JP2002005754A - Temperature measuring resistor measuring circuit - Google Patents

Temperature measuring resistor measuring circuit

Info

Publication number
JP2002005754A
JP2002005754A JP2000186077A JP2000186077A JP2002005754A JP 2002005754 A JP2002005754 A JP 2002005754A JP 2000186077 A JP2000186077 A JP 2000186077A JP 2000186077 A JP2000186077 A JP 2000186077A JP 2002005754 A JP2002005754 A JP 2002005754A
Authority
JP
Japan
Prior art keywords
resistance
voltage
measuring
resistor
wiring
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2000186077A
Other languages
Japanese (ja)
Inventor
Kunio Nishida
邦生 西田
Sadao Mori
定男 森
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Yokogawa Electric Corp
Original Assignee
Yokogawa Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Yokogawa Electric Corp filed Critical Yokogawa Electric Corp
Priority to JP2000186077A priority Critical patent/JP2002005754A/en
Publication of JP2002005754A publication Critical patent/JP2002005754A/en
Withdrawn legal-status Critical Current

Links

Landscapes

  • Measuring Temperature Or Quantity Of Heat (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a three-wire type temperature measuring resistor measuring circuit capable of making high-precision measurement in a specific temperature range without being affected by wire resistors. SOLUTION: This temperature measuring resistor measuring circuit measuring the resistance value of a temperature measuring resistor comprises a known resistor connected in series to first and second wire resistors connected at both ends of the temperature measuring resistor, a measuring means feeding a fixed current to a series circuit of the temperature measuring resistor, the first and second wire resistors, and the known resistor to measure a voltage drop, and a reference voltage adjusting means shifting the reference voltage used as a reference for measuring the voltage drop by the voltage drop of the first and second wire resistors.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は測温抵抗体測定回路
に関し、詳しくは、配線抵抗の影響を除去するととも
に、所望の測定温度範囲における測定の高精度化に関す
るものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a resistance thermometer measuring circuit, and more particularly, to a method for removing the influence of wiring resistance and improving the accuracy of measurement in a desired measuring temperature range.

【0002】[0002]

【従来の技術】測温抵抗体は、温度変化に伴う抵抗体の
抵抗値変化に基づいて温度を測定するものであり、工業
用の温度センサとして各種の分野で広く用いられてい
る。従来から、測温抵抗体測定回路では、測温抵抗体の
抵抗値を高精度に測定するために、3端子法を用いて配
線抵抗における電圧降下分をアナログ演算回路によって
除去することが行われている。
2. Description of the Related Art A temperature measuring resistor measures a temperature based on a change in resistance value of a resistor caused by a temperature change, and is widely used as an industrial temperature sensor in various fields. Conventionally, in a RTD measuring circuit, in order to measure the resistance value of the RTD with high accuracy, a voltage drop in a wiring resistance is removed by an analog arithmetic circuit using a three-terminal method. ing.

【0003】図5に、特開平2000−74749号に
より開示されている従来の回路の一例を示す。図におい
て、r1・r2は配線抵抗、Rtは測温抵抗体であり、配線抵
抗r1・r2はそれぞれ測温抵抗体Rtの各端に接続されてい
る。配線抵抗r1の他端は測定手段MESを構成する演算増
幅器OP1の非反転入力端子に接続されている。なお配線
抵抗r1と演算増幅器OP1の非反転入力端子の接続点に
は、電流源Iが接続されている。演算増幅器OP1の反転
入力端子は出力端子に接続され、演算増幅器OP1の出力
端子は増幅回路AMPを介して例えばAD変換器CNVに接続
されている。
FIG. 5 shows an example of a conventional circuit disclosed in Japanese Patent Application Laid-Open No. 2000-74749. In the figure, r1 and r2 are wiring resistances, Rt is a resistance temperature detector, and the wiring resistances r1 and r2 are respectively connected to respective ends of the resistance temperature detector Rt. The other end of the wiring resistance r1 is connected to a non-inverting input terminal of an operational amplifier OP1 constituting the measuring means MES. A current source I is connected to a connection point between the wiring resistance r1 and the non-inverting input terminal of the operational amplifier OP1. An inverting input terminal of the operational amplifier OP1 is connected to an output terminal, and an output terminal of the operational amplifier OP1 is connected to, for example, an AD converter CNV via an amplifier circuit AMP.

