン状
照射部側に保持固定させている。
[0005] As described in the embodiments described later, an electron beam irradiation apparatus for irradiating a high energy electron beam has a horn-like vacuum area on the exit side of the electron beam, and has an external communication space area and an irradiation area. An electron beam permeable film is stretched over the irradiation window located between them to provide an airtight seal with the outside world, and the periphery of the electron beam permeable film is held on the horn-shaped irradiation unit side by a flange-shaped mounting flange. It is fixed.

【0006】かかる高エネルギ電子線照射装置では、電
子線透過膜を透過後の電子線が空気中の酸素と反応して
オゾンを発生することは前記したとおりであるが、電子
線透過膜透過後の電子線は、電子線透過膜上において大
きな熱エネルギが発生し、そこで後記図1に示すよう
に、電子線透過膜(チタン膜)側方位置に冷却ノズルを配
設して、該ノズルより噴射される空気流によってチタン
膜表面が空冷されるように構成しているが、一方では、
この冷却風によって照射域付近のオゾンが撹拌されて下
方に設けたレンジフード状のオゾン吸引装置では有効に
オゾンを吸引できない。
As described above, in such a high energy electron beam irradiation apparatus, the electron beam transmitted through the electron beam permeable film reacts with oxygen in the air to generate ozone, as described above. In the electron beam, large heat energy is generated on the electron beam permeable film. Therefore, as shown in FIG. 1 described below, a cooling nozzle is arranged at a position on the side of the electron beam permeable film (titanium film). Although the titanium film surface is configured to be air-cooled by the jet air flow,
Ozone near the irradiation area is agitated by the cooling air, and ozone cannot be effectively sucked by a range hood-shaped ozone suction device provided below.

【0007】かかる欠点を解消するために、本出願人
は、特願平11−142065号に先願技術として図3
に示すようなオゾン吸引装置を提案している。即ち、図
3は被照射物1が収納されたステンレス筒体10を横置
き状態で電子線8を照射させる技術で、筒体10は図上
右方の面が開口している中空円筒体をなし、そして円板
状の図上左方の底面壁をスクリュー状に切り起こしてフ
ァン101として機能させている。一方コンベア2上に
は内部に不図示の回転ローラを組込んだ一対のV型支持
台102を多数搬送方向に配列し、そして前記筒体10
はコンベア2の搬送方向と直交する方向に筒体軸心が一
致するように、前記V型支持台102上に載置する。そ
して前記コンベア2の上方にはコンベア搬送方向と直交
する方向に電子線8をビーム走査させる電子線照射装置
3が配設されるとともに、オゾン吸着器103は電子線
照射域に位置するコンベア2の側方に配設されている。
[0007] In order to eliminate such a drawback, the present applicant has disclosed in Japanese Patent Application No. 11-142065 as a prior application technology shown in FIG.
The following ozone suction device has been proposed. That is, FIG. 3 shows a technique of irradiating an electron beam 8 in a state in which a stainless steel cylinder 10 in which an object to be irradiated 1 is stored is placed in a horizontal state. The cylinder 10 is a hollow cylinder having an open right surface in the figure. None, and the bottom wall on the left side of the disk-shaped figure is cut and raised into a screw shape to function as the fan 101. On the other hand, on the conveyor 2, a large number of a pair of V-shaped support bases 102 each having a rotating roller (not shown) incorporated therein are arranged in the conveying direction.
Is mounted on the V-shaped support 102 such that the axis of the cylindrical body coincides with the direction perpendicular to the conveying direction of the conveyor 2. An electron beam irradiator 3 for beam-scanning the electron beam 8 in a direction orthogonal to the conveyor conveyance direction is provided above the conveyor 2, and the ozone adsorber 103 is attached to the conveyor 2 located in the electron beam irradiation area. It is arranged on the side.

【0008】かかる先願技術によれば、前記一対のV型
支持台102上に夫々被照射物1を収納した筒体10を
コンベア2の搬送方向と直交する方向に置いた状態で、
コンベア2を搬送しながら電子線照射域に侵入した時点
で、前記支持台102内の回転ローラにより、筒体10
を回転させることにより前記電子線照射装置7よりエネ
ルギー10MeVの電子線を被照射物1に照射させる。
この結果、前記筒体10の回転に同期して回転するファ
ン101の吸引力を利用して筒体底面(図上左側方)よ
り気流が、被照射物1が収納されている筒体10内に導
かれ、該筒体10内に貯溜しているオゾン50を右側方
に掃き出す。そして、前記電子線照射域で筒体10外に
排出されたオゾン50は、オゾン吸着器103により吸
着されて清浄空気のみが装置外に排出させる事が出来
る。
According to the prior art, the cylindrical bodies 10 each containing the object 1 to be irradiated are placed on the pair of V-shaped support tables 102 in a direction perpendicular to the conveying direction of the conveyor 2.
At the point when it enters the electron beam irradiation area while transporting the conveyor 2, the cylindrical body 10 is rotated by the rotating rollers in the support base 102.
The object 1 is irradiated with an electron beam having an energy of 10 MeV from the electron beam irradiation device 7 by rotating.
As a result, the airflow from the bottom surface of the cylindrical body (left side in the figure) is utilized by utilizing the suction force of the fan 101 rotating in synchronization with the rotation of the cylindrical body 10, and the air flow in the cylindrical body 10 in which the irradiation object 1 is stored. And the ozone 50 stored in the cylindrical body 10 is swept to the right. Then, the ozone 50 discharged outside the cylinder 10 in the electron beam irradiation area is adsorbed by the ozone adsorber 103, and only the clean air can be discharged outside the apparatus.

