JP2002004844A - Exhaust emission control device for diesel engine - Google Patents

Exhaust emission control device for diesel engine

Info

Publication number
JP2002004844A
JP2002004844A JP2000187895A JP2000187895A JP2002004844A JP 2002004844 A JP2002004844 A JP 2002004844A JP 2000187895 A JP2000187895 A JP 2000187895A JP 2000187895 A JP2000187895 A JP 2000187895A JP 2002004844 A JP2002004844 A JP 2002004844A
Authority
JP
Japan
Prior art keywords
exhaust
passage
wall
nox
particulate filter
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2000187895A
Other languages
Japanese (ja)
Inventor
Seiichi Hosogai
誠一 細貝
Kazuhide Terada
一秀 寺田
Kenichi Ogawara
謙一 大河原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Honda Motor Co Ltd
Original Assignee
Honda Motor Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Honda Motor Co Ltd filed Critical Honda Motor Co Ltd
Priority to JP2000187895A priority Critical patent/JP2002004844A/en
Publication of JP2002004844A publication Critical patent/JP2002004844A/en
Pending legal-status Critical Current

Links

Abstract

PROBLEM TO BE SOLVED: To improve regeneration efficiency of an NOx adsorbent and a particulate filter, by avoiding the decrease in heat transfer efficiency of respective exhaust post treatment devices, while simplifying the structure of an exhaust system by concentrating and integrating NOx-adsorbing function and an oxidation catalyst to the particulate filter, in an exhaust emission control device, in which the particulate filter interposed in the exhaust system of a diesel engine is provided with passage walls made of porous members and an upstream exhaust passage and a downstream exhaust passage, which are mutually adjacent to each other across the passage walls, and particulates in exhaust gas are collected by the wall, when the exhaust gas passes through the passage walls. SOLUTION: NOx adsorbents M are carried and held on first wall surfaces 5u, 6u which face upstream exhaust passages (u) of passage walls 5, 6, and oxidation catalysts M' are carried on second wall surfaces 5d, 6d which face downstream exhaust passage (d) of the passage walls.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は,ディーゼルエンジ
ンの排気系に介装されるパティキュレートフィルタが,
多孔質部材からなる通路壁と,該通路壁を挟んで相互に
隣接する上流側排気通路及び下流側排気通路とを備え,
排気が前記通路壁をその上流側から下流側に向けて通過
するときに該通路壁において排気中のパティキュレート
が捕捉されるようにしたディーゼルエンジン用排気浄化
装置に関する。
[0001] The present invention relates to a particulate filter provided in an exhaust system of a diesel engine.
A passage wall made of a porous member, and an upstream exhaust passage and a downstream exhaust passage adjacent to each other with the passage wall interposed therebetween;
The present invention relates to an exhaust gas purification device for a diesel engine in which particulates in exhaust gas are trapped in the passage wall when the exhaust gas passes through the passage wall from the upstream side to the downstream side.

【0002】尚,本明細書において「パティキュレー
ト」とは,排気中に含まれる微細な粒子状物質(PM)
を指し,それは,煤粒子,多種の炭化水素粒子,その他
の不可溶性有機物質(SOOT)に,未燃燃料,未燃焼
オイル成分,その他の可溶性有機物質(SOF)や,燃
料のイオウ分が酸化する等して生じた硫黄酸化物が付着
して構成されるものをいう。
[0002] In this specification, "particulate" means fine particulate matter (PM) contained in exhaust gas.
Which means that soot particles, various hydrocarbon particles, and other insoluble organic substances (SOOT) oxidize unburned fuel, unburned oil components, other soluble organic substances (SOF), and sulfur in fuel. It is formed by the adhesion of sulfur oxides generated by the process.

【0003】[0003]

【従来の技術】従来,ディーゼルエンジンの排気系に,
互いに別個独立した3個の排気後処理装置(即ちNOx
吸収触媒装置,パティキュレートフィルタ,酸化触媒装
置)を直列に介装したものが知られており,このもので
は,エンジンの排気熱の伝達効率が下流側の処理装置に
なるほど低下してくるため,該処理装置の浄化効率およ
び再生効率も下流側になるほど低下してしまい,また排
気系の構造も全体として複雑になる等の問題があった。
2. Description of the Related Art Conventionally, the exhaust system of a diesel engine has been
Three exhaust aftertreatment devices (ie, NOx
An absorption catalyst device, a particulate filter, and an oxidation catalyst device) are interposed in series, and in this device, the transfer efficiency of the exhaust heat of the engine decreases as it goes to the downstream processing device. The purification efficiency and the regeneration efficiency of the processing apparatus also become lower toward the downstream side, and the structure of the exhaust system becomes complicated as a whole.

【0004】そこでパティキュレートフィルタにNOx
吸収機能を持たせるために,例えばウォールフロータイ
プのパティキュレートフィルタの,多孔質部材からなる
通路壁の上流側及び下流側の第1及び第2壁面にそれぞ
れNOx吸収剤を担持させるようにしたものが既に提案
されている(例えば特開平6−272541号公報参
照)。
Therefore, NOx is added to the particulate filter.
In order to have an absorption function, for example, a NOx absorbent is supported on first and second wall surfaces on the upstream and downstream sides of a passage wall made of a porous member, for example, of a wall flow type particulate filter. Has already been proposed (see, for example, JP-A-6-272541).

【0005】[0005]

【発明が解決しようとする課題】ところが上記提案の構
造にしても,酸化触媒装置は,パティキュレートフィル
タとは別個独立に排気系に介装する必要があり,特に下
流側となる処理装置においては,それへの排気熱の伝達
効率低下に因りその浄化効率および再生効率が低下する
等の問題が依然として残ってしまう。
However, even with the above proposed structure, the oxidation catalyst device must be interposed in the exhaust system independently of the particulate filter, and especially in the downstream processing device. However, there still remain problems such as a reduction in purification efficiency and regeneration efficiency due to a reduction in the transfer efficiency of exhaust heat to the exhaust gas.

【0006】本発明は,以上のような諸事情に鑑みてな
されたものであり,パティキュレートフィルタにNOx
吸収機能のみならず酸化触媒機能をも集約,一体構造と
することにより,従来構造の上記問題を全て解決するこ
とができる,構造簡単なディーゼルエンジン用排気浄化
装置を提供することを目的とする。
[0006] The present invention has been made in view of the above circumstances, and NOx is added to a particulate filter.
An object of the present invention is to provide a diesel engine exhaust purification device having a simple structure that can solve all the above-mentioned problems of the conventional structure by integrating not only the absorption function but also the oxidation catalyst function and forming an integrated structure.

