JP2002004418A - Construction method and structure for self-base- isolation of rc type structure - Google Patents

Construction method and structure for self-base- isolation of rc type structure

Info

Publication number
JP2002004418A
JP2002004418A JP2000192442A JP2000192442A JP2002004418A JP 2002004418 A JP2002004418 A JP 2002004418A JP 2000192442 A JP2000192442 A JP 2000192442A JP 2000192442 A JP2000192442 A JP 2000192442A JP 2002004418 A JP2002004418 A JP 2002004418A
Authority
JP
Japan
Prior art keywords
precast concrete
self
unbonded
steel material
isolation
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2000192442A
Other languages
Japanese (ja)
Other versions
JP4546620B2 (en
Inventor
Masahiro Sugata
昌宏 菅田
Haruhiko Okamoto
晴彦 岡本
Yoshihiro Ota
義弘 太田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Takenaka Komuten Co Ltd
Original Assignee
Takenaka Komuten Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Takenaka Komuten Co Ltd filed Critical Takenaka Komuten Co Ltd
Priority to JP2000192442A priority Critical patent/JP4546620B2/en
Publication of JP2002004418A publication Critical patent/JP2002004418A/en
Application granted granted Critical
Publication of JP4546620B2 publication Critical patent/JP4546620B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Joining Of Building Structures In Genera (AREA)
  • Rod-Shaped Construction Members (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a construction method and a structure for self-base- isolation whereby the natural frequency of an RC type structure can be made longer without use of a base isolator and an earthquake control device. SOLUTION: An unbounded prestressing steel member 3 is passed through a precast concrete beam 2 along the longitudinal direction of the beam, with each end of the steel member 3 anchored to a precast concrete column 1 to permit uplift of a column-and-beam connecting interface due to the elastic elongation and deformation of the steel member 3 under a horizontal force produced by an earthquake or the like.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】この発明は、アンボンドPC
鋼材を利用してプレストレスを導入し、プレキャストコ
ンクリート梁(以下、梁と略す場合がある。)をプレキ
ャストコンクリート柱(以下、柱と略す場合がある。)
へ圧着接合したRC系構造物の自己免震構法及び自己免
震構造の技術分野に属し、更に云えば、前記柱梁接合界
面の浮き上がりを許容することによりRC系構造物の固
有周期を長周期化する自己免震構法及び自己免震構造に
関する。
The present invention relates to an unbonded PC.
Prestress is introduced by using steel material, and precast concrete beams (hereinafter sometimes abbreviated as beams) are converted into precast concrete columns (hereinafter sometimes abbreviated as columns).
It belongs to the technical field of the self-isolation structure method and the self-isolation structure of the RC structure bonded by pressure bonding, and more specifically, the natural period of the RC structure can be increased by allowing the rising of the beam-column joint interface. Self-isolation structure and self-isolation structure.

【0002】[0002]

【従来の技術】RC系構造物は、比較的安価で剛性が高
く居住性に優れることから、中小のオフィスビルや集合
住宅に多く採用されている。しかしながら、RC系構造
物はその剛性が高いため固有周期が短く、地震等の外乱
によって大きな応答が建物に生ずるので、何らかの免震
技術を導入する必要性があった。
2. Description of the Related Art RC-based structures are relatively inexpensive, have high rigidity, and are excellent in habitability, and are therefore often used in small and medium-sized office buildings and apartment houses. However, the RC system has a high rigidity and a short natural period due to its high rigidity, and a large response occurs to the building due to a disturbance such as an earthquake. Therefore, it is necessary to introduce some seismic isolation technology.

【0003】その代表的な免震技術として、鋼板とゴム
を交互に積層して一体化した免震ゴムを設置して免震化
を図る技術がある。この免震ゴムを使用した免震化技術
は、RC系構造物の固有周期を長周期化して地震波との
共振を避けRC系構造物への入力エネルギーを小さくす
るので、効果的ではある。
As a typical seismic isolation technology, there is a technology for installing a seismic isolation rubber in which steel plates and rubber are alternately laminated and integrated to achieve seismic isolation. This seismic isolation technology using seismic isolation rubber is effective because the natural period of the RC structure is lengthened to avoid resonance with seismic waves and reduce the input energy to the RC structure.