【0009】しかしながら前記先願技術においては、被
照射物を収納する筒体夫々にファンを設けねばならず、
又、被照射物に所定の線量比を確保するために、V型支
持台102においても駆動回転ローラ等の筒体回転手段
を設けねばならず、装置構成が煩雑化する。
[0009] However, in the prior art, a fan must be provided for each of the cylinders that store the irradiation object.
Further, in order to secure a predetermined dose ratio to the irradiation object, the V-shaped support 102 must be provided with a cylindrical rotating means such as a driving rotary roller, which complicates the device configuration.

【0010】本発明はかかる技術的課題に鑑み、構造が
簡単で前記電子線照射域のオゾンを局所的かつ有効に除
去し得る、主として滅菌に使用する高エネルギ電子線照
射装置を提供することを目的とする。
In view of the above technical problems, the present invention provides a high energy electron beam irradiation apparatus mainly used for sterilization, which has a simple structure and can locally and effectively remove ozone in the electron beam irradiation area. Aim.

【0011】[0011]

【課題を解決するための手段】請求項1記載の発明は、
立体被照射物に高エネルギの電子線を照射するととも
に、該照射域に発生したオゾンを除去する為に、前記照
射域と対面させて吸引開口部を設けてなる高エネルギ電
子線照射装置において、前記吸引開口部をフード状、具
体的にはレンジフード状に形成するとともに、該フード
状吸引開口部を前記電子線照射域の上方空間に配設し、
該照射域で発生する上昇気流を利用して前記オゾンを局
所的に効率良く吸引可能に構成した事を特徴とする。
According to the first aspect of the present invention,
A high-energy electron beam irradiation apparatus having a suction opening facing the irradiation area in order to irradiate the three-dimensional object with a high-energy electron beam and remove ozone generated in the irradiation area, The suction opening is formed in a hood shape, specifically, a range hood shape, and the hood-shaped suction opening portion is disposed in a space above the electron beam irradiation area,
It is characterized in that the ozone can be locally and efficiently sucked by utilizing the upward airflow generated in the irradiation area.

【0012】前記したように、立体被照射物の滅菌のた
めに使用する電子線照射装置は、電子線の照射窓部に電
子線透過膜を張設するとともに、該電子線透過膜の周囲
をフランジ状の取付フランジにより保持固定させて構成
される。かかる滅菌用の電子線照射装置では、電子線透
過膜を透過後電子線が空気中の酸素と反応してオゾンを
発生するが、電子線透過膜透過後の電子線は、大きな熱
エネルギが発生し、該熱エネルギによる昇温により上昇
気流が発生する。一方オゾンは空気より比重が1.5倍
以上重いために、従来技術で示すように、電子線照射域
の下方にレンジフード状のオゾン吸引装置を設けていた
が、下方に設けたレンジフード状のオゾン吸引装置では
有効にオゾンを吸引できなかった。
As described above, an electron beam irradiator used for sterilizing a three-dimensional object is provided with an electron beam permeable film stretched over an electron beam irradiation window, and an electron beam permeable film is provided around the electron beam permeable film. It is configured to be held and fixed by a flange-like mounting flange. In such an electron beam irradiating apparatus for sterilization, the electron beam reacts with oxygen in the air after passing through the electron beam permeable film to generate ozone, but the electron beam after passing through the electron beam permeable film generates a large amount of heat energy. Then, a rising airflow is generated by the temperature rise by the heat energy. On the other hand, since ozone has a specific gravity 1.5 times or more heavier than air, a range hood-shaped ozone suction device is provided below the electron beam irradiation area as shown in the related art. Ozone could not be effectively sucked by the ozone suction device of (1).

【0013】そこで本発明はレンジフード状のオゾン吸
引開口部を空気の上昇気流にあわせて上方に設けたため
に、前記上昇気流にあわせて運転中のオゾンを有効に吸
引補足することができる。
Accordingly, in the present invention, the ozone suction opening in the form of a range hood is provided above the rising air flow, so that the ozone during operation can be effectively sucked and captured in accordance with the rising air flow.