【0004】測温抵抗体Rtと配線抵抗r2の接続点は、電
圧降下検出手段VDETを構成する演算増幅器OP2の反転入
力端子に接続されている。演算増幅器OP2の非反転入力
端子は基準電圧設定手段VSETを構成する抵抗R1とR2の直
列回路の接続中点に接続され、出力端子は電圧降下検出
手段VDETを構成する演算増幅器OP3の非反転入力端子に
接続されている。演算増幅器OP3の非反転入力端子には
配線抵抗r2の他端が接続されている。
[0004] A connection point between the resistance bulb Rt and the wiring resistance r2 is connected to an inverting input terminal of an operational amplifier OP2 which constitutes a voltage drop detecting means VDET. The non-inverting input terminal of the operational amplifier OP2 is connected to the connection point of the series circuit of the resistors R1 and R2 forming the reference voltage setting means VSET, and the output terminal is connected to the non-inverting input of the operational amplifier OP3 forming the voltage drop detecting means VDET. Connected to terminal. The other end of the wiring resistor r2 is connected to the non-inverting input terminal of the operational amplifier OP3.

【0005】基準電圧設定手段VSETを構成する抵抗R1の
他端は、電圧降下検出手段VDETを構成する演算増幅器OP
3の出力端子に接続されている。基準電圧設定手段VSET
を構成する抵抗R2の他端は、共通電位点に接続されてい
る。
The other end of the resistor R1 constituting the reference voltage setting means VSET is connected to an operational amplifier OP constituting the voltage drop detecting means VDET.
3 is connected to the output terminal. Reference voltage setting means VSET
Is connected to the common potential point.

【0006】そして、これら電圧降下検出手段VDETと基
準電圧設定手段VSETは、基準電圧調整手段VADJを構成し
ている。
[0006] The voltage drop detecting means VDET and the reference voltage setting means VSET constitute reference voltage adjusting means VADJ.

【0007】図5において、測定する値はRt・Iである。
ここで、演算増幅器OP1の出力電圧Voutは、 Vout=(r1+Rt+r2)I+Vbase =(Rt+2・r2)I+Vbase (∵r1=r2) (1) また、電圧降下検出手段VDETを構成する演算増幅器OP2
・OP3の作用により、抵抗R1には、配線抵抗r1で生じる
電圧降下r2・Iと等しい電圧が生じる。
In FIG. 5, the measured value is Rt · I.
Here, the output voltage Vout of the operational amplifier OP1 is as follows: Vout = (r1 + Rt + r2) I + Vbase = (Rt + 2 · r2) I + Vbase (∵r1 = r2) (1) Also, the voltage drop detecting means VDET is configured Operational amplifier OP2
The voltage of the resistor R1 is equal to the voltage drop r2 · I generated by the wiring resistor r1 due to the action of OP3.

【0008】R1=R2とすると、演算増幅器OP3の非反転
入力端子の電圧Vbaseは、 Vbase=−2・r2・I (2) になる。これら2つの式(1),(2)より、 となり、目的の値Rt・Iが求められる。
If R1 = R2, the voltage Vbase at the non-inverting input terminal of the operational amplifier OP3 becomes Vbase = −2 · r2 · I (2). From these two equations (1) and (2), And the target value Rt · I is obtained.

【0009】[0009]

【発明が解決しようとする課題】ところで、図5の回路
において、測定精度を上げるためにはVoutの電圧を増幅
することが必要となる。しかしながら、演算増幅器OP1
の増幅率は電源電圧等に制限されるため、増幅率を高く
設定することは困難である。
By the way, in the circuit of FIG. 5, it is necessary to amplify the voltage of Vout in order to increase the measurement accuracy. However, the operational amplifier OP1
Is limited by the power supply voltage or the like, and it is difficult to set the amplification factor to a high value.

【0010】具体例として、測温抵抗体として白金PT10
0Ωを測定することを考える。白金PT100Ωを用いて0℃
を測定する場合には、Rt=100Ω、I=1mAとすると、Vou
t=100mVになる。これを精度良く測定するために例えば
増幅率100倍で増幅すると10Vになり、電源電圧を下げ
ることができなくなる。一般には、0℃付近の温度を精
度良く測定したいという要求が多い。
As a specific example, platinum PT10 is used as a resistance temperature detector.
Consider measuring 0Ω. 0 ° C using platinum PT100Ω
When measuring Rt = 100Ω and I = 1mA, Vou
t = 100mV. In order to measure this with high accuracy, for example, if the signal is amplified at an amplification factor of 100, the voltage becomes 10 V, and the power supply voltage cannot be reduced. In general, there are many demands for accurately measuring a temperature around 0 ° C.

【0011】本発明はこのような問題点に着目したもの
であり、その目的は、配線抵抗の影響を受けることな
く、特定の温度範囲で高精度の測定が行える3線式の測
温抵抗体測定回路を提供することにある。
The present invention focuses on such a problem, and an object of the present invention is to provide a three-wire type resistance thermometer capable of performing high-accuracy measurement in a specific temperature range without being affected by wiring resistance. It is to provide a measuring circuit.