【0004】[0004]

【発明が解決しようとする課題】しかしながら、免震ゴ
ムを使用した免震化技術は下記する問題がある。 1) 免震ゴムは、その性能は認められつつも非常に高額
であるため敬遠され易く、広く普及するまでには至って
いない。 2) 免震ゴムは、有機系材料で構成されているため比較
的短いサイクルでの定期的な点検やメンテナンスが必要
となりコストが嵩む。 3) 建物に生じるほとんどの水平変形は免震ゴムが設置
されている免震層で発生するため変形量が免震層に集中
することになる。よって、免震層での設備配管・配線あ
るいは二次部材については高い変形追随性能が要求さ
れ、設計施工上困難で手間が掛かり、コストも嵩む。 4) 免震ゴムは圧縮力やせん断力に対して強いが引っ張
り力には弱い。よって、ロッキング振動が支配的となる
高層建物等のアスペクト比が大きい建物には破損し易く
適応できない。
However, the seismic isolation technology using the seismic isolation rubber has the following problems. 1) Although seismic isolation rubber is recognized for its performance, it is very expensive and is easily shunned, and has not yet been widely used. 2) Since seismic isolation rubber is made of organic materials, it requires periodic inspection and maintenance in a relatively short cycle, which increases costs. 3) Most horizontal deformations that occur in buildings occur in the seismic isolation layer where the seismic isolation rubber is installed, so the amount of deformation concentrates on the seismic isolation layer. Therefore, the facility piping / wiring or the secondary member in the seismic isolation layer is required to have a high deformation follow-up performance, and it is difficult and troublesome in design and construction, and the cost increases. 4) Seismic isolation rubber is strong against compressive and shear forces but weak against tensile forces. Therefore, a building having a large aspect ratio such as a high-rise building in which rocking vibration is dominant is easily damaged and cannot be adapted.

【0005】したがって、本発明の目的は、RC系構造
物の固有周期を、免震装置、制震装置を使用しないで長
周期化することのできる自己免震構法及び自己免震構造
を提供することである。
SUMMARY OF THE INVENTION Accordingly, an object of the present invention is to provide a self-isolation structure and a self-isolation structure capable of extending the natural period of an RC structure without using a seismic isolation device or a vibration control device. That is.

【0006】本発明の次の目的は、免震装置、制震装
置、及びそれらに伴うメンテナンスを不要とし、コスト
削減に大きく貢献すると共に居住性に非常に優れたRC
系構造物の自己免震構法及び自己免震構造を提供するこ
とである。
A second object of the present invention is to provide a seismic isolation device, a vibration control device, and an RC which is excellent in livability and which greatly contributes to cost reduction while eliminating the need for maintenance associated therewith.
An object of the present invention is to provide a self-isolation structure and a self-isolation structure of a system structure.

【0007】本発明の次の目的は、地震等の水平変形を
建物全体に分散させることができ、よって設備配管や二
次部材の変形追随性能の検討を不要とするRC系構造物
の自己免震構法及び自己免震構造を提供することであ
る。本発明の次の目的は、高層建物等のアスペクト比が
大きい建物にも好適に実施できるRC系構造物の自己免
震構法及び自己免震構造を提供することである。
[0007] A second object of the present invention is to disperse horizontal deformation such as an earthquake throughout the building, thereby eliminating the need for studying the deformation follow-up performance of equipment piping and secondary members. It is to provide seismic construction method and self-isolation structure. A second object of the present invention is to provide a self-seismic construction method and a self-isolation structure of an RC structure which can be suitably applied to a building having a large aspect ratio such as a high-rise building.