【0014】しかしながら前記電子線透過膜前方に熱エ
ネルギが発生するのは運転中、言い換えれば上昇気流が
発生するのは運転中のみであり、運転停止時にはオゾン
は空気より比重が1.5倍以上重いために徐々に下方に
沈降してしまう。
However, heat energy is generated in front of the electron beam permeable membrane during operation, in other words, an ascending air current is generated only during operation. When operation is stopped, ozone has a specific gravity of 1.5 times or more than air. It sinks down gradually because of its weight.

【0015】そこで、請求項3記載の発明において、前
記吸引開口部を前記電子線照射域の上方空間と下方空間
に夫々配設し、電子線照射運転時は、前記上方空間に配
した吸引開口部よりオゾンを吸引し、電子線照射運転停
止時は前記照射域の下方空間に配した吸引開口部より残
留オゾンを吸引可能に構成した事を特徴としている。
According to the third aspect of the present invention, the suction opening is provided in the upper space and the lower space of the electron beam irradiation area, respectively. It is characterized in that ozone is sucked from the section, and when the electron beam irradiation operation is stopped, residual ozone can be sucked from a suction opening arranged in a space below the irradiation area.

【0016】かかる発明によれば、運転中は上方の吸引
装置により上昇気流に乗ったオゾンが、又運転停止後は
下方の吸引開口部により残留オゾンを吸引する事が出
来、これによりほぼ100%のオゾン吸引効率が得られ
た。
According to this invention, it is possible to suck ozone riding on the ascending airflow by the upper suction device during the operation, and residual ozone by the lower suction opening after the operation is stopped, thereby almost 100%. The ozone suction efficiency was obtained.

【0017】そして本装置の場合は、上方に設けた前記
フード状の吸引開口部の開口域を電子線照射面より被照
射体の背面側に位置するビームストップ位置まで延在さ
せるのが良く、更にフード断面幅は、電子線拡散方向に
あわせ、下流に向かうに連れ末広状、具体的には扇状に
しても良く、又幅広にしても良い。
In the case of the present apparatus, it is preferable that the opening area of the hood-shaped suction opening provided above is extended from the electron beam irradiation surface to a beam stop position located on the back side of the irradiation object. Further, the hood cross-section width may be widened toward the downstream, specifically, fan-shaped, or widened in accordance with the electron beam diffusion direction.

【0018】そして更に請求項4において、前記照射膜
(窓)を形成する電子線透過膜側方位置に透過膜冷却ノズ
ルを配設して、該ノズルより噴射される空気流によって
透過膜表面が空冷されるように構成するとともに、該ノ
ズル取付位置と対面する側の電子線透過膜取付フランジ
近傍に負圧力により吸引される吸引開口をおき、前記透
過膜表面で発生したオゾンが拡散される前に前記吸引開
口により補足可能に構成した事を特徴とする。
In still another embodiment of the present invention, the irradiation film
A permeable membrane cooling nozzle is arranged at a position on the side of the electron beam permeable membrane forming the (window) so that the surface of the permeable membrane is air-cooled by the air flow injected from the nozzle, and the nozzle mounting position A suction opening for suction by negative pressure is provided in the vicinity of the mounting flange of the electron beam permeable membrane on the side facing the surface, so that ozone generated on the surface of the permeable membrane can be supplemented by the suction opening before being diffused. And

【0019】ノズル取付位置と対面する側の電子線透過
膜の取付フランジ近傍にサクションにより吸引されるオ
ゾン吸引開口が配設されているために、電子線透過膜表
面で発生したオゾンが拡散される前に効果的に補足出来
るとともに、前記吸引開口ではノズルよりの冷風空気流
も合わせて吸引できるために、照射域上方に配したフー
ド状吸引部への上昇気流を錯乱することはない。
Since the ozone suction opening for suction is provided near the mounting flange of the electron beam permeable film on the side facing the nozzle mounting position, ozone generated on the surface of the electron beam permeable film is diffused. In addition to the fact that the air can be effectively supplemented in advance, the cold air flow from the nozzle can also be sucked together at the suction opening, so that the upward air flow to the hood-shaped suction portion disposed above the irradiation area is not disturbed.

【0020】この場合好ましくは前記ノズルと対面する
側に位置する取付フランジ突設部をノズル吹きつけ方向
から吸引開口に向けて沿う傾斜若しくは曲面状のガイド
面を形成するのがよい。
In this case, preferably, the mounting flange protruding portion located on the side facing the nozzle is formed with an inclined or curved guide surface along the nozzle blowing direction toward the suction opening.