【0012】[0012]

【課題を解決するための手段】このような目的を達成す
る請求項1の発明は、測温抵抗体の抵抗値を測定する測
温抵抗体測定回路において、前記測温抵抗体の両端に接
続された第1・第2の配線抵抗と直列に接続された既知
の抵抗と、これら測温抵抗体と第1・第2の配線抵抗と
既知の抵抗の直列回路に定電流を供給して電圧降下を測
定する測定手段と、前記電圧降下の測定の基準となる基
準電圧を前記第1および第2の配線抵抗における電圧降
下分だけシフトさせる基準電圧調整手段、とを備えたこ
とを特徴とする。
According to a first aspect of the present invention, there is provided a temperature measuring resistor measuring circuit for measuring a resistance value of a temperature measuring resistor, which is connected to both ends of the temperature measuring resistor. A constant current is supplied to a known resistance connected in series with the first and second wiring resistances, and a series circuit of these resistance temperature detectors, the first and second wiring resistances, and the known resistance to supply a voltage. Measuring means for measuring the voltage drop; and reference voltage adjusting means for shifting a reference voltage serving as a reference for measuring the voltage drop by a voltage drop in the first and second wiring resistances. .

【0013】請求項2の発明は、請求項1記載の測温抵
抗体測定回路において、前記測定手段が、前記測温抵抗
体と第1・第2の配線抵抗と既知の抵抗の直列回路に定
電流を供給する定電流源と、前記電圧降下を検出するバ
ッファ回路とから構成されることを特徴とする。
According to a second aspect of the present invention, in the resistance thermometer measurement circuit according to the first aspect, the measuring means includes a series circuit of the resistance thermometer, the first and second wiring resistors, and a known resistor. It is characterized by comprising a constant current source for supplying a constant current and a buffer circuit for detecting the voltage drop.

【0014】請求項3の発明は、請求項1記載の測温抵
抗体測定回路において、前記基準電圧調整手段が、前記
第1または第2の配線抵抗における電圧降下分を検出す
る電圧降下検出手段と、この電圧降下検出手段で検出さ
れた電圧降下分に基づき前記基準電圧を設定する基準電
圧設定手段とから構成されることを特徴とする。
According to a third aspect of the present invention, in the resistance temperature measuring circuit of the first aspect, the reference voltage adjusting means detects a voltage drop in the first or second wiring resistance. And reference voltage setting means for setting the reference voltage based on the voltage drop detected by the voltage drop detecting means.

【0015】請求項4の発明は、請求項3記載の測温抵
抗体測定回路において、前記電圧降下検出手段が、前記
測温度抵抗体と前記第2の配線抵抗との接続点に反転入
力端子が接続される第1の演算増幅器と、前記第2の配
線抵抗の他端および前記第1の演算増幅器の出力端子に
非反転入力端子が接続されたバッファ回路である第2の
演算増幅器とから構成され、前記第1の演算増幅器の非
反転入力端子および前記第2の演算増幅器の出力端子が
前記基準電圧設定手段に接続されることを特徴とする。
According to a fourth aspect of the present invention, in the resistance temperature measuring circuit according to the third aspect, the voltage drop detecting means includes an inverting input terminal at a connection point between the temperature measuring resistor and the second wiring resistance. And a second operational amplifier which is a buffer circuit having a non-inverting input terminal connected to the other end of the second wiring resistance and an output terminal of the first operational amplifier. And a non-inverting input terminal of the first operational amplifier and an output terminal of the second operational amplifier are connected to the reference voltage setting means.

【0016】請求項5の発明は、請求項4記載の測温抵
抗体測定回路において、基準電圧設定手段が、一端が接
地され、他端が前記第1の演算増幅器の非反転入力端子
に接続される第1の抵抗と、この第1の抵抗の他端に一
端が接続され他端が前記第2の演算増幅器の出力端子に
接続される第2の抵抗とから構成されることを特徴とす
る。
According to a fifth aspect of the present invention, in the resistance temperature measuring circuit of the fourth aspect, the reference voltage setting means has one end grounded and the other end connected to the non-inverting input terminal of the first operational amplifier. And a second resistor having one end connected to the other end of the first resistor and the other end connected to the output terminal of the second operational amplifier. I do.

【0017】これらにより、従来のような演算回路を用
いない簡単な回路構成で、配線抵抗の影響を受けること
なく測温抵抗体の抵抗値を測定できる。
Thus, the resistance value of the resistance temperature detector can be measured with a simple circuit configuration that does not use an arithmetic circuit as in the related art, without being affected by the wiring resistance.