【0008】[0008]

【課題を解決するための手段】上述した課題を解決する
ための手段として、請求項1に記載した発明に係るRC
系構造物の自己免震構法は、プレキャストコンクリート
梁を、アンボンドPC鋼材を利用してプレストレスを導
入し、プレキャストコンクリート柱へ圧着接合するRC
系構造物の自己免震構法であって、前記プレキャストコ
ンクリート梁の長手方向に前記アンボンドPC鋼材を貫
通させ、該アンボンドPC鋼材の両端部を前記プレキャ
ストコンクリート柱へ定着して、地震等の水平力にした
がい前記アンボンドPC鋼材の弾性伸び変形に伴う柱梁
接合界面の浮き上がりを許容する構成とすることを特徴
とする。
As means for solving the above-mentioned problems, an RC according to the first aspect of the present invention is provided.
The self-isolation method for prefabricated structures is based on the pre-stressing of precast concrete beams using unbonded PC steel, and RC joints to precast concrete columns
A self-isolation structure method for a system-based structure, in which the unbonded PC steel material is penetrated in the longitudinal direction of the precast concrete beam, and both ends of the unbonded PC steel are fixed to the precast concrete column, and horizontal force such as an earthquake is applied. According to the present invention, it is characterized in that the unbonded PC steel is allowed to lift up at the beam-column joint interface due to elastic elongation deformation.

【0009】請求項2に記載した発明に係るRC系構造
物の自己免震構造は、プレキャストコンクリート梁を、
アンボンドPC鋼材を利用してプレストレスを導入し、
プレキャストコンクリート柱へ圧着接合したRC系構造
物の自己免震構造であって、前記プレキャストコンクリ
ート梁の長手方向に前記アンボンドPC鋼材が貫通さ
れ、該アンボンドPC鋼材の両端部が前記プレキャスト
コンクリート柱へ定着され、地震等の水平力にしたがい
前記アンボンドPC鋼材の弾性伸び変形に伴う柱梁接合
界面の浮き上がりを許容する構成とされていることを特
徴とする。
[0009] The self-isolating structure of the RC structure according to the second aspect of the present invention includes a precast concrete beam,
Introducing prestress using unbonded PC steel,
A self-isolating structure of an RC-based structure crimp-bonded to a precast concrete column, wherein the unbonded PC steel material penetrates in the longitudinal direction of the precast concrete beam, and both ends of the unbonded PC steel are fixed to the precast concrete column. In addition, according to a horizontal force such as an earthquake, the unbonded PC steel is allowed to lift up at a beam-column joint interface due to elastic elongation deformation.

【0010】請求項3に記載した発明は、請求項2に記
載したRC系構造物の自己免震構造において、プレキャ
ストコンクリート柱に、プレキャストコンクリート梁端
部の圧壊防止措置が施されていることを特徴とする。
According to a third aspect of the present invention, in the self-isolation structure of the RC structure according to the second aspect, the precast concrete column is provided with a measure for preventing the end of the precast concrete beam from crushing. Features.

【0011】[0011]

【発明の実施形態、及び実施例】図1は、請求項1及び
2に記載した発明に係るRC系構造物の自己免震構法及
び自己免震構造の実施形態を示している。このRC系構
造物の自己免震構法は、プレキャストコンクリート梁2
を、アンボンドPC鋼材3を利用してプレストレスを導
入し、プレキャストコンクリート柱1へ圧着接合する構
法である。
DESCRIPTION OF THE PREFERRED EMBODIMENTS FIG. 1 shows an embodiment of a self-isolation structure and a self-isolation structure of an RC system structure according to the first and second aspects of the present invention. The self-isolation method for RC structures is based on precast concrete beams 2
Is pre-stressed using unbonded PC steel material 3 and pressure bonded to precast concrete column 1.