【0021】[0021]

【発明の実施の形態】以下、図面を参照して本発明の好
適な実施形態を例示的に詳しく説明する。但しこの実施
形態に記載されている構成部品の寸法、材質、形状、そ
の相対的配置等は特に特定的な記載がないかぎりは、こ
の発明の範囲をそれに限定する趣旨ではなく、単なる説
明例にすぎない。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS Preferred embodiments of the present invention will now be described in detail with reference to the drawings. However, the dimensions, materials, shapes, relative arrangements, and the like of the components described in this embodiment are not intended to limit the scope of the present invention unless otherwise specified, and are merely illustrative examples. Only.

【0022】図1及び図2は本発明の実施形態に係る殺
菌の為のビーム走査型電子線照射装置で、図1におい
て、30は高エネルギの電子線(ビーム)8を発生する電
子線を発生/加速させる電子線加速部で、例えば電子線
を出射する電子銃と、該電子銃から出射された電子線を
所定のエネルギーを有するように加速する加速管と、該
加速管に前記電子線を加速するためのマイクロ波エネル
ギーを供給するクライストロンとを具えている。そして
前記加速された電子線は筒状のビームガイド筒31を介
して収束電磁石(ビーム絞りレンズ)32に導かれ、前
記電子線を直径方向に収束、言換えればビームの絞りを
行ない、細径化させてエネルギーの高密度化を図る。
FIGS. 1 and 2 show a beam scanning type electron beam irradiation apparatus for sterilization according to an embodiment of the present invention. In FIG. 1, reference numeral 30 denotes an electron beam for generating a high energy electron beam (beam) 8. An electron beam accelerating unit for generating / accelerating, for example, an electron gun for emitting an electron beam, an acceleration tube for accelerating the electron beam emitted from the electron gun so as to have a predetermined energy, and And a klystron that supplies microwave energy to accelerate the energy. The accelerated electron beam is guided to a converging electromagnet (beam stop lens) 32 through a cylindrical beam guide tube 31, and converges the electron beam in the diametric direction, in other words, the beam is stopped down, and the diameter of the beam is reduced. To increase energy density.

【0023】前記収束電磁石32により高密度化された
収束電子線は、前面に進むに連れビーム走査方向に拡開
された偏平角錐台状の照射ホーン34内に導入される。
照射ホーン34は入口側に走査電磁石35が具えられ、
又前面に方形スリット状の照射窓を具え、該照射窓を数
100μm程度の薄いチタン膜等の電子線透過膜36で
封止し、内部を真空空間下に維持している。即ち、前記
電子線透過膜36は、偏平角錐台状の照射ホーン34前
面にパッキンを介して密着するように、その外周に偏平
角錐台状のフランジ37を配設し、該フランジ37を介
してネジ止めにて締め付け密封する。
The converging electron beam, which has been densified by the converging electromagnet 32, is introduced into an irradiation horn 34 in the shape of a truncated flat pyramid which is expanded in the beam scanning direction as it goes to the front.
The irradiation horn 34 is provided with a scanning electromagnet 35 on the entrance side,
In addition, a rectangular slit-shaped irradiation window is provided on the front surface, and the irradiation window is sealed with an electron beam transmitting film 36 such as a thin titanium film of about several 100 μm, and the inside is maintained in a vacuum space. That is, the electron beam transmitting film 36 is provided with a flat pyramid-shaped truncated pyramid-shaped flange 37 on its outer periphery so as to be in close contact with the front surface of the flat horn-shaped pyramid-shaped irradiation horn 34 via packing. Tighten and seal with screws.

【0024】そして前記照射ホーン34内に導入された
収束ビームは走査電磁石35により所定の振れ角と振れ
周波数(スキャニング周波数)で偏向走査される訳であ
るが、この偏向走査を行なう際にビーム走査速度、言換
えれば角速度を制御する為に、前記走査電磁石35への
印加電圧を制御する制御信号を走査電磁石制御装置から
取込むようにする。角速度を制御しながら偏向走査され
た走査電子線8は偏平角錐台状の照射ホーン34内及び
電子線透過膜36を介して被照射物1の基線方向に走査
しながら被照射物全幅に亙って照射して所定の殺菌動作
を行なう事が出来る。
The convergent beam introduced into the irradiation horn 34 is deflected and scanned at a predetermined deflection angle and deflection frequency (scanning frequency) by the scanning electromagnet 35. When the deflection scanning is performed, the beam scanning is performed. In order to control the speed, in other words, the angular velocity, a control signal for controlling the voltage applied to the scanning electromagnet 35 is taken in from the scanning electromagnet controller. The scanning electron beam 8 that has been deflected and scanned while controlling the angular velocity covers the entire width of the irradiation target 1 while scanning in the base line direction of the irradiation target 1 through the irradiation horn 34 having a flat truncated pyramid shape and the electron beam transmitting film 36. Irradiation to perform a predetermined sterilization operation.