【0018】請求項6の発明は、請求項1記載の測温抵
抗体測定回路において、校正手段を備えたことを特徴と
する。
According to a sixth aspect of the present invention, there is provided the temperature measuring resistor measuring circuit according to the first aspect, further comprising a calibration means.

【0019】請求項7の発明は、請求項6記載の測温抵
抗体測定回路において、前記校正手段が、基準抵抗と、
この基準抵抗若しくは前記測温抵抗体および前記配線抵
抗に前記測定手段が供給する定電流を切り換える第1の
スイッチ回路と、前記第1の配線抵抗の一端および前記
基準抵抗の両端の電圧が印加され、出力が前記測定手段
に接続される第2のスイッチ回路と、前記測温抵抗体と
前記第2の配線抵抗との接続点の電圧、前記第2の配線
抵抗の他端の電圧を前記基準電圧調整手段に印加する第
3および第4のスイッチ回路とから構成されることを特
徴とする。
According to a seventh aspect of the present invention, in the temperature measuring resistor measuring circuit according to the sixth aspect, the calibration means comprises: a reference resistance;
A first switch circuit for switching a constant current supplied by the measuring means to the reference resistance or the resistance temperature detector and the wiring resistance, and a voltage at one end of the first wiring resistance and at both ends of the reference resistance is applied. A second switch circuit having an output connected to the measuring means, a voltage at a connection point between the temperature measuring resistor and the second wiring resistance, and a voltage at the other end of the second wiring resistance as the reference. It is characterized by comprising third and fourth switch circuits applied to the voltage adjusting means.

【0020】請求項8の発明は、請求項6または請求項
7記載の測温抵抗体測定回路において、前記校正手段が
前記測定手段および前記基準電圧調整手段へ印加する電
圧を同一に設定してゼロ点校正を行うことを特徴とす
る。
According to an eighth aspect of the present invention, in the temperature measuring resistor measuring circuit according to the sixth or seventh aspect, the calibration means sets the same voltage to be applied to the measuring means and the reference voltage adjusting means. It is characterized by performing zero point calibration.

【0021】請求項9の発明は、請求項7記載の測温抵
抗体測定回路において、前記校正手段が前記測定手段に
印加する電圧から前記基準抵抗での電圧降下分減算した
電圧を前記基準電圧調整手段へ印加してスパン点校正を
行うことを特徴とする。
According to a ninth aspect of the present invention, in the resistance thermometer measurement circuit according to the seventh aspect, a voltage obtained by subtracting a voltage drop at the reference resistor from the voltage applied by the calibration means to the measurement means is provided as the reference voltage. The present invention is characterized in that the span point is calibrated by applying the voltage to the adjusting means.

【0022】これらにより、演算増幅器のオフセット成
分を補償できる。
Thus, the offset component of the operational amplifier can be compensated.

【0023】請求項10の発明は、請求項1記載の測温
抵抗体測定回路において、前記既知抵抗の抵抗値を前記
測温抵抗体の所望測定温度における抵抗値と等しくした
ことを特徴とする。
According to a tenth aspect of the present invention, in the resistance temperature measuring circuit of the first aspect, the resistance value of the known resistance is equal to the resistance value of the resistance temperature detector at a desired measurement temperature. .

【0024】これにより、既知抵抗の抵抗値と等しい測
温抵抗体の抵抗値により定まる所望測定温度における増
幅率を上げることができ、高精度の測定が行える。
Thus, the amplification factor at a desired measurement temperature determined by the resistance value of the resistance bulb equal to the resistance value of the known resistance can be increased, and highly accurate measurement can be performed.

【0025】[0025]

【発明の実施の形態】以下、図面を用いて本発明の実施
の形態を説明する。図1は本発明の実施の形態の一例を
示す回路図であり、図5と共通する部分には同一の符号
を付けている。図1と図5の異なる点は、図1では測温
抵抗体Rtの両端に接続された第1・第2の配線抵抗R1・R
2と直列に既知の抵抗Rsを接続していることである。
Embodiments of the present invention will be described below with reference to the drawings. FIG. 1 is a circuit diagram showing an example of an embodiment of the present invention, and portions common to FIG. 5 are denoted by the same reference numerals. The difference between FIG. 1 and FIG. 5 is that in FIG. 1, the first and second wiring resistances R1 and R connected to both ends of the resistance bulb Rt are shown.
That is, a known resistor Rs is connected in series with 2.