【0012】即ち、前記プレキャストコンクリート梁2
の長手方向に前記アンボンドPC鋼材3を貫通させ、該
アンボンドPC鋼材3の両端部3a、3aを前記プレキ
ャストコンクリート柱1、1へ定着して、地震等の水平
力にしたがい、図4に示したように、前記アンボンドP
C鋼材3の弾性伸び変形に伴う柱梁接合界面の浮き上が
りを許容する構成とすることを特徴とする(請求項1記
載の発明)。
That is, the precast concrete beam 2
The longitudinal direction of the unbonded PC steel material 3 is penetrated, and both ends 3a, 3a of the unbonded PC steel material 3 are fixed to the precast concrete columns 1, 1 according to a horizontal force such as an earthquake, as shown in FIG. As described above, the unbond P
The present invention is characterized in that it is configured to allow lifting of the beam-column joint interface due to elastic elongation deformation of the C steel material 3 (the invention according to claim 1).

【0013】前記自己免震構法により構築されたRC系
構造物の自己免震構造は、プレキャストコンクリート梁
2を、アンボンドPC鋼材3を利用してプレストレスを
導入し、プレキャストコンクリート柱1へ圧着接合した
構造である。
The self-isolation structure of the RC structure constructed by the above-mentioned self-isolation structure method is to pre-stress a precast concrete beam 2 by introducing unstressed PC steel 3 to a precast concrete column 1. It is the structure which did.

【0014】即ち、前記プレキャストコンクリート梁2
の長手方向に前記アンボンドPC鋼材3が貫通され、該
アンボンドPC鋼材3の両端部3a、3aが前記プレキ
ャストコンクリート柱1、1へ定着され、地震等の水平
力にしたがい、図4に示したように、前記アンボンドP
C鋼材3の弾性伸び変形に伴う柱梁接合界面の浮き上が
りを許容する構成とされていることを特徴とする(請求
項2記載の発明)。
That is, the precast concrete beam 2
The unbonded PC steel material 3 is penetrated in the longitudinal direction, and both ends 3a, 3a of the unbonded PC steel material 3 are fixed to the precast concrete columns 1, 1 according to a horizontal force such as an earthquake, as shown in FIG. In addition, the unbond P
The present invention is characterized in that it is configured to allow lifting of the beam-column joint interface due to elastic elongation deformation of the C steel material 3 (the invention according to claim 2).

【0015】本実施形態では、1スパンに1本のPC鋼
材3を使用して実施しているが、多スパンに1本のPC
鋼材3を使用して実施することもできる。本実施形態で
は、前記アンボンドPC鋼材3としてPC鋼棒3が使用
されているがこれに限定されない。該PC鋼棒3の代わ
りにPC鋼線、PC鋼より線、多層PC鋼より線を使用
しても略同様に実施できる。
In this embodiment, one PC steel material 3 is used for one span, but one PC steel is used for many spans.
It can also be implemented using steel material 3. In the present embodiment, a PC steel rod 3 is used as the unbonded PC steel material 3, but the present invention is not limited to this. Substantially the same can be achieved by using a PC steel wire, a PC steel stranded wire, or a multilayer PC steel stranded wire instead of the PC steel rod 3.