【0025】本実施形態における被照射物は、医療機器
等を方形のカートンケースに収納したものを用い、該被
照射物1を照射コンベア2搬送方向に沿って1列状に配
列する。そして、被照射物1を挟んで前記照射ホーン3
4の反対側にビームストップ4を設置する。該ビームス
トップ4は原子番号の大きい金属、例えばタングステン
板やステンレス板に金メッキを施した部材で形成すると
ともに、電子線の吸収により発熱する惧れがあるため
に、内部に水冷管等の冷却部4aを具え冷却機能を付加
する。
The object to be illuminated in the present embodiment is one in which medical equipment and the like are housed in a rectangular carton case, and the objects to be illuminated 1 are arranged in a line along the conveying direction of the irradiation conveyor 2. Then, the irradiation horn 3 is sandwiched by the irradiation object 1.
The beam stop 4 is installed on the opposite side of the beam stop 4. The beam stop 4 is made of a metal having a large atomic number, for example, a tungsten plate or a stainless plate plated with gold, and has a fear of generating heat by absorption of an electron beam. 4a to add a cooling function.

【0026】照射コンベア2は下方から上方に気流が通
過するように、チェーンコンベアを用いる。そして電子
線照射域と対向する位置の上方空間にレンジフード状の
吸引開口部43を配設し、該吸引開口部43にサクショ
ン44や吸気ブロワを接続して該照射域で発生する上昇
気流を利用して前記オゾンを吸引可能に構成している。
前記フード状の吸引開口部43は、開口域を電子線照射
面より被照射物の背面側に位置するビームストップ4位
置まで延在させるのが良く、更にフード断面幅は、電子
線拡散方向にあわせ、下流に向かうに連れ、末広状、具
体的には扇状にしても良く、又幅広にされる。
The irradiation conveyor 2 uses a chain conveyor so that an air flow passes from below to above. Then, a range hood-shaped suction opening 43 is arranged in a space above the position facing the electron beam irradiation area, and a suction 44 and an intake blower are connected to the suction opening 43 to reduce the upward airflow generated in the irradiation area. The ozone can be sucked by utilizing it.
The hood-shaped suction opening 43 preferably has an opening area extending from the electron beam irradiation surface to a beam stop 4 located on the back side of the object to be irradiated. At the same time, the shape may be widened toward the downstream, specifically, fan-shaped, or widened.

【0027】前記電子線透過膜36を支持するフランジ
37の下方位置には冷却ノズル41が配設されており、
該ノズル41より噴射される空気流によって電子線透過
膜表面が空冷されるように構成するとともに、該ノズル
取付位置と反対側、言い換えればフランジ上部近傍に前
記第1のサクション43の負圧力により吸引される半円
状の吸引キャッチャ42を配設して、前記透過膜36表
面で発生したオゾンが拡散される前に前記キャッチャ4
2により捕捉可能に構成する。
A cooling nozzle 41 is provided below the flange 37 supporting the electron beam transmitting film 36.
The surface of the electron beam permeable film is configured to be air-cooled by the air flow injected from the nozzle 41, and is sucked by the negative pressure of the first suction 43 on the side opposite to the nozzle mounting position, in other words, near the upper portion of the flange. A semi-circular suction catcher 42 is provided to prevent the ozone generated on the surface of the permeable membrane 36 from diffusing.
2 so that it can be captured.

【0028】又前記フランジ37はネジ止めの必要から
断面方形状に形成されているが、前記ノズル41と対面
する側に位置する取付フランジの上部内壁側をノズル吹
きつけ方向からキャッチャ42に向けて沿う傾斜若しく
は曲面状のガイド面38を形成する。照射コンベア2下
方には第2のサクション44Bにより吸引されるフード
45が取り付けられ、前記第1及び第2のサクション4
4、44Bは、電子線照射装置3の駆動制御回路5と連
動して電子線照射運転中は第1のサクション44が、停
止後の所定時間は第2のサクション44Bが作動するよ
うに構成されている。又サクション44、44Bを複数
設けずに図2に示すように、1つのサクション44で共
通化して3方弁49による切り換え、若しくはダンパ4
9a、49bで開度調節して制御しても良い。又下方に
設けた吸引開口部45はチェーン状のコンベア2の下方
のみに設けてもよい。
Although the flange 37 is formed in a rectangular cross section because of the necessity of screwing, the upper inner wall side of the mounting flange located on the side facing the nozzle 41 faces the catcher 42 from the nozzle blowing direction. An inclined or curved guide surface 38 is formed. A hood 45 sucked by the second suction 44B is attached below the irradiation conveyor 2, and the first and second suction
4, 44B are configured so that the first suction 44 operates during the electron beam irradiation operation in conjunction with the drive control circuit 5 of the electron beam irradiation device 3, and the second suction 44B operates for a predetermined time after stopping. ing. Also, as shown in FIG. 2 without providing a plurality of suctions 44 and 44B, switching is performed by a three-way valve 49 and shared by one suction 44, or a damper 4 is provided.
The opening degree may be adjusted and controlled by 9a and 49b. Further, the suction opening 45 provided below may be provided only below the chain-shaped conveyor 2.