【0026】図1の構成において、演算増幅器OP1の出
力信号Voutは、 Vout=(r1+Rt+r2+Rs)I+Vbase =(Rt+2・r2+Rs)I+Vbase (∵r1=r2) (4) また、電圧降下検出手段VDETを構成する演算増幅器OP2
・OP3の作用により、抵抗R1には、配線抵抗r2・既知抵
抗Rsで生じる電圧降下(r2+Rs)・Iと等しい電圧が生じ
る。
In the configuration shown in FIG. 1, the output signal Vout of the operational amplifier OP1 is given by: Vout = (r1 + Rt + r2 + Rs) I + Vbase = (Rt + 2 · r2 + Rs) I + Vbase (∵r1 = r2) (4) Operational amplifier OP2 that constitutes detection means VDET
Due to the action of OP3, a voltage equal to the wiring resistance r2, the voltage drop (r2 + Rs) × I generated by the known resistance Rs is generated in the resistor R1.

【0027】ここで、R1=R2であることにより、演算増
幅器OP3の非反転入力端子の電圧Vbaseは、 Vbase=−2・(r2+Rs)・I (5) になる。これら2つの式(4),(5)より、 となる。
Here, since R1 = R2, the voltage Vbase at the non-inverting input terminal of the operational amplifier OP3 becomes Vbase = −2 · (r2 + Rs) · I (5) From these two equations (4) and (5), Becomes

【0028】この電圧Vout=(Rt−Rs)・Iは、図5の従来
回路で生じる電圧Vout=Rt・Iよりも低く押さえることが
できる。そして、例えば既知抵抗Rsの抵抗値を0℃にお
ける測温抵抗体Rtの抵抗値と等しくすることにより、0
℃でのVout電圧は0となるので0℃付近の温度を測定する
のにあたって増幅回路AMPの増幅率を高く設定すること
が可能となり、高精度の測定が行える。
This voltage Vout = (Rt−Rs) · I can be suppressed lower than the voltage Vout = Rt · I generated in the conventional circuit of FIG. Then, for example, by making the resistance value of the known resistance Rs equal to the resistance value of the resistance bulb Rt at 0 ° C.,
Since the Vout voltage at 0 ° C. becomes 0, it is possible to set the amplification factor of the amplifier circuit AMP high when measuring a temperature near 0 ° C., and it is possible to perform highly accurate measurement.

【0029】これらから明らかなように、従来と同様の
簡単な回路構成で、配線抵抗の影響を除去するための演
算回路を用いることなく、3線式の測温抵抗体測定回路
における配線抵抗の影響を除去できる。既知抵抗Rsを追
加することにより、特定の温度測定範囲における増幅回
路AMPの増幅率を上げることができ、高精度の測定が可
能になる。同一測定精度を得るための駆動電圧が低くな
るので、電源電圧を下げることができる。
As is apparent from the above, the wiring resistance of the three-wire type RTD measuring circuit can be reduced with a simple circuit configuration similar to the conventional one and without using an arithmetic circuit for removing the influence of the wiring resistance. The effect can be eliminated. By adding the known resistance Rs, the amplification factor of the amplifier circuit AMP in a specific temperature measurement range can be increased, and high-precision measurement can be performed. Since the drive voltage for obtaining the same measurement accuracy is reduced, the power supply voltage can be reduced.

【0030】図2は図1の基本回路に基づく実際の測定
回路例図であり、内部校正回路を有する1チャンネルの
例を示している。図2の各スイッチの接点において、Me
sは測定位置、Calは校正位置、Fullはフルスパン点校正
位置、Zeroはゼロ点校正位置を表わす。Vos1,Vos2,Vo
s3はそれぞれ演算増幅器OP1,OP2,OP3のオフセット電
圧を表わしている。
FIG. 2 is an example of an actual measurement circuit based on the basic circuit of FIG. 1, showing an example of one channel having an internal calibration circuit. At the contact of each switch in FIG.
s represents a measurement position, Cal represents a calibration position, Full represents a full span point calibration position, and Zero represents a zero point calibration position. Vos1, Vos2, Vo
s3 represents the offset voltage of each of the operational amplifiers OP1, OP2, OP3.

【0031】測定時のスイッチは、すべてMes側に切り
換える。この場合の測定値は、図1と同様な回路動作に
基づき、 Vout(Mes)=(Rt−Rs)・I−2・Vos2−Vos3−Vos1 (7) になる。
The switches at the time of measurement are all switched to the Mes side. The measured value in this case is Vout (Mes) = (Rt−Rs) · I−2 · Vos2−Vos3−Vos1 (7) based on the circuit operation similar to FIG.

【0032】ゼロ点校正時のスイッチは、それぞれCal
側およびZero側に切り換える。この場合の測定値は、図
1と同様な回路動作に基づき、 Vout(Zero)=−2・Vos2−Vos3−Vos1 (8) になる。
The switches at the time of zero point calibration are Cal
Switch to the side and Zero side. The measured value in this case is Vout (Zero) = − 2 · Vos2-Vos3-Vos1 (8) based on the circuit operation similar to FIG.