【0016】前記アンボンドPC鋼材(PC鋼棒)3
は、図1、2に示したように、プレキャストコンクリー
ト梁2の略中央に1本設けて実施しているが、配置及び
本数はこれに限定されない。前記梁2に複数本のPC鋼
材(PC鋼棒)3をバランス良く多段に配設して実施す
ることもできる。例えば、PC鋼材3をPC鋼線、PC
鋼より線で実施する場合には、前記梁2の略中央に集中
させて実施しても良いし、バランス良く分散させて実施
しても良い。また、PC鋼線、PC鋼より線等で実施す
る場合には、図1で示したように、PC鋼材3を直線状
で実施する必要はなく、アーチ状に屈曲させて実施する
こともできる。要するに、前記アンボンドPC鋼材3
は、その両端部3a、3aが前記プレキャストコンクリ
ート梁2の両端面から突き出る形態であれば良く、当該
梁2に内蔵された部分の形状はフレキシブルな形態で実
施することができる。
The unbonded PC steel material (PC steel rod) 3
As shown in FIGS. 1 and 2, one is provided at substantially the center of the precast concrete beam 2, but the arrangement and the number are not limited thereto. A plurality of PC steel materials (PC steel bars) 3 may be arranged on the beam 2 in a well-balanced and multi-stage manner. For example, the PC steel material 3 is replaced by a PC steel wire, PC
In the case of using a steel stranded wire, the beam may be concentrated at substantially the center of the beam 2 or may be dispersed in a well-balanced manner. Moreover, when implementing with a PC steel wire, a PC steel strand, etc., as shown in FIG. 1, it is not necessary to implement | achieve a PC steel material 3 in a linear shape, and it can also be implemented by bending in an arch shape. . In short, the unbonded PC steel 3
Any shape may be used as long as both ends 3a, 3a protrude from both end surfaces of the precast concrete beam 2, and the shape of the portion built into the beam 2 can be implemented in a flexible form.

【0017】前記アンボンドPC鋼材3の端部3aをプ
レキャストコンクリート柱1へ定着させる手法は格別新
規なものではなく、建築学会のPC規準に示されている
手法等で実施される。本実施形態では、前記アンボンド
PC鋼材3としてPC鋼棒3が使用されているので、図
3に示したように、ナット5と支圧板6を用いて定着さ
せる手法が一般的である。図示は省略したが、前記柱1
の側面を欠き込み、ナット5と支圧板6でPC鋼棒3を
定着させた後モルタル等で埋めて柱1の側面と面一に形
成することもできる。また、前記PC鋼材3は、定着さ
せる前に油圧ジャッキで緊張して予め張力が与えられて
いるので、ボタンヘッドやくさびで定着させても十分に
機能を発揮することができる。因みに、図中の符号4
は、シースを示している。
The method of fixing the end 3a of the unbonded PC steel material 3 to the precast concrete column 1 is not particularly novel, and is carried out by a method specified in the PC standard of the Architectural Institute of Japan. In the present embodiment, since the PC steel rod 3 is used as the unbonded PC steel material 3, a fixing method using a nut 5 and a supporting plate 6 is generally used as shown in FIG. Although not shown, the column 1
Can be formed by fixing the PC steel bar 3 with the nut 5 and the supporting plate 6 and then filling it with mortar or the like so as to be flush with the side surface of the column 1. Further, since the PC steel material 3 is pretensioned by being tensioned by a hydraulic jack before fixing, the function can be sufficiently exhibited even if the PC steel material 3 is fixed by a button head or a wedge. Incidentally, reference numeral 4 in the figure
Indicates a sheath.

【0018】なお、前記アンボンドPC鋼材3の両端部
3a、3aは、図1に示したように、向かい合うプレキ
ャストコンクリート柱1の側面を貫通して、その背面側
で定着されているがこれに限定されない。前記柱1に非
貫通孔を設け、同柱1の中間位置で定着させて実施する
こともできる。
As shown in FIG. 1, both end portions 3a and 3a of the unbonded PC steel material 3 penetrate the opposite side of the precast concrete column 1 and are fixed on the back side thereof. Not done. It is also possible to provide a non-through hole in the column 1 and fix the column 1 at an intermediate position.

【0019】上述したように、アンボンドPC鋼材3は
その全長に渡って、前記柱梁1、2と一体化されておら
ず、その両端部3a、3aでのみ前記柱1、1に緊結さ
れている。よって、アンボンドPC鋼材3は、前記梁2
の任意の位置での自由な伸び変形が許容され、降伏させ
ないようにする設計が容易になる。したがって、本発明
に係るRC系構造物の自己免震構造は、非常に安全で耐
震性に優れたプレキャストコンクリートラーメン構造を
提供することができるのである。
As described above, the unbonded PC steel material 3 is not integrated with the pillars 1 and 2 over its entire length, but is tied to the pillars 1 and 1 only at both ends 3a and 3a. I have. Therefore, the unbonded PC steel material 3 is
Is allowed to freely expand and deform at any position, and the design to prevent yielding becomes easy. Therefore, the self-isolating structure of the RC-based structure according to the present invention can provide a precast concrete frame structure which is very safe and has excellent earthquake resistance.