【0007】[0007]

【課題を解決するための手段】上記目的を達成するため
に,請求項1の発明は,ディーゼルエンジンの排気系に
介装されるパティキュレートフィルタが,多孔質部材か
らなる通路壁と,該通路壁を挟んで相互に隣接する上流
側排気通路及び下流側排気通路とを備え,排気が前記通
路壁をその上流側から下流側に向けて通過するときに該
通路壁において排気中のパティキュレートが捕捉される
ようにした,ディーゼルエンジン用排気浄化装置におい
て,前記通路壁の上流側排気通路に臨む第1壁面に,排
気中のNOxを吸収可能なNOx吸収剤を担持させる一
方,同通路壁の下流側排気通路に臨む第2壁面に酸化触
媒を担持させたことを特徴とする。
In order to achieve the above object, according to the first aspect of the present invention, a particulate filter provided in an exhaust system of a diesel engine comprises a passage wall made of a porous member, An upstream exhaust passage and a downstream exhaust passage that are adjacent to each other with a wall interposed therebetween, and when exhaust gas passes through the passage wall from the upstream side to the downstream side, the particulates in the exhaust at the passage wall are reduced. In the exhaust gas purifying device for a diesel engine, the NOx absorbent capable of absorbing NOx in the exhaust gas is carried on the first wall surface facing the exhaust passage upstream of the passage wall. An oxidation catalyst is supported on a second wall surface facing the downstream side exhaust passage.

【0008】この特徴によれば,排気がパティキュレー
トフィルタの上記通路壁を通過するときに,排気中のパ
ティキュレートは主として該通路壁の第1壁面上で捕
集,堆積され,この第1壁面上においては,その捕集さ
れたパティキュレートの酸化燃焼による除去作用と,排
気中のNOxをNOx吸収剤に吸収させる作用とを併せ
持つことになる。即ち,排気空燃比がリーンとなるディ
ーゼルエンジンの通常運転時には,CO,HCの酸化作
用に加えて,パティキュレート中の炭素成分Cの酸化反
応(2NO2 +C→ 2NO+CO2 )と,NOxの吸
収反応(2NO+O2 → 2NO2 →M・2NO2 )と
が起こることにより,吸収剤(M)によるNOxの吸収
作用とパティキュレート中の炭素成分浄化作用とを同時
に得ることが可能となる。特にNOx吸収剤(M)が第
1壁面上にあると,NOの酸化によりNO2 が多量に生
成され,その一部はNOx吸収剤に吸収されるが,吸収
しきれないNO2 がパティキュレート中の炭素成分Cと
も反応し易くなるため,該吸収剤が第1壁面上に無い場
合よりも低い排ガス温度雰囲気においてパティキュレー
トの酸化燃焼反応を促進でき,これにより,パティキュ
レートフィルタの再生効率が向上する。
According to this feature, when the exhaust gas passes through the passage wall of the particulate filter, the particulates in the exhaust gas are mainly collected and deposited on the first wall surface of the passage wall, and the first wall surface is collected. Above, it has both the action of removing the trapped particulates by oxidative combustion and the action of absorbing NOx in the exhaust gas with the NOx absorbent. That is, during normal operation of a diesel engine in which the exhaust air-fuel ratio is lean, in addition to the oxidizing action of CO and HC, the oxidation reaction of carbon component C in particulates (2NO 2 + C → 2NO + CO 2 ) and the NOx absorption reaction By the occurrence of (2NO + O 2 → 2NO 2 → M · 2NO 2 ), it becomes possible to simultaneously obtain the NOx absorbing action of the absorbent (M) and the action of purifying the carbon component in the particulates. In particular, when the NOx absorbent (M) is in the first on the walls, NO 2 is produced in large quantities by oxidizing NO, the the a part is absorbed in the NOx absorbent, can not be absorbed NO 2 is particulate Since it also easily reacts with the carbon component C therein, the oxidizing and burning reaction of the particulates can be promoted in a lower exhaust gas temperature atmosphere than when the absorbent is not on the first wall surface, thereby reducing the regeneration efficiency of the particulate filter. improves.

【0009】ところでNOx吸収剤に吸収されたNOx
のリリース再生は,一般に燃料リッチ状態(即ち空気過
剰率λ≦1)によるリリース再生手法が知られている
が,これには,再生温度が比較的低い場合にはNOx吸
収剤の再生効率(NOxリリース効率)が低下してしま
うという問題があった。しかしながらパティキュレート
に含まれる可溶性有機物質(SOF)は250°C程度
の低温でも蒸発燃料状態にあって,それが燃料リッチに
寄与し得るため,特に請求項1の発明のようにパティキ
ュレートフィルタで捕集されたパティキュレートがNO
x吸収剤の近傍(第1壁面上)にある場合には,従来よ
り燃料リッチ量を少なくしてもNOxの再生効率を十分
確保することができる。即ち,NOx吸収剤に対しパテ
ィキュレート(特にSOF分)が共存する状態下では,
共存しない状態下よりも,より低温側でNOxのリリー
ス量を大きくすることが可能となる。
The NOx absorbed by the NOx absorbent
For the release regeneration of the fuel, a release regeneration technique based on a fuel-rich state (that is, an excess air ratio λ ≦ 1) is generally known. However, when the regeneration temperature is relatively low, the regeneration efficiency of the NOx absorbent (NOx Release efficiency). However, the soluble organic substance (SOF) contained in the particulate matter is in a fuel vapor state even at a low temperature of about 250 ° C., which can contribute to fuel richness. NO collected particulates
When it is near the x absorbent (on the first wall surface), the NOx regeneration efficiency can be sufficiently ensured even if the fuel-rich amount is reduced as compared with the conventional case. That is, in the state where particulates (particularly SOF) coexist with the NOx absorbent,
It becomes possible to increase the release amount of NOx at a lower temperature than in a state without coexistence.

【0010】またNOx吸収剤のNOx吸収・放出機能
は,同吸収剤のSOx吸収量の増加に応じて機能低下す
ることが知られているが,このようなサルファ被毒に関
する耐久性においても,請求項1の発明は有効である。
即ち,リーン運転時において,NOx吸収剤(M)に硫
酸として吸収{SO2 +M+O2 →(M(SO4)n }さ
れたサルファ成分{(M(SO4)n }が,ストイキまた
はリッチ運転時に,同一雰囲気に存するパティキュレー
ト中の炭素成分Cと燃焼反応{(M(SO4)n+C→
M+CO2 +SO2 }し易くなるため,サルファ成分の
リリース除去効果が達成され,そのリリース再生温度の
低減が図られる。
It is known that the NOx absorbing / releasing function of the NOx absorbent decreases with an increase in the SOx absorption amount of the NOx absorbent. The invention of claim 1 is effective.
That is, during the lean operation, the sulfur component {(M (SO 4 ) n } absorbed {SO 2 + M + O 2 → (M (SO 4 ) n )} as sulfuric acid in the NOx absorbent (M) becomes stoichiometric or rich operation. Occasionally, the combustion reaction with the carbon component C in the particulates existing in the same atmosphere {(M (SO 4 ) n + C →
Since M + CO 2 + SO 2易 becomes easy, the effect of removing the sulfur component is achieved, and the release regeneration temperature is reduced.

【0011】而して第1壁面より上記通路壁内部の気孔
を通過して第2壁面側に達した排気は,該第2壁面上の
酸化触媒の作用を受けるため,パティキュレートフィル
タの再生時等に発生したHCやCOを効果的に酸化する
ことができる(特に冷間始動時)。
The exhaust gas that has passed from the first wall surface through the pores inside the passage wall to the second wall surface is subjected to the action of the oxidation catalyst on the second wall surface. HC and CO generated at the same time can be effectively oxidized (particularly at cold start).