【0033】そしてフルスパン点校正時のスイッチは、
それぞれCal側およびFull側に切り換える。この場合の
測定値は、図1と同様な回路動作に基づき、 Vout(Full)=Rf・I−2・Vos2−Vos3−Vos1 (9) になる。
The switch for full span point calibration is as follows:
Switch to Cal side and Full side respectively. The measured value in this case is Vout (Full) = Rf.I-2.Vos2-Vos3-Vos1 (9) based on the circuit operation similar to FIG.

【0034】以上の式から明らかなように、(7)式の測
定データを(8)式のゼロ点校正時の測定データと(9)式の
フルスパン点校正時の測定データとで補正することによ
り、演算増幅器OP1,OP2,OP3のオフセット電圧を補償で
き、高精度の測定が行える。具体的には、以下のような
演算を行う。 M=[Vout(Mes)−Vout(Zero)]/[Vout(Full)−Vout(Zero)] =(Rt−Rs)・I/Rf・I =(Rt−Rs)/Rf (10)
As is clear from the above equations, the measurement data of equation (7) is corrected by the measurement data of zero point calibration of equation (8) and the measurement data of full span point calibration of equation (9). Thereby, the offset voltages of the operational amplifiers OP1, OP2, OP3 can be compensated, and highly accurate measurement can be performed. Specifically, the following operation is performed. M = [Vout (Mes) −Vout (Zero)] / [Vout (Full) −Vout (Zero)] = (Rt−Rs) · I / Rf · I = (Rt−Rs) / Rf (10)

【0035】図3は図2の回路を多チャンネル切換構成
に展開した実施例であって、図3では1個の既知抵抗Rs
を各チャンネルで共通に使用するように接続されてい
て、チャンネル間は非絶縁になっている。
FIG. 3 shows an embodiment in which the circuit of FIG. 2 is developed into a multi-channel switching configuration. In FIG. 3, one known resistor Rs is used.
Are connected so as to be used in common for each channel, and the channels are not insulated.

【0036】図4も図2の回路を多チャンネル切換構成
に展開した実施例であって、図4では各チャンネル個別
にそれぞれ既知抵抗Rsが接続されていて、チャンネル間
は完全に絶縁されている。
FIG. 4 also shows an embodiment in which the circuit of FIG. 2 is developed into a multi-channel switching configuration. In FIG. 4, the known resistors Rs are individually connected to the respective channels, and the channels are completely insulated. .

【0037】[0037]

【発明の効果】以上説明したように、本発明によれば、
3線式の測温抵抗体測定回路において簡単な回路構成で
配線抵抗の影響を除去できるとともに、既知の抵抗Rsを
用いてその抵抗値を所望の温度(例えば0℃)における
測温抵抗体の抵抗値と等しく選定することにより、特定
温度付近(例えば0℃)における出力電圧を0Vにでき
るので出力電圧の増幅率を高く設定でき、高精度の測定
が実現できる。
As described above, according to the present invention,
In a three-wire RTD measuring circuit, the influence of wiring resistance can be removed with a simple circuit configuration, and the resistance value of the RTD at a desired temperature (for example, 0 ° C.) can be reduced using a known resistor Rs. By selecting the same value as the resistance value, the output voltage near a specific temperature (for example, 0 ° C.) can be set to 0 V, so that the amplification factor of the output voltage can be set high, and highly accurate measurement can be realized.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の実施の形態の一例を示す基本回路図で
ある。
FIG. 1 is a basic circuit diagram illustrating an example of an embodiment of the present invention.

【図2】図1の基本回路に基づく実際の測定回路例図で
ある。
FIG. 2 is an example of an actual measurement circuit based on the basic circuit of FIG.

【図3】図2の回路を多チャンネルに展開した測定回路
例図である。
FIG. 3 is a diagram illustrating an example of a measurement circuit obtained by expanding the circuit of FIG. 2 into multiple channels.

【図4】図2の回路を多チャンネルに展開した他の測定
回路例図である。
FIG. 4 is a diagram illustrating another example of a measurement circuit in which the circuit of FIG. 2 is expanded to multiple channels.

【図5】従来の回路例図である。FIG. 5 is a circuit diagram of a conventional circuit.