【0020】前記RC系構造物の自己免震構造によれ
ば、前記柱梁接合部界面での梁2の浮き上がり(図4)
によって梁2の見かけの曲げ剛性が浮き上がらない場合
に比較して小さくなり、その結果、RC系構造物の固有
周期が長周期化して地震時の水平力の入力が小さくな
る、いわゆる半鋼接接合となる。このメカニズムを以下
に説明する。
According to the self-isolating structure of the RC structure, the beam 2 rises at the column-beam joint interface (FIG. 4).
As a result, the apparent bending stiffness of the beam 2 becomes smaller as compared with the case where it does not rise, and as a result, the natural period of the RC system structure becomes longer, and the input of the horizontal force at the time of the earthquake becomes smaller. Becomes This mechanism will be described below.

【0021】図5に示す1スパンの門型ラーメンの1次
固有周期Tは[数1]で表される。因みに図中の符号B
は連結バネを示している。
The primary natural period T of the one-span portal ramen shown in FIG. 5 is expressed by [Equation 1]. Incidentally, the symbol B in the figure
Indicates a connection spring.

【数1】 上記[数1]について、 m :質量 k :ばね定数 E:コンクリートのヤング係数 I:柱の断面二次モーメント I:梁の断面二次モーメント h :フレーム高さ l :スパン長(Equation 1) For the [number 1], m: mass k: spring constant E c: Young's modulus of concrete I c: moment of inertia of the pillar I b: Beams second moment h: Frame Height l: span length

【0022】次に、接合部界面で梁2が浮き上がった場
合の門型ラーメンの固有周期について、図6を参照する
と、[数1]のIは次の[数2]のIeffで置き換
えたものとなる。
Next, referring to FIG. 6, regarding the natural period of the gate-shaped ramen when the beam 2 rises at the joint interface, Ib in [Equation 1] is replaced by Ieff in [ Equation 2]. It will be.

【数2】 上記[数2]について、 Ieff:接合部界面が浮き上がったときの等価断面二
次モーメント Mθ :接合部界面の回転角がθのときのモーメント
(図6参照) D :梁せい A :PC鋼材の断面積 E :PC鋼材のヤング係数 L :PC鋼材の接合界面1カ所あたりのアンボンド
長さ P :PC鋼材の初期緊張力
(Equation 2) For the [Number 2], I eff: Equivalent second moment Mθ when the joint interface is lifted: moment when the rotation angle of the joint interface theta (see FIG. 6) D: Sei Ryo A p: PC sectional area of the steel E p: Young's modulus of the PC steel L p: unbonded length per joint interface one place of PC steel P o: initial tension of PC steel

【0023】上記[数1][数2]を具体的な数値で示
すと以下のようになる。 <検討モデル>(単位:cm、ton) 柱:50×50、梁:80×40、l=700、m=2
0、E=350、E=2000、A=3.71
6、L=350、P=24.15、θ=0.02
The above [Equation 1] and [Equation 2] are represented by specific numerical values as follows. <Examination model> (unit: cm, ton) Pillar: 50 × 50, beam: 80 × 40, l = 700, m = 2
0, E c = 350, E p = 2000, A p = 3.71
6, L p = 350, P o = 24.15, θ = 0.02

【0024】上記検討モデルの具体的数値を[数1]に
代入すると、浮き上がりのない門型ラーメンの固有周期
が求められる。その結果は、T=0.081(se
c)、I =1.7×10となる。
The specific numerical values of the above study model are expressed by [Equation 1].
Substituting, the natural period of the gate-shaped ramen without lifting
Is required. As a result, T = 0.081 (se
c), I b= 1.7 × 106Becomes