【0029】次にかかる実施形態の運転動作について説
明する。先ず電子線運転動作開始により電子線透過膜3
6より電子線が照射され、前記被照射物1をチェーン状
の照射コンベア2に垂直に設置した状態で、照射コンベ
ア2を搬送しながら電子線照射域に侵入した時点で、前
記電子線照射装置3よりエネルギー10MeVの電子線
が被照射物1に照射され、この結果前記被照射物1は所
定の線量を確保して滅菌がなされる。
Next, the operation of the embodiment will be described. First, when the electron beam operation starts, the electron beam permeable membrane 3 is opened.
The electron beam irradiating device is irradiated with an electron beam from the electron beam irradiating device 6 and enters the electron beam irradiating area while transporting the irradiating conveyor 2 in a state where the object to be irradiated 1 is installed vertically on the chain-shaped irradiating conveyor 2. 3 irradiates the object 1 with an electron beam having an energy of 10 MeV. As a result, the object 1 is sterilized while securing a predetermined dose.

【0030】そして前記運転開始と連動して駆動制御回
路5により、サクション44、44Bの駆動回転ととも
に、電子線が照射されているときは冷却ノズル41より
冷却風が噴出されて、前記電子線照射により加熱された
電子線透過膜36の冷却を常時行う。この際ノズル取付
位置と対面する側の電子線透過膜の取付フランジ37近
傍にサクション44により吸引される半円状吸引開口4
2が配設されているために、電子線透過膜36表面で発
生したオゾンが拡散される前に効果的に捕捉出来るとと
もに、前記吸引開口42ではノズル41よりの冷風空気
流も合わせて吸引できるために、照射域上方に配したレ
ンジフード状吸引開口部43への上昇気流を錯乱するこ
とはない。
In conjunction with the start of the operation, the drive control circuit 5 drives and rotates the suctions 44 and 44B, and when the electron beam is being irradiated, a cooling air is blown out from the cooling nozzle 41 and the electron beam irradiation is performed. The electron beam transmitting film 36 heated by the above is always cooled. At this time, the semicircular suction opening 4 sucked by the suction 44 near the mounting flange 37 of the electron beam transmitting film on the side facing the nozzle mounting position.
Since ozone 2 is provided, ozone generated on the surface of the electron beam permeable film 36 can be effectively trapped before being diffused, and the cold air flow from the nozzle 41 can be sucked together with the suction opening 42. Therefore, the upward airflow to the range hood-shaped suction opening 43 arranged above the irradiation area is not disturbed.

【0031】又前記電子線により照射域で発生したオゾ
ン50は、該電子線の熱エネルギにより、照射域では上
昇気流が発生するが、照射域の上方には第1のサクショ
ン44の駆動に吸引力の発生しているレンジフード吸引
開口部43により上昇気流に乗ったオゾンが吸引され
る。そして前記電子線照射部3の運転停止によりサクシ
ョン44、44Bの駆動制御回路5は、第1のサクショ
ン44の駆動を停止して第2のサクション44Bの駆動
を行う。(図2の場合は3方弁の切り替え制御若しくは
ダンパの開度調節)
The ozone 50 generated in the irradiation area by the electron beam generates an ascending airflow in the irradiation area due to the thermal energy of the electron beam, but is attracted to drive the first suction 44 above the irradiation area. Ozone riding on the ascending airflow is sucked by the range hood suction opening 43 where a force is generated. Then, when the operation of the electron beam irradiation unit 3 is stopped, the drive control circuit 5 of the suctions 44 and 44B stops driving of the first suction 44 and drives the second suction 44B. (In the case of FIG. 2, switching control of the three-way valve or adjustment of the opening of the damper)

【0032】この結果、運転停止時にはオゾンは空気よ
り比重が1.5倍以上重いために徐々に下方に沈降して
しまうが、下方のサブフード状吸引開口部45の吸引力
が働き、運転停止後は下方のサブフード状吸引開口部4
5により残留オゾンを吸引する事が出来、これにより全
体としてほぼ100%のオゾン吸引効率が得られた。
As a result, when the operation is stopped, the specific gravity of the ozone is 1.5 times or more greater than that of the air, so that the ozone gradually sinks downward. However, the suction force of the lower sub-hood-shaped suction opening 45 acts, and after the operation is stopped. Is the lower sub-hood-shaped suction opening 4
5, the residual ozone could be sucked, whereby an ozone suction efficiency of almost 100% as a whole was obtained.