【符号の説明】[Explanation of symbols]

Rt 測温抵抗体 Rs 既知抵抗 r1,r2 配線抵抗 OP1,OP2,OP3 演算増幅器 Rt RTD Rs Known resistance r1, r2 Wiring resistance OP1, OP2, OP3 Operational amplifier

Claims (10)

【特許請求の範囲】[Claims] 【請求項1】測温抵抗体の抵抗値を測定する測温抵抗体
測定回路において、 前記測温抵抗体の両端に接続された第1・第2の配線抵
抗と直列に接続された既知の抵抗と、 これら測温抵抗体と第1・第2の配線抵抗と既知の抵抗
の直列回路に定電流を供給して電圧降下を測定する測定
手段と、 前記電圧降下の測定の基準となる基準電圧を前記第1お
よび第2の配線抵抗における電圧降下分だけシフトさせ
る基準電圧調整手段、とを備えたことを特徴とする測温
抵抗体測定回路。
1. A resistance thermometer measurement circuit for measuring a resistance value of a resistance thermometer, wherein a known resistance connected in series with first and second wiring resistances connected to both ends of the resistance thermometer. A resistance, a measuring means for supplying a constant current to a series circuit of the resistance thermometer, the first and second wiring resistances, and the known resistance to measure a voltage drop, and a reference as a reference for measuring the voltage drop A reference voltage adjusting means for shifting a voltage by a voltage drop in the first and second wiring resistances.
【請求項2】前記測定手段が、 前記測温抵抗体と第1・第2の配線抵抗と既知の抵抗の
直列回路に定電流を供給する定電流源と、前記電圧降下
を検出するバッファ回路とから構成されることを特徴と
する請求項1記載の測温抵抗体測定回路。
2. A constant current source for supplying a constant current to a series circuit of the resistance temperature detector, first and second wiring resistors, and a known resistor, and a buffer circuit for detecting the voltage drop. 2. The resistance thermometer measurement circuit according to claim 1, comprising:
【請求項3】前記基準電圧調整手段が、 前記第1または第2の配線抵抗における電圧降下分を検
出する電圧降下検出手段と、この電圧降下検出手段で検
出された電圧降下分に基づき前記基準電圧を設定する基
準電圧設定手段とから構成されることを特徴とする請求
項1記載の測温抵抗体測定回路。
3. The reference voltage adjusting means includes: a voltage drop detecting means for detecting a voltage drop in the first or second wiring resistance; and the reference voltage adjusting means based on the voltage drop detected by the voltage drop detecting means. 2. The resistance temperature measuring circuit according to claim 1, further comprising a reference voltage setting means for setting a voltage.
【請求項4】前記電圧降下検出手段が、 前記測温度抵抗体と前記第2の配線抵抗との接続点に反
転入力端子が接続される第1の演算増幅器と、前記第2
の配線抵抗の他端および前記第1の演算増幅器の出力端
子に非反転入力端子が接続されたバッファ回路である第
2の演算増幅器とから構成され、前記第1の演算増幅器
の非反転入力端子および前記第2の演算増幅器の出力端
子が前記基準電圧設定手段に接続されることを特徴とす
る請求項3記載の測温抵抗体測定回路。
4. The first operational amplifier having an inverting input terminal connected to a connection point between the temperature measuring resistor and the second wiring resistance, the second operational amplifier comprising:
A second operational amplifier which is a buffer circuit having a non-inverting input terminal connected to the other end of the wiring resistance and an output terminal of the first operational amplifier, and a non-inverting input terminal of the first operational amplifier. 4. The resistance thermometer measurement circuit according to claim 3, wherein an output terminal of said second operational amplifier is connected to said reference voltage setting means.
【請求項5】基準電圧設定手段が、 一端が接地され、他端が前記第1の演算増幅器の非反転
入力端子に接続される第1の抵抗と、この第1の抵抗の
他端に一端が接続され他端が前記第2の演算増幅器の出
力端子に接続される第2の抵抗とから構成されることを
特徴とする請求項4記載の測温抵抗体測定回路。
5. A reference voltage setting means comprising: a first resistor having one end grounded, the other end connected to a non-inverting input terminal of the first operational amplifier, and one end connected to the other end of the first resistor. 5. The resistance thermometer measuring circuit according to claim 4, further comprising: a second resistor connected to an output terminal of the second operational amplifier.
【請求項6】校正手段を備えたことを特徴とする請求項
1記載の測温抵抗体測定回路。
6. The resistance temperature measuring circuit according to claim 1, further comprising calibration means.
【請求項7】前記校正手段が、 基準抵抗と、この基準抵抗若しくは前記測温抵抗体およ
び前記配線抵抗に前記測定手段が供給する定電流を切り
換える第1のスイッチ回路と、前記第1の配線抵抗の一
端および前記基準抵抗の両端の電圧が印加され、出力が
前記測定手段に接続される第2のスイッチ回路と、前記
測温抵抗体と前記第2の配線抵抗との接続点の電圧、前
記第2の配線抵抗の他端の電圧を前記基準電圧調整手段
に印加する第3および第4のスイッチ回路とから構成さ
れることを特徴とする請求項6記載の測温抵抗体測定回
路。
7. A first switch circuit for switching a reference current, a constant current supplied by the measuring means to the reference resistance or the resistance temperature detector and the wiring resistance, and the first wiring. A second switch circuit to which a voltage at one end of a resistor and both ends of the reference resistor is applied and whose output is connected to the measuring means, a voltage at a connection point between the temperature measuring resistor and the second wiring resistance, 7. The resistance thermometer measurement circuit according to claim 6, further comprising third and fourth switch circuits for applying a voltage at the other end of said second wiring resistance to said reference voltage adjusting means.
【請求項8】前記校正手段が前記測定手段および前記基
準電圧調整手段へ印加する電圧を同一に設定してゼロ点
校正を行うことを特徴とする請求項6または請求項7記
載の測温抵抗体測定回路。
8. The resistance thermometer according to claim 6, wherein the calibrating means performs zero point calibration by setting the same voltage to be applied to the measuring means and the reference voltage adjusting means. Body measurement circuit.
【請求項9】前記校正手段が前記測定手段に印加する電
圧から前記基準抵抗での電圧降下分減算した電圧を前記
基準電圧調整手段へ印加してスパン点校正を行うことを
特徴とする請求項7記載の測温抵抗体測定回路。
9. A span point calibration by applying a voltage obtained by subtracting a voltage drop at the reference resistor from a voltage applied to the measuring means by the calibrating means to the reference voltage adjusting means. 7. The resistance thermometer measurement circuit according to 7.
【請求項10】前記既知抵抗の抵抗値を前記測温抵抗体
の所望測定温度における抵抗値と等しくしたことを特徴
とする請求項1記載の測温抵抗体測定回路。
10. The resistance temperature measuring circuit according to claim 1, wherein the resistance value of the known resistance is equal to the resistance value of the resistance temperature detector at a desired measurement temperature.
JP2000186077A 2000-06-21 2000-06-21 Temperature measuring resistor measuring circuit Withdrawn JP2002005754A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2000186077A JP2002005754A (en) 2000-06-21 2000-06-21 Temperature measuring resistor measuring circuit