【0025】一方、上記検討モデルの具体的数値を[数
2]に代入すると、浮き上がりが発生した場合の門型ラ
ーメンの固有周期が求められる。その結果は、T=0.
137(sec)、Ieff=1.8×10となる。
On the other hand, by substituting the specific numerical values of the above-described study model into [Equation 2], the natural period of the portal-type ramen in the case where the floating occurs is obtained. The result is T = 0.
137 (sec), and I eff = 1.8 × 10 4 .

【0026】よって、梁2の浮き上がり効果によって、
門型ラーメンの固有周期は、1.7倍程度、長周期化す
ることが分かる。多層構造物ではこの効果は更に顕著と
なるため、RC系構造物の固有周期の長周期化をより確
実なものとすることができる。本発明は、このメカニズ
ムをバックボーンとしたものである。
Therefore, by the lifting effect of the beam 2,
It can be seen that the natural period of the gate-type ramen is about 1.7 times longer. In a multilayer structure, this effect is even more remarkable, so that the natural period of the RC structure can be made longer. The present invention uses this mechanism as a backbone.

【0027】したがって、本発明に係るRC系構造物の
自己免震構法及び自己免震構造によれば、RC系構造物
の固有周期を、免震装置、制震装置を使用しないで長周
期化することができる。また、免震装置、制震装置、及
びそれらに伴うメンテナンスをも不要とするので、コス
ト削減に大きく貢献すると共に居住性に非常に優れる。
Therefore, according to the self-isolation structure method and the self-isolation structure of the RC structure according to the present invention, the natural period of the RC structure is increased without using the seismic isolation device and the vibration control device. can do. Further, since the seismic isolation device, the vibration control device, and the maintenance associated therewith are not required, it greatly contributes to cost reduction and is extremely excellent in livability.

【0028】更に、免震ゴムを使用する場合と比して、
地震等の水平変形を建物全体に分散させることができ、
よって設備配管や二次部材の変形追随性能の検討を不要
とする。免震ゴムでは適用できない高層建物等のアスペ
クト比が大きい建物にも好適に実施することができる。
もちろん、免震装置や制震装置と併用して実施すること
もできる。
Furthermore, compared with the case where seismic isolation rubber is used,
Horizontal deformation such as earthquakes can be dispersed throughout the building,
Therefore, it is not necessary to examine the deformation follow-up performance of the equipment piping and the secondary member. The present invention can be suitably applied to a building having a large aspect ratio, such as a high-rise building, which cannot be applied with seismic isolation rubber.
Of course, it can also be implemented in combination with a seismic isolation device or a vibration control device.

【0029】前記RC系構造物の自己免震構造はさら
に、図3に示したように、プレキャストコンクリート柱
1に、プレキャストコンクリート梁2の端部の圧壊防止
措置を施して実施しても良い(請求項3)。この圧壊防
止措置は、プレキャストコンクリート柱1の側面1aで
あって、プレキャストコンクリート梁2の浮き上がりに
よる回転変形によって圧縮を受ける部位Xに、圧縮変形
を吸収して当該プレキャストコンクリート梁2の端部の
圧壊を防止する弾性体、緩衝材等の部材(図示省略)を
設けて実施される。この弾性体等の部材の働きにより、
プレキャストコンクリート梁の破損を極力防止すること
ができ、自己免震機能を恒久的に保持できるRC系構造
物の自己免震構造を提供することができる。
The self-isolation structure of the RC structure may be further implemented by taking measures to prevent the end of the precast concrete beam 2 from crushing the precast concrete column 1 as shown in FIG. Claim 3). This crush prevention measure is to absorb the compressive deformation and to crush the end of the precast concrete beam 2 on the side surface 1a of the precast concrete column 1 which is compressed by the rotational deformation caused by the rising of the precast concrete beam 2. This is implemented by providing a member (not shown) such as an elastic body, a cushioning material, or the like, for preventing the occurrence of the vibration. By the action of the member such as the elastic body,
It is possible to provide a self-isolating structure of an RC-based structure capable of preventing the precast concrete beam from being damaged as much as possible and maintaining the self-isolating function permanently.