【0012】また請求項2の発明は,ディーゼルエンジ
ンの排気系に介装されるパティキュレートフィルタが,
多孔質部材からなる通路壁と,該通路壁を挟んで相互に
隣接する上流側排気通路及び下流側排気通路とを備え,
排気が前記通路壁をその上流側から下流側に向けて通過
するときに該通路壁において排気中のパティキュレート
が捕捉されるようにした,ディーゼルエンジン用排気浄
化装置において,前記通路壁の上流側排気通路に臨む第
1壁面に酸化触媒を担持させる一方,同通路壁の下流側
排気通路に臨む第2壁面に,排気中のNOxを吸収可能
なNOx吸収剤を担持させたことを特徴とする。
According to a second aspect of the present invention, there is provided a particulate filter interposed in an exhaust system of a diesel engine.
A passage wall made of a porous member, and an upstream exhaust passage and a downstream exhaust passage adjacent to each other with the passage wall interposed therebetween;
In an exhaust gas purification apparatus for a diesel engine, particulates in exhaust gas are captured in the passage wall when the exhaust gas passes from the upstream side to the downstream side of the passage wall. An oxidation catalyst is supported on a first wall surface facing the exhaust passage, and a NOx absorbent capable of absorbing NOx in the exhaust is supported on a second wall surface facing the exhaust passage downstream of the passage wall. .

【0013】この特徴によれば,排気がパティキュレー
トフィルタの上記通路壁を通過するときに,排気中のパ
ティキュレートは主として該通路壁の第1壁面上で捕
集,堆積されるが,この第1壁面上には酸化触媒が存在
し,リーン運転時には,該第1壁面上でNOの酸化反応
(2NO+O2 → 2NO2 )により発生する多量のN
2 によって,パティキュレート中の炭素成分Cの燃焼
反応(2NO2 +C→2NO+CO2 )がより促進され
易くなるため,パティキュレートの燃焼除去効果が(請
求項1の発明よりも)一層大きくなる。また通路壁を通
過して第2壁面側に達した排気中にも多量のNO2 が含
まれているため,それが該第2壁面上のNOx吸収剤に
も吸収され易くなり,全体としてNOxの吸収効率を更
に向上させることができる。
According to this feature, when the exhaust gas passes through the passage wall of the particulate filter, the particulates in the exhaust gas are mainly collected and deposited on the first wall surface of the passage wall. An oxidation catalyst exists on one wall surface, and during lean operation, a large amount of N generated by an oxidation reaction of NO (2NO + O 2 → 2NO 2 ) on the first wall surface.
O 2 facilitates the combustion reaction of the carbon component C in the particulates (2NO 2 + C → 2NO + CO 2 ), so that the effect of removing and burning the particulates is further enhanced (compared with the first aspect of the invention). Further, since a large amount of NO 2 is also contained in the exhaust gas that has passed through the passage wall and reached the second wall surface side, it is easily absorbed by the NOx absorbent on the second wall surface, and as a whole NOx Can be further improved.

【0014】また上記いずれの特徴によっても,パティ
キュレートフィルタにNOx吸収機能のみならず酸化触
媒機能をも集約,一体構造としたことにより,各々の排
気後処理装置の熱伝達効率の低下が極力回避できるた
め,NOx吸収機能及びパティキュレート酸化燃焼機能
の際の化学反応の促進,延いてはNOx吸収剤やパティ
キュレートフィルタの再生効率の向上が図られる。
According to any of the above features, the particulate filter has not only a NOx absorption function but also an oxidation catalyst function and has an integrated structure, so that the heat transfer efficiency of each exhaust after-treatment device is reduced as much as possible. Therefore, the chemical reaction at the time of the NOx absorption function and the particulate oxidizing combustion function is promoted, and the regeneration efficiency of the NOx absorbent and the particulate filter is improved.

【0015】[0015]

【発明の実施の形態】本発明の実施の形態を,添付図面
に例示した本発明の実施例に基づいて以下に具体的に説
明する。
DESCRIPTION OF THE PREFERRED EMBODIMENTS Embodiments of the present invention will be specifically described below based on embodiments of the present invention illustrated in the accompanying drawings.

【0016】添付図面において,図1は,本発明の第1
実施例に係るパティキュレートフィルタの縦断面図,図
2は図1の2−2線断面図,図3は第1実施例に係るパ
ティキュレートフィルタの要部拡大断面図,図4は第1
実施例の反応説明図,図5は第2実施例に係るパティキ
ュレートフィルタの要部拡大断面図,図6は第2実施例
の反応説明図である。
In the accompanying drawings, FIG. 1 shows a first embodiment of the present invention.
FIG. 2 is a longitudinal sectional view of the particulate filter according to the embodiment, FIG. 2 is a sectional view taken along line 2-2 of FIG. 1, FIG. 3 is an enlarged sectional view of a main part of the particulate filter according to the first embodiment, and FIG.
FIG. 5 is a reaction explanatory view of the embodiment, FIG. 5 is an enlarged sectional view of a main part of the particulate filter according to the second embodiment, and FIG. 6 is a reaction explanatory view of the second embodiment.

【0017】先ず,第1実施例について説明する。図1
において,ディーゼルエンジンの排気系EXには,排気
中のパティキュレートを捕捉するためのパティキュレー
トフィルタFが介装される。このパティキュレートフィ
ルタFは,図示例ではウォールフロータイプと呼ばれる
ハニカム構造のものが採用され,それは,両端を開放し
たパイプ状に形成された金属製のケーシング1と,その
ケーシング1の内部に嵌装,固定されるフィルタ本体2
とから構成される。
First, a first embodiment will be described. Figure 1
In the exhaust system EX of the diesel engine, a particulate filter F for capturing particulates in exhaust gas is interposed. The particulate filter F has a honeycomb structure called a wall flow type in the illustrated example. The particulate filter F has a metal casing 1 formed in a pipe shape with both ends open, and is fitted inside the casing 1. , Fixed filter body 2
It is composed of

【0018】前記フィルタ本体2は,その内部を互いに
平行な多数の排気通路に仕切る通路壁としての各々複数
の縦通路壁5および横通路壁6を備えている。その各々
の縦通路壁5および横通路壁6は,多孔質セラミック等
の多孔質部材から平板状にそれぞれ形成される。前記複
数の縦通路壁5は各々上下方向に延び,相互に等間隔を
おいて平行に並んでおり,また前記複数の横通路壁6は
各々左右方向に延び,相互に等間隔をおいて平行に並ん
でいる。
The filter body 2 has a plurality of vertical passage walls 5 and a plurality of horizontal passage walls 6 as passage walls for partitioning the inside thereof into a number of exhaust passages parallel to each other. Each of the vertical passage wall 5 and the horizontal passage wall 6 is formed in a flat plate shape from a porous member such as a porous ceramic. The plurality of vertical passage walls 5 extend in the up-down direction, and are arranged in parallel at equal intervals, and the plurality of lateral passage walls 6 extend in the left-right direction, and are parallel at equal intervals. Lined up.