【0033】[0033]

【発明の効果】以上記載のごとく本発明によれば、構造
が簡単で前記電子線照射域のオゾンを有効に除去し得る
高エネルギ電子線照射装置を提供出来る。
As described above, according to the present invention, it is possible to provide a high energy electron beam irradiation apparatus which has a simple structure and can effectively remove ozone in the electron beam irradiation area.

【図面の簡単な説明】[Brief description of the drawings]

【図1】 本発明の第1の実施形態に係る電子線照射装
置を示す概略図である。
FIG. 1 is a schematic diagram showing an electron beam irradiation device according to a first embodiment of the present invention.

【図2】 本発明の第2の実施形態に係る電子線照射装
置を示す概略図である。
FIG. 2 is a schematic diagram illustrating an electron beam irradiation apparatus according to a second embodiment of the present invention.

【図3】 先願技術に係る電子線照射装置を示す概略図
である。
FIG. 3 is a schematic view showing an electron beam irradiation apparatus according to the prior application.

【符号の説明】[Explanation of symbols]

1 被照射物 2 照射コンベア 3 電子線照射部 4 ビームストップ 36 電子線透過膜 37 フランジ 38 ガイド面 41 冷却ノズル 42 吸引キャッチャ 43 吸引開口部 44 第1のサクション 44B 第2のサクション 45 サブフードフード状吸引開口部 DESCRIPTION OF SYMBOLS 1 Irradiation object 2 Irradiation conveyor 3 Electron beam irradiation part 4 Beam stop 36 Electron beam transmission film 37 Flange 38 Guide surface 41 Cooling nozzle 42 Suction catcher 43 Suction opening 44 First suction 44B Second suction 45 Sub food hood shape Suction opening

Claims (5)

【特許請求の範囲】[Claims] 【請求項1】 立体被照射物に高エネルギの電子線を照
射するとともに、該照射域に発生したオゾンを除去する
為に、前記照射域と対面させて吸引開口部を設けてなる
高エネルギ電子線照射装置において、 前記吸引開口部をフード状に形成するとともに、該フー
ド状吸引開口部を前記電子線照射域の上方空間に配設
し、該照射域で発生する上昇気流を利用して前記オゾン
を局所的に効率良く吸引可能に構成した事を特徴とする
高エネルギ電子線照射装置。
1. A high-energy electron, which is provided with a suction opening facing the irradiation area in order to irradiate a three-dimensional object with a high-energy electron beam and remove ozone generated in the irradiation area. In the electron beam irradiation apparatus, the suction opening is formed in a hood shape, and the hood-shaped suction opening is disposed in a space above the electron beam irradiation area, and the ascending opening is generated by using an ascending airflow generated in the irradiation area. A high-energy electron beam irradiation apparatus characterized in that ozone can be locally and efficiently sucked.
【請求項2】 請求項1記載の高エネルギ電子線照射装
置において、 前記フード状吸引開口部の開口域を電子線照射面より被
照射体の背面側に位置するビームストップ位置まで延在
させた事を特徴とする高エネルギ電子線照射装置。
2. The high-energy electron beam irradiation apparatus according to claim 1, wherein the opening area of the hood-shaped suction opening extends from the electron beam irradiation surface to a beam stop position located on the back side of the irradiation object. High energy electron beam irradiation equipment characterized by the following.
【請求項3】 立体被照射物に高エネルギの電子線を照
射するとともに、該照射域に発生したオゾンを除去する
為に、前記照射域と対面させて吸引開口部を設けてなる
高エネルギ電子線照射装置において、 前記吸引開口部を前記電子線照射域の上方空間と下方空
間に夫々配設し、 電子線照射運転時は、前記上方空間に配した吸引開口部
よりオゾンを吸引し、電子線照射運転停止時は前記照射
域の下方空間に配した吸引開口部より残留オゾンを吸引
可能に構成した事を特徴とする高エネルギ電子線照射装
置。
3. A high-energy electron beam which is provided with a suction opening facing the irradiation area for irradiating a three-dimensional object with a high-energy electron beam and removing ozone generated in the irradiation area. In the electron beam irradiation apparatus, the suction opening is disposed in an upper space and a lower space of the electron beam irradiation area, respectively. During the electron beam irradiation operation, ozone is suctioned from the suction opening provided in the upper space, A high-energy electron beam irradiation apparatus characterized in that when the beam irradiation operation is stopped, residual ozone can be sucked from a suction opening arranged in a space below the irradiation area.
【請求項4】 立体被照射物に高エネルギの電子線を照
射する為に、電子線の照射窓部に電子線透過膜を張設す
るとともに、該電子線透過膜の周囲をフランジ状の取付
フランジにより保持固定させた高エネルギ電子線照射装
置において、 前記電子線透過膜側方位置に透過膜冷却ノズルを配設し
て、該ノズルより噴射される空気流によって透過膜表面
が空冷されるように構成するとともに、該ノズル取付位
置と対面する側の電子線透過膜取付フランジ近傍に負圧
力により吸引される吸引開口をおき、前記透過膜表面で
発生したオゾンが拡散される前に前記吸引開口により補
足可能に構成した事を特徴とする高エネルギ電子線照射
装置。
4. In order to irradiate a high-energy electron beam to a three-dimensional object to be irradiated, an electron beam permeable film is stretched over an electron beam irradiation window portion, and a periphery of the electron beam permeable film is mounted in a flange shape. In the high-energy electron beam irradiation device held and fixed by a flange, a permeable membrane cooling nozzle is disposed at a position lateral to the electron beam permeable membrane, and a surface of the permeable membrane is air-cooled by an air flow injected from the nozzle. And a suction opening for suction by negative pressure is provided near the electron beam permeable membrane mounting flange on the side facing the nozzle mounting position, and the ozone generated on the permeable membrane surface is diffused before ozone is diffused. A high-energy electron beam irradiation apparatus characterized in that it can be supplemented by:
【請求項5】 前記ノズルと対面する側に位置する取付
フランジ突設部をノズル吹きつけ方向から吸引開口に向
けて沿う傾斜若しくは曲面状のガイド面を形成したこと
を特徴とする請求項4記載の高エネルギ電子線照射装
置。
5. An inclined or curved guide surface extending from a nozzle spraying direction to a suction opening is formed on a mounting flange protruding portion located on a side facing the nozzle. High energy electron beam irradiation equipment.
JP2000191800A 2000-06-26 2000-06-26 High energy electron beam irradiation device Withdrawn JP2002006095A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2000191800A JP2002006095A (en) 2000-06-26 2000-06-26 High energy electron beam irradiation device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2000191800A JP2002006095A (en) 2000-06-26 2000-06-26 High energy electron beam irradiation device