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2000186077A JP2002005754A (en) 2000-06-21 2000-06-21 Temperature measuring resistor measuring circuit

Publications (1)

Publication Number Publication Date
JP2002005754A true JP2002005754A (en) 2002-01-09

Family

ID=18686307

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000186077A Withdrawn JP2002005754A (en) 2000-06-21 2000-06-21 Temperature measuring resistor measuring circuit

Country Status (1)

Country Link
JP (1) JP2002005754A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2463068A (en) * 2008-09-02 2010-03-03 Gm Global Tech Operations Inc A method for estimating the temperature in an internal combustion engine

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2463068A (en) * 2008-09-02 2010-03-03 Gm Global Tech Operations Inc A method for estimating the temperature in an internal combustion engine
GB2463068B (en) * 2008-09-02 2012-03-14 Gm Global Tech Operations Inc A method for estimating the temperature in an internal combustion engine

Similar Documents

Publication Publication Date Title
GB2503995A (en) Temperature sensing using a bipolar transistor
KR101375363B1 (en) Apparatus for measuring temperature using thermistor
CN211085270U (en) Temperature self-compensating device of resistance type displacement sensor
JP3309380B2 (en) Digital measuring instrument
JP3222367B2 (en) Temperature measurement circuit
JP3081751B2 (en) Electric quantity measuring device
JPS61210965A (en) Measuring equipment for low resistance
US7550981B2 (en) Circuit and method for determining potentiometer wiper resistance
JP2002005754A (en) Temperature measuring resistor measuring circuit
JP6489081B2 (en) Sensor device
CN117420359A (en) Full-dynamic-range high-precision resistance measuring structure and measuring method thereof
EP0749001B1 (en) Offset cancel circuit and offset cancel method using the same
JPH1172529A (en) Insulation resistance measurement instrument for capacitor
JP2002006014A (en) Magnetic sensor
CN219738060U (en) uA level high-precision constant current source system
JP4205669B2 (en) Thermal air flow sensor device
JP2000074749A (en) Measurement circuit for resistance thermometer bulb
JP2595858B2 (en) Temperature measurement circuit
JPH0443791Y2 (en)
KR19980076201A (en) Temperature measuring device using RTD
JPS5825353Y2 (en) Micro resistance change measuring device
JPS6221958Y2 (en)
JP2813669B2 (en) Effective power / DC voltage conversion circuit
JPH089618Y2 (en) Thermistor temperature conversion circuit
JPS6236126Y2 (en)

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20040329

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20050802

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20050824

A761 Written withdrawal of application

Free format text: JAPANESE INTERMEDIATE CODE: A761

Effective date: 20050912