【0019】而して縦通路壁5及び横通路壁6は直交配
置され,これら縦通路壁5及び横通路壁6により,排気
の流れ方向(図1で右方向)に延び且つ上下左右に整列
する横断面方形状の多数の上流側排気通路u及び下流側
排気通路dが画成される。しかも上流側排気通路u及び
下流側排気通路dは,上下左右何れの方向とも交互に並
ぶように配列される。かくして,各通路壁5,6を挟ん
で上流側排気通路u及び下流側排気通路dが相互に隣接
する配置となる。
The vertical passage wall 5 and the horizontal passage wall 6 are arranged orthogonally. The vertical passage wall 5 and the horizontal passage wall 6 extend in the flow direction of exhaust gas (right direction in FIG. 1) and are aligned vertically and horizontally. A large number of upstream exhaust passages u and downstream exhaust passages d having a rectangular cross section are defined. Moreover, the upstream exhaust passage u and the downstream exhaust passage d are arranged so as to alternately line up, down, left and right. Thus, the upstream exhaust passage u and the downstream exhaust passage d are arranged adjacent to each other with the passage walls 5 and 6 interposed therebetween.

【0020】各上流側排気通路uは,ケーシング1の下
流端(図1で右端)側が固定の栓体7uにより気密に塞
がれ,ケーシング1の上流端(図1で左端)側には上流
側に常時開放された排気入口uiを有している。また各
下流側排気通路dは,ケーシング1の上流端(図1で左
端)側が固定の栓体7dにより気密に塞がれ,ケーシン
グ1の下流端(図1で右端)には下流側に常時開放され
た排気出口doを有している。
Each upstream exhaust passage u is hermetically closed by a fixed plug 7u at the downstream end (right end in FIG. 1) of the casing 1 and upstream at the upstream end (left end in FIG. 1) of the casing 1. It has an exhaust port ui that is always open to the side. Each downstream exhaust passage d is airtightly closed by a fixed plug 7d at the upstream end (left end in FIG. 1) of the casing 1, and is always downstream at the downstream end (right end in FIG. 1) of the casing 1. It has an open exhaust outlet do.

【0021】上記各通路壁5,6の材料としては,例え
ばコーディエライト,Si−C等の多孔質セラミックス
が一般的であるが,本発明では,少なくとも該通路壁
5,6の,上流側排気通路uに臨む第1壁面5u,6u
と,下流側排気通路dに臨む第2壁面5d,6dとに,
NOx吸収剤となる触媒貴金属成分または酸化触媒とな
る貴金属成分をそれぞれ担持可能な材質であり,且つパ
ティキュレートを第1壁面5u,6u上で捕捉し得る大
きさの無数の気孔を有するものであればよい。
As a material of the passage walls 5 and 6, for example, porous ceramics such as cordierite and Si--C are generally used. In the present invention, at least the upstream side of the passage walls 5 and 6 is provided. First wall surfaces 5u, 6u facing exhaust passage u
And the second wall surfaces 5d and 6d facing the downstream side exhaust passage d,
Any material that can support a catalytic noble metal component serving as a NOx absorbent or a noble metal component serving as an oxidation catalyst, and has innumerable pores large enough to capture particulates on the first wall surfaces 5u and 6u. I just need.

【0022】特に第1実施例では,各通路壁5,6の上
流側の第1壁面5u,6uにNOx吸収剤Mを担持さ
せ,同通路壁5,6の下流側の第2壁面5d,6dに酸
化触媒M′を担持させている。尚,上記担持に当たって
は,触媒の担持に関する従来公知の方法(例えば吸収剤
M等を担体壁面に塗布し焼成する等の方法)が適宜採用
可能である。
In particular, in the first embodiment, the NOx absorbent M is carried on the first wall surfaces 5u and 6u on the upstream side of the passage walls 5 and 6, and the second wall surfaces 5d and 5d on the downstream side of the passage walls 5 and 6 are provided. The oxidation catalyst M 'is supported on 6d. In carrying out the above-mentioned loading, a conventionally known method for loading the catalyst (for example, a method of applying an absorbent M or the like to the wall surface of the carrier and firing the same) can be appropriately adopted.

【0023】前記NOx吸収剤Mとなる触媒等は,例え
ばカリウム,ナトリウム,リチウム,セシウムのような
アルカリ金属,バリウム,カルシウムのようなアルカリ
土類金属,ランタン,イットリウムのような希土類金属
から選ばれた少なくとも1つと,白金のような貴金属と
から構成される。前記NOx吸収剤Mは,排気空燃比が
リーンの運転時には排気中のNOxを吸収し,また同じ
くストイキ又はリッチの運転時には,吸収したNOxを
排気に放出する機能を有する。
The catalyst or the like serving as the NOx absorbent M is selected from, for example, alkali metals such as potassium, sodium, lithium and cesium, alkaline earth metals such as barium and calcium, and rare earth metals such as lanthanum and yttrium. And at least one and a noble metal such as platinum. The NOx absorbent M has a function of absorbing NOx in exhaust gas during an operation with a lean exhaust air-fuel ratio, and releasing the absorbed NOx into the exhaust gas during a stoichiometric or rich operation.

【0024】またディーゼルエンジンにおいては,通常
の運転時にはリーン運転がされるため,前記NOx吸収
剤Mは排気中のNOxを吸収する。またパティキュレー
トフィルタFよりも上流側の排気系に配設したインジェ
クション装置(図示せず)から還元剤又は燃料を排気系
に噴射供給(即ちポストインジェクション)するなどし
て排気をリッチ傾向にすれば,NOx吸収剤Mは,吸収
済みのNOxを排気に放出する。
In a diesel engine, lean operation is performed during normal operation, so the NOx absorbent M absorbs NOx in exhaust gas. In addition, if the exhaust gas is made rich by injecting (ie, post-injecting) a reducing agent or fuel into the exhaust system from an injection device (not shown) disposed in the exhaust system on the upstream side of the particulate filter F, etc. , NOx absorbent M emits the absorbed NOx to exhaust gas.

【0025】次に上記第1実施例の作用を説明する。デ
ィーゼルエンジンの運転状態で排気系Exを流れる排気
は,パティキュレートフィルタFにおいては,先ずその
各々の上流側排気通路u内に進入し,そこから各通路壁
5,6を横切るように通過して,隣接する各下流側排気
通路d内に至り(図1,3の矢印参照),更にその下流
側の排気管を流れる。そして各通路壁5,6を排気が通
過するときに,排気中のパティキュレートは主として該
通路壁5,6の第1壁面5u,6u上で捕集され,そこ
に堆積する。
Next, the operation of the first embodiment will be described. In the particulate filter F, the exhaust gas flowing through the exhaust system Ex while the diesel engine is operating first enters the respective upstream exhaust passages u, and passes therefrom across the passage walls 5 and 6. , And reach each adjacent downstream exhaust passage d (see arrows in FIGS. 1 and 3), and further flow through the downstream exhaust pipe. When the exhaust gas passes through the passage walls 5 and 6, the particulates in the exhaust gas are mainly collected on the first wall surfaces 5u and 6u of the passage walls 5 and 6, and are deposited there.