Publications (1)

Publication Number Publication Date
JP2002006095A true JP2002006095A (en) 2002-01-09

Family

ID=18691038

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000191800A Withdrawn JP2002006095A (en) 2000-06-26 2000-06-26 High energy electron beam irradiation device

Country Status (1)

Country Link
JP (1) JP2002006095A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011521852A (en) * 2008-05-30 2011-07-28 クロネス アーゲー Container sterilizer using charge carrier
JP2012017149A (en) * 2011-08-29 2012-01-26 Mitsubishi Heavy Ind Ltd System and method for inspecting electron beam sterilization of food container

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011521852A (en) * 2008-05-30 2011-07-28 クロネス アーゲー Container sterilizer using charge carrier
JP2015157652A (en) * 2008-05-30 2015-09-03 クロネス アーゲー Apparatus for sterilizing containers by charge carriers
US9177752B2 (en) 2008-05-30 2015-11-03 Krones Ag Device for sterilizing containers by way of charge carriers
JP2012017149A (en) * 2011-08-29 2012-01-26 Mitsubishi Heavy Ind Ltd System and method for inspecting electron beam sterilization of food container

Similar Documents

Publication Publication Date Title
EP1956608B1 (en) Electron beam vacuum apparatus for sterilising containers
JP4551397B2 (en) Sterilizer
JP6554192B2 (en) Apparatus and method for sterilizing a packaging container with an electron beam
JP4365835B2 (en) Electron beam irradiation device for open containers
JP6313544B2 (en) Apparatus and method for radiation-based disinfection of container lids
JP6216502B2 (en) Device for sterilizing the inside and outside of plastic containers with a beam of charge carriers
JP2007522833A (en) Device for sterilizing articles by electron irradiation
US8222614B2 (en) Electron beam irradiation apparatus for open-mouthed containers
JP4560870B2 (en) Preform sterilization method and preform sterilizer
JP5209050B2 (en) Sterilization using β-ray radiation
RU2333140C2 (en) Method and device for electron beam bombardment
JP4859517B2 (en) Electron beam irradiation device for open container
JP4516909B2 (en) Electron beam irradiation device
JP2002006095A (en) High energy electron beam irradiation device
JP4501269B2 (en) Cap sterilizer
JPH10268100A (en) Electron beam irradiation device
JP2001242297A (en) Electron beam irradiation method and device
JP4903608B2 (en) Electron beam irradiation device for open containers
JP2008079891A (en) Electron beam irradiation apparatus
JP2002000705A (en) Electron beam radiating apparatus of medical apparatus
JP5082050B2 (en) Electron beam irradiation device
JP5672696B2 (en) Electron beam irradiation device for open containers
JP4372391B2 (en) Radiation treatment system
JP2000225177A (en) Sterilizer
JP2004191307A (en) Electron beam irradiator

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20070904