【0026】この第1壁面5u,6u上においては,そ
の捕集,堆積されたパティキュレートの酸化燃焼による
除去作用と,排気中のNOxをNOx吸収剤Mに吸収さ
せる作用とを併せ持つことになる。即ち,リーン運転時
には,CO,HCの酸化作用に加えて,パティキュレー
ト中の炭素成分Cの酸化反応(2NO2 +C→2NO+
CO2 )と,NOx吸収剤MによるNOxの吸収反応
(2NO+O2 →2NO2 →M・2NO2 )とが共に起
こることにより,NOxの吸収作用とパティキュレート
中の炭素成分浄化作用とが同時に発揮される。特にNO
x吸収剤Mが第1壁面5u,6u上にあると,NOの酸
化によりNO2 が多量に生成され,その一部はNOx吸
収剤Mに吸収されるが,吸収しきれないNO2 がパティ
キュレート中の炭素成分Cと酸化反応し易くなるため,
該NOx吸収剤Mが第1壁面5u,6u上に無い場合よ
りも低い排ガス温度雰囲気においてパティキュレートの
酸化燃焼反応を促進でき,これにより,パティキュレー
トフィルタFを効率よく再生させることが可能となる。
The first wall surfaces 5u and 6u have both the function of removing the collected and deposited particulates by oxidative combustion and the function of absorbing NOx in the exhaust gas to the NOx absorbent M. . That is, at the time of the lean operation, in addition to the oxidizing action of CO and HC, the oxidizing reaction of the carbon component C in the particulate (2NO 2 + C → 2NO +
CO 2 ) and the NOx absorption reaction (2NO + O 2 → 2NO 2 → M · 2NO 2 ) by the NOx absorbent M occur simultaneously, so that the NOx absorption effect and the carbon component purification effect in the particulates are simultaneously exhibited. Is done. Especially NO
x absorbent M first wall 5u, to be on 6u, NO 2 is produced in large quantities by oxidizing NO, the the a part is absorbed in the NOx absorbent M, NO 2 is particulate which can not be absorbed Since the oxidation reaction with the carbon component C in the curate becomes easy,
The oxidizing and burning reaction of the particulates can be promoted in an exhaust gas temperature atmosphere lower than the case where the NOx absorbent M is not present on the first wall surfaces 5u and 6u, whereby the particulate filter F can be efficiently regenerated. .

【0027】またNOx吸収剤Mに吸収されたNOxの
リリース再生は,パティキュレートフィルタFよりも上
流側で排気中に還元剤又は燃料を一時的に噴射供給(ポ
ストインジェクション)するなどして,排気を燃料リッ
チ状態(即ち空気過剰率λ≦1)にすることにより行わ
れるが,この手法では,再生温度が比較的低い場合には
NOx吸収剤MのNOxリリース効率が低下してしまう
傾向がある。
The release regeneration of the NOx absorbed by the NOx absorbent M is performed by temporarily injecting and supplying (post-injection) a reducing agent or fuel into the exhaust gas upstream of the particulate filter F, for example. Is performed in a fuel-rich state (ie, excess air ratio λ ≦ 1). However, in this method, when the regeneration temperature is relatively low, the NOx release efficiency of the NOx absorbent M tends to decrease. .

【0028】ところがパティキュレートに含まれる可溶
性有機物質(SOF)は250°C程度の低温でも蒸発
燃料状態にあって,それが燃料リッチに寄与し得るた
め,特にこの第1実施例のように捕集パティキュレート
がNOx吸収剤の近傍(第1壁面5u,6u上)に集ま
る場合には,従来より燃料リッチ量を少なくしてもNO
xの再生効率を十分確保することができる。即ち,下記
の表1からも明らかなようにNOx吸収剤Mに対しパテ
ィキュレート(特にSOF分)が共存する状態下では,
共存しない状態下よりも,より低温側でNOxのリリー
ス量を大きくすることが可能となる。
However, the soluble organic substance (SOF) contained in the particulate matter is in a fuel vapor state even at a low temperature of about 250 ° C., which can contribute to fuel richness. When the collected particulates are collected in the vicinity of the NOx absorbent (on the first wall surfaces 5u, 6u), even if the fuel-rich amount is smaller than in the conventional case, NO
x regeneration efficiency can be sufficiently ensured. That is, as is clear from Table 1 below, in the state where particulates (particularly, SOF content) coexist with NOx absorbent M,
It becomes possible to increase the release amount of NOx at a lower temperature than in a state without coexistence.

【0029】[0029]

【表1】 [Table 1]

【0030】またリーン運転時においてNOx吸収剤M
には,排気中のサルファ成分が硫酸の形で吸収{SO2
+M+O2 →(M(SO4)n }されるが,その吸収され
たサルファ成分{(M(SO4)n }は,ストイキないし
リッチ運転時に,同一雰囲気に存するパティキュレート
中の炭素成分Cと酸化反応{(M(SO4)n +C→M+
CO2 +SO2 }され易いため,捕集パティキュレート
を利用してサルファ成分のリリース除去促進が図られ,
従ってサルファ成分吸収に因るNOx吸収剤MのNOx
吸収・放出機能の低下(サルファ被毒)を効果的に抑制
できる。
During lean operation, the NOx absorbent M
, The sulfur component in the exhaust gas absorbed in the form of sulfate {SO 2
+ M + O 2 → (M (SO 4 ) n }, and the absorbed sulfur component {(M (SO 4 ) n } is different from the carbon component C in particulates existing in the same atmosphere during stoichiometric or rich operation. Oxidation reaction {(M (SO 4 ) n + C → M +
Since CO 2 + SO 2 is easily absorbed, the removal removal of sulfur components is promoted by using trapping particulates.
Therefore, NOx of NOx absorbent M caused by sulfur component absorption
A decrease in absorption / release function (sulfur poisoning) can be effectively suppressed.

【0031】而して第1壁面5u,6uより各通路壁
5,6の気孔を通過して第2壁面5u,6u側に達した
排気は,該第2壁面5d,6d上の酸化触媒作用を受け
るため,パティキュレートフィルタFの再生時等に発生
し且つNOx吸収剤Mによっては吸収しきれない過剰な
HCやCOを効果的に酸化することができる。
The exhaust gas that has passed through the pores of the passage walls 5 and 6 from the first wall surfaces 5u and 6u and reached the second wall surfaces 5u and 6u has an oxidation catalytic action on the second wall surfaces 5d and 6d. Therefore, excess HC and CO generated during the regeneration of the particulate filter F and cannot be absorbed by the NOx absorbent M can be effectively oxidized.

【0032】またこの実施例では,パティキュレートフ
ィルタFにNOx吸収機能のみならず酸化触媒機能をも
集約,一体構造としたことにより,各々の排気後処理手
段M,M′への熱伝達効率の低下が極力回避できるた
め,NOx吸収反応及びパティキュレート燃焼除去反応
の促進,延いてはNOx吸収剤Mやパティキュレートフ
ィルタFの再生効率の向上が図られる。
In this embodiment, not only the NOx absorption function but also the oxidation catalyst function are integrated in the particulate filter F, and an integrated structure is provided, so that the efficiency of heat transfer to the respective exhaust after-treatment means M and M 'is reduced. Since the reduction can be avoided as much as possible, the NOx absorption reaction and the particulate combustion removal reaction are promoted, and the regeneration efficiency of the NOx absorbent M and the particulate filter F is improved.

【0033】また図5,6には,本発明の第2実施例が
示される。この実施例では,第1実施例とは反対に,各
通路壁5,6の上流側の第1壁面5u,6uに酸化触媒
M′を担持させ,同通路壁5,6の下流側の第2壁面5
d,6dにNOx吸収剤Mを担持させる。
FIGS. 5 and 6 show a second embodiment of the present invention. In this embodiment, contrary to the first embodiment, the oxidation catalyst M 'is carried on the first wall surfaces 5u, 6u on the upstream side of the passage walls 5, 6, and the first wall 5u, 6u on the downstream side of the passage walls 5, 6 is provided. 2 wall 5
The NOx absorbent M is supported on d and 6d.

【0034】この構成によれば,排気がパティキュレー
トフィルタFの各通路壁5,6を通過するときに,排気
中のパティキュレートは主として該通路壁5,6の第1
壁面5u,6u上で捕集,堆積されるが,この第1壁面
5u,6u上においては酸化触媒M′が存在しており,
リーン運転時には,該第1壁面5u,6u上でNOの酸
化反応(2NO+O2 → 2NO2 )により発生する多
量のNO2 によって,パティキュレート中の炭素成分C
がより酸化反応(2NO2 +C→ 2NO+CO2 )さ
れ易くなるため,パティキュレートの燃焼除去効果が
(第1実施例よりも)一層大きくなる。また通路壁5,
6を通過して第2壁面5d,6d側に達した排気中にも
多量のNO2 が含まれているため,それが該第2壁面5
d,6d上のNOx吸収剤Mにも吸収され易くなり,全
体としてNOxの吸収効率を更に向上させることができ
る。
According to this configuration, when the exhaust gas passes through each of the passage walls 5 and 6 of the particulate filter F, the particulates in the exhaust gas mainly pass through the first of the passage walls 5 and 6.
It is collected and deposited on the wall surfaces 5u, 6u. On the first wall surfaces 5u, 6u, an oxidation catalyst M 'is present.
During the lean operation, a large amount of NO 2 generated by the oxidation reaction of NO (2NO + O 2 → 2NO 2 ) on the first wall surfaces 5u and 6u causes the carbon component C in the particulates to increase.
Is more easily oxidized (2NO 2 + C → 2NO + CO 2 ), so that the effect of removing and burning particulates is further enhanced (compared to the first embodiment). In addition, passage wall 5,
Since a large amount of NO 2 is also contained in the exhaust gas that has passed through the second wall 5d and reached the second wall 5d, the second wall 5d
It becomes easy to be absorbed also by the NOx absorbent M on d and 6d, and the NOx absorption efficiency can be further improved as a whole.

【0035】またこの第2実施例でも,パティキュレー
トフィルタFにNOx吸収機能のみならず酸化機能をも
集約,一体構造としたことにより,各々の排気後処理手
段M,M′への熱伝達効率の低下が極力回避できるた
め,NOx吸収反応およびパティキュレート燃焼除去反
応の促進,延いてはNOx吸収剤Mやパティキュレート
フィルタFの再生効率の向上が図られる。
Also in the second embodiment, the particulate filter F integrates not only the NOx absorbing function but also the oxidizing function and has an integrated structure, so that the efficiency of heat transfer to the respective exhaust after-treatment means M and M 'is improved. Therefore, the NOx absorption reaction and the particulate combustion removal reaction can be promoted, and the regeneration efficiency of the NOx absorbent M and the particulate filter F can be improved.

【0036】[0036]

【発明の効果】以上のように各請求項の発明によれば,
ディーゼルエンジンの排気系に介装されるパティキュレ
ートフィルタが,多孔質部材からなる通路壁と,該通路
壁を挟んで相互に隣接する上流側排気通路及び下流側排
気通路とを備え,排気が前記通路壁を通過するときに該
通路壁において排気中のパティキュレートが捕捉される
ようにした排気浄化装置において,前記通路壁の上流側
排気通路に臨む第1壁面及び下流側排気通路に臨む第2
壁面の一方にNOx吸収剤を担持させ,その他方に酸化
触媒を担持させたので,パティキュレートフィルタにN
Ox吸収機能及び酸化触媒機能を両方とも集約,一体構
造としたことにより,全体として排気系の構造を簡素化
でき,その上,各々の排気後処理装置の熱伝達効率の低
下を極力回避できて各処理装置での反応が促進され,延
いてはNOx吸収剤やパティキュレートフィルタの再生
効率の向上が図られる。
As described above, according to the invention of each claim,
A particulate filter provided in an exhaust system of a diesel engine includes a passage wall made of a porous member, and an upstream exhaust passage and a downstream exhaust passage adjacent to each other with the passage wall interposed therebetween. In an exhaust gas purification apparatus in which particulates in exhaust gas are captured by the passage wall when passing through the passage wall, a first wall surface facing the upstream exhaust passage and a second wall facing the downstream exhaust passage of the passage wall.
Since the NOx absorbent was supported on one of the wall surfaces and the oxidation catalyst was supported on the other, the N filter was applied to the particulate filter.
By integrating both the Ox absorption function and the oxidation catalyst function and forming an integrated structure, the structure of the exhaust system can be simplified as a whole, and furthermore, the reduction of the heat transfer efficiency of each exhaust aftertreatment device can be avoided as much as possible. The reaction in each processing device is promoted, and the efficiency of regeneration of the NOx absorbent and the particulate filter is improved.

【0037】また特に請求項1の発明によれば,排気中
のパティキュレートが捕集,堆積される上流側の第1壁
面上にNOx吸収剤を担持させる一方,下流側の第2壁
面上に酸化触媒を担持させるので,第1壁面上でNOの
酸化により発生したNO2 のうちNOx吸収剤に吸収し
きれないNO2 を利用して,同第1壁面上に堆積するパ
ティキュレートの燃焼反応促進が図られ,従って比較的
低い排ガス温度雰囲気でもパティキュレートの酸化燃焼
反応が進み,パティキュレートフィルタの再生効率が向
上する。またパティキュレートに含まれる可溶性有機物
質(SOF)が燃料リッチに寄与し得るため,NOx吸
収剤のNOxリリースの際に従来より燃料リッチ量を少
なくしてもリリース再生効率を十分確保できる。更にリ
ーン運転時においてNOx吸収剤に吸収されたサルファ
成分が,リッチ運転時にはNOx吸収剤近傍(第1壁面
上)のパティキュレート中の炭素成分と燃焼反応し易く
なるため,サルファ成分のリリース除去が効果的に行わ
れ,NOx吸収剤のサルファ被毒抑制に有効である。そ
の上,第1壁面より上記通路壁の気孔を通過して第2壁
面側に達した排気は,該第2壁面上の酸化触媒作用を受
けるから,パティキュレートフィルタの再生時等に発生
して該排気中に含まれる過剰なHC等を効果的に酸化除
去することができる。
According to the first aspect of the present invention, the NOx absorbent is supported on the upstream first wall surface where particulates in the exhaust gas are collected and deposited, while the NOx absorbent is supported on the downstream second wall surface. since supporting the oxidation catalyst, by using the nO 2 which can not be absorbed in the NOx absorbent of the nO 2 generated by oxidation of nO in the first on the walls, the particulates deposited on the first on the walls of the combustion reaction Therefore, the oxidative combustion reaction of the particulates proceeds even in a relatively low exhaust gas temperature atmosphere, and the regeneration efficiency of the particulate filter is improved. In addition, since the soluble organic substance (SOF) contained in the particulates can contribute to the fuel richness, the release regeneration efficiency can be sufficiently ensured even when the fuel rich amount is made smaller than before when releasing the NOx of the NOx absorbent. Furthermore, since the sulfur component absorbed by the NOx absorbent during the lean operation easily reacts with the carbon component in the particulate matter near the NOx absorbent (on the first wall surface) during the rich operation, the sulfur component is released and removed. It is performed effectively and is effective in suppressing sulfur poisoning of NOx absorbents. In addition, the exhaust gas that has passed through the pores of the passage wall from the first wall surface and reached the second wall surface is subjected to an oxidation catalytic action on the second wall surface, and is generated during regeneration of the particulate filter and the like. Excess HC and the like contained in the exhaust gas can be effectively oxidized and removed.

【0038】また特に請求項2の発明によれば,排気中
のパティキュレートが捕集,堆積される上流側の第1壁
面上に酸化触媒を担持させる一方,下流側の第2壁面上
にNOx吸収剤を担持させるので,リーン運転時には,
第1壁面上で酸化反応作用により発生するNO2 によっ
て,パティキュレート中の炭素成分の酸化反応を促進さ
せることができ,これにより,該第1壁面上で堆積する
パティキュレートの燃焼除去効果をより高めることがで
きる。また上記通路壁を通過して第2壁面側に達した排
気中にも多量のNO2 が含まれているため,それが該第
2壁面上のNOx吸収剤にも吸収され易くなり,全体と
してNOxの吸収効率向上に大いに寄与することができ
る。
According to the second aspect of the present invention, the oxidation catalyst is carried on the upstream first wall surface where particulates in the exhaust gas are collected and deposited, while NOx is deposited on the downstream second wall surface. Since the absorbent is loaded, during lean operation,
The oxidation reaction of the carbon component in the particulates can be promoted by the NO 2 generated by the oxidation reaction on the first wall surface, whereby the effect of burning and removing the particulates deposited on the first wall surface can be further improved. Can be enhanced. Further, since a large amount of NO 2 is contained in the exhaust gas that has reached the second wall surface after passing through the passage wall, it is easily absorbed by the NOx absorbent on the second wall surface, and as a whole, This can greatly contribute to the improvement of NOx absorption efficiency.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の第1実施例に係るパティキュレートフ
ィルタの縦断面図
FIG. 1 is a longitudinal sectional view of a particulate filter according to a first embodiment of the present invention.

【図2】図1の2−2線断面図FIG. 2 is a sectional view taken along line 2-2 of FIG.

【図3】第1実施例に係るパティキュレートフィルタの
要部拡大断面図
FIG. 3 is an enlarged sectional view of a main part of the particulate filter according to the first embodiment.

【図4】第1実施例の反応説明図FIG. 4 is a diagram illustrating the reaction of the first embodiment.

【図5】第2実施例に係るパティキュレートフィルタの
要部拡大断面図
FIG. 5 is an enlarged sectional view of a main part of a particulate filter according to a second embodiment.

【図6】第2実施例の反応説明図FIG. 6 is a diagram illustrating the reaction of the second embodiment.

【符号の説明】[Explanation of symbols]

Ex……排気系 F………パティキュレートフィルタ M………NOx吸収剤 M′……酸化触媒 d………下流側排気通路 u………上流側排気通路 5,6………縦,横通路壁(通路壁) 5u,5u……第1壁面 5d,6d……第2壁面 Ex: Exhaust system F: Particulate filter M: NOx absorbent M ': Oxidation catalyst d: Downstream exhaust passage u: Upstream exhaust passage 5, 6: Vertical, horizontal Passage wall (passage wall) 5u, 5u ... first wall surface 5d, 6d ... second wall surface

───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.7 識別記号 FI テーマコート゛(参考) F01N 3/18 F01N 3/28 301Q 3/28 301 B01D 53/34 129Z 53/36 103C (72)発明者 大河原 謙一 埼玉県和光市中央1丁目4番1号 株式会 社本田技術研究所内 Fターム(参考) 3G090 AA02 AA03 BA01 3G091 AA18 AB00 AB02 AB06 AB13 BA03 BA04 BA11 BA14 BA15 BA19 CA18 CB02 FA02 FA04 FB02 FB10 FB11 FB12 FC02 FC07 GA06 GA18 GA21 GA24 GB01X GB02W GB03W GB04W GB05W GB06W GB10X GB17X HA14 HA47 4D002 AA08 AA12 AA40 AC10 BA03 BA05 CA13 DA56 DA70 EA03 EA07 HA01 4D048 AA14 AB01 AB03 BB02 CA01 CC38 CD05 EA02 ──────────────────────────────────────────────────続 き Continued on the front page (51) Int.Cl. 7 Identification symbol FI Theme coat ゛ (Reference) F01N 3/18 F01N 3/28 301Q 3/28 301 B01D 53/34 129Z 53/36 103C (72) Inventor Kenichi Ogawara 1-4-1 Chuo, Wako-shi, Saitama F-term in Honda R & D Co., Ltd. (Reference) 3G090 AA02 AA03 BA01 3G091 AA18 AB00 AB02 AB06 AB13 BA03 BA04 BA11 BA14 BA15 BA19 CA18 CB02 FA02 FA04 FB02 FB10 FB11 FB12 FC02 FC07 GA06 GA18 GA21 GA24 GB01X GB02W GB03W GB04W GB05W GB06W GB10X GB17X HA14 HA47 4D002 AA08 AA12 AA40 AC10 BA03 BA05 CA13 DA56 DA70 EA03 EA07 HA01 4D048 AA14 AB01 AB03 BB02 CA01 CC38 CD05 EA02

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 ディーゼルエンジンの排気系(Ex)に
介装されるパティキュレートフィルタ(F)が,多孔質
部材からなる通路壁(5,6)と,該通路壁(5,6)
を挟んで相互に隣接する上流側排気通路(u)及び下流
側排気通路(d)とを備え,排気が前記通路壁(5,
6)をその上流側から下流側に向けて通過するときに該
通路壁(5,6)において排気中のパティキュレートが
捕捉されるようにした,ディーゼルエンジン用排気浄化
装置において,前記通路壁(5,6)の上流側排気通路
(u)に臨む第1壁面(5u,6u)に,排気中のNO
xを吸収可能なNOx吸収剤(M)を担持させる一方,
同通路壁(5,6)の下流側排気通路(d)に臨む第2
壁面(5d,6d)に酸化触媒(M′)を担持させたこ
とを特徴とする,ディーゼルエンジン用排気浄化装置。
A particulate filter (F) interposed in an exhaust system (Ex) of a diesel engine includes a passage wall (5, 6) made of a porous member, and a passage wall (5, 6).
An upstream exhaust passage (u) and a downstream exhaust passage (d) adjacent to each other with the exhaust gas interposed therebetween.
6), the particulates in the exhaust are trapped in the passage walls (5, 6) when passing from the upstream side to the downstream side. In the first wall surface (5u, 6u) facing the upstream exhaust passage (u) of (5, 6), NO
While carrying a NOx absorbent (M) capable of absorbing x,
A second exhaust passage (d) on the downstream side of the passage wall (5, 6);
An exhaust purification device for a diesel engine, characterized in that an oxidation catalyst (M ') is supported on wall surfaces (5d, 6d).
【請求項2】 ディーゼルエンジンの排気系(Ex)に
介装されるパティキュレートフィルタ(F)が,多孔質
部材からなる通路壁(5,6)と,該通路壁(5,6)
を挟んで相互に隣接する上流側排気通路(u)及び下流
側排気通路(d)とを備え,排気が前記通路壁(5,
6)をその上流側から下流側に向けて通過するときに該
通路壁(5,6)において排気中のパティキュレートが
捕捉されるようにした,ディーゼルエンジン用排気浄化
装置において,前記通路壁(5,6)の上流側排気通路
(u)に臨む第1壁面(5u,6u)に酸化触媒
(M′)を担持させる一方,同通路壁(5,6)の下流
側排気通路(d)に臨む第2壁面(5d,6d)に,排
気中のNOxを吸収可能なNOx吸収剤(M)を担持さ
せたことを特徴とする,ディーゼルエンジン用排気浄化
装置。
2. A particulate filter (F) interposed in an exhaust system (Ex) of a diesel engine includes a passage wall (5, 6) made of a porous member, and the passage wall (5, 6).
An upstream exhaust passage (u) and a downstream exhaust passage (d) adjacent to each other with the exhaust gas interposed therebetween.
6), the particulates in the exhaust are trapped in the passage walls (5, 6) when passing from the upstream side to the downstream side. The oxidation catalyst (M ') is supported on the first wall surfaces (5u, 6u) facing the upstream exhaust passage (u) of the (5, 6), while the downstream exhaust passage (d) of the passage walls (5, 6). A NOx absorbent (M) capable of absorbing NOx in exhaust gas is supported on second wall surfaces (5d, 6d) facing the exhaust gas purifier.
JP2000187895A 2000-06-22 2000-06-22 Exhaust emission control device for diesel engine Pending JP2002004844A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2000187895A JP2002004844A (en) 2000-06-22 2000-06-22 Exhaust emission control device for diesel engine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2000187895A JP2002004844A (en) 2000-06-22 2000-06-22 Exhaust emission control device for diesel engine

Publications (1)

Publication Number Publication Date
JP2002004844A true JP2002004844A (en) 2002-01-09

Family

ID=18687785

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000187895A Pending JP2002004844A (en) 2000-06-22 2000-06-22 Exhaust emission control device for diesel engine

Country Status (1)

Country Link
JP (1) JP2002004844A (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007117954A (en) * 2005-10-31 2007-05-17 Toyota Motor Corp Catalyst for cleaning exhaust gas from diesel engine
JP2008253961A (en) * 2007-04-09 2008-10-23 Toyota Motor Corp Filter for cleaning exhaust gas and its manufacturing method
JP2009515097A (en) * 2005-11-07 2009-04-09 ジオ2 テクノロジーズ,インク. Refractory exhaust filtration method and apparatus
US7618596B2 (en) 2003-02-18 2009-11-17 Ngk Insulators Honeycomb filter and exhaust gas purification system
JP2010019221A (en) * 2008-07-14 2010-01-28 Nissan Diesel Motor Co Ltd Engine exhaust emission control device
JP2013031849A (en) * 2012-10-31 2013-02-14 Cataler Corp Exhaust gas cleaning catalyst

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7618596B2 (en) 2003-02-18 2009-11-17 Ngk Insulators Honeycomb filter and exhaust gas purification system
JP2007117954A (en) * 2005-10-31 2007-05-17 Toyota Motor Corp Catalyst for cleaning exhaust gas from diesel engine
JP2009515097A (en) * 2005-11-07 2009-04-09 ジオ2 テクノロジーズ,インク. Refractory exhaust filtration method and apparatus
JP2008253961A (en) * 2007-04-09 2008-10-23 Toyota Motor Corp Filter for cleaning exhaust gas and its manufacturing method
WO2008126861A1 (en) * 2007-04-09 2008-10-23 Toyota Jidosha Kabushiki Kaisha Exhaust gas purification filter and method of producing the same
KR101129812B1 (en) * 2007-04-09 2012-03-23 이비덴 가부시키가이샤 Exhaust-gas converting filter and production process for the same
US8409519B2 (en) 2007-04-09 2013-04-02 Toyota Jidosha Kabushiki Kaisha Exhaust-gas converting filter and production process for the same
JP2010019221A (en) * 2008-07-14 2010-01-28 Nissan Diesel Motor Co Ltd Engine exhaust emission control device
JP2013031849A (en) * 2012-10-31 2013-02-14 Cataler Corp Exhaust gas cleaning catalyst

Similar Documents

Publication Publication Date Title
KR101110648B1 (en) Exhaust system for lean burn ic engine including particulate filter and nox absorbent
JP4782335B2 (en) Catalyst wall flow filter
EP0758713B1 (en) A method for purifying exhaust gas of a diesel engine
JP3885813B2 (en) Method for raising temperature of exhaust gas purification device and exhaust gas purification system
JP2003286832A (en) Exhaust gas control system and control method
JP2005133610A (en) Exhaust emission control device of compression ignition type internal combustion engine
JP2009114879A (en) Exhaust emission control device for internal combustion engine
JP3613669B2 (en) Exhaust gas purification device for internal combustion engine
JP2002188435A (en) Exhaust gas purifying filter
JP3797125B2 (en) Exhaust gas purification device and regeneration control method thereof
JP4423818B2 (en) Exhaust gas purification device
JP2008151100A (en) Exhaust emission control device
JP2002089240A (en) Exhaust emission control device and exhaust emission control method using this
JP2003047813A (en) Exhaust emission control apparatus
JP2002119867A (en) Catalytic structural body for purifying waste gas
RU2653720C1 (en) Exhaust emission control for internal combustion engine
JP2002004844A (en) Exhaust emission control device for diesel engine
JP3933015B2 (en) Exhaust gas purification device for internal combustion engine
JP2002295298A (en) Exhaust emission control system and its recovery control method
JP3381489B2 (en) Exhaust gas purification catalyst and purification device for diesel engine
JP2003190793A (en) Filter type catalyst for purifying diesel exhaust gas
JP2005188396A (en) Exhaust emission control device, and exhaust emission control method
JP2004084502A (en) Exhaust emission control filter
JP3945137B2 (en) Exhaust gas purification device for internal combustion engine
JP2004243189A (en) Purifying apparatus for exhaust gas of internal combustion engine

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20060724

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060802

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20061002

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20061129

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070129

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20070829