【0030】[0030]

【本発明の奏する効果】請求項1、2に記載したRC系
構造物の自己免震構法及び自己免震構造によれば、RC
系構造物の固有周期を、免震装置、制震装置を使用しな
いで長周期化することができる。また、免震装置、制震
装置、及びそれらに伴うメンテナンスをも不要とするの
で、コスト削減に大きく貢献すると共に居住性に非常に
優れる。
According to the self-isolation structure method and the self-isolation structure of the RC structure described in claims 1 and 2,
The natural period of the system structure can be extended without using the seismic isolation device and the vibration control device. Further, since the seismic isolation device, the vibration control device, and the maintenance associated therewith are not required, it greatly contributes to cost reduction and is extremely excellent in livability.

【0031】更に、免震ゴムを使用する場合と比して地
震等の水平変形を建物全体に分散させることができ、よ
って、設備配管や二次部材の変形追随性能の検討を不要
とする。免震ゴムでは適用できない高層建物等のアスペ
クト比が大きい建物にも好適に実施することができる。
請求項3に記載したRC系構造物の自己免震構造によれ
ば、自己免震機能を恒久的に保持することができる。
Further, horizontal deformation such as an earthquake can be dispersed throughout the building as compared with the case where seismic isolation rubber is used, and therefore, examination of the deformation follow-up performance of equipment piping and secondary members becomes unnecessary. The present invention can be suitably applied to a building having a large aspect ratio, such as a high-rise building, which cannot be applied with seismic isolation rubber.
According to the self-isolating structure of the RC structure described in claim 3, the self-isolating function can be maintained permanently.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明に係るRC系構造物の自己免震構造を示
した立面図である。
FIG. 1 is an elevation view showing a self-isolating structure of an RC-based structure according to the present invention.

【図2】プレキャストコンクリート梁の横断面図であ
る。
FIG. 2 is a cross-sectional view of a precast concrete beam.

【図3】アンボンドPC鋼材の端部と柱との定着部を示
した断面図である。
FIG. 3 is a sectional view showing a fixing portion between an end portion of an unbonded PC steel material and a pillar.

【図4】本発明に係るRC系構造物の自己免震構造の浮
き上がり状態を示した立面図である。
FIG. 4 is an elevational view showing a rising state of the self-isolation structure of the RC structure according to the present invention.

【図5】本発明に係るRC系構造物の自己免震機能のメ
カニズムを説明するために示した門型ラーメンのモデル
図である。
FIG. 5 is a model diagram of a portal-type ramen shown to explain the mechanism of the self-isolation function of the RC structure according to the present invention.

【図6】図5の門型ラーメンに地震等の水平力が発生し
た場合の柱梁接合部を示したモデル図である。
6 is a model diagram showing a beam-column joint when a horizontal force such as an earthquake occurs in the portal-type ramen of FIG. 5;

【符号の説明】[Explanation of symbols]

1 プレキャストコンクリート柱 2 プレキャストコンクリート梁 3 アンボンドPC鋼材 4 シース 1 Precast concrete column 2 Precast concrete beam 3 Unbonded PC steel 4 Sheath

───────────────────────────────────────────────────── フロントページの続き (72)発明者 太田 義弘 千葉県印西市大塚一丁目5番地1 株式会 社竹中工務店技術研究所内 Fターム(参考) 2E125 AA04 AA14 AB12 AC02 AG02 AG04 AG12 AG41 BB01 BB08 BB22 BB30 BC09 BD01 BE07 BE08 BF06 CA05 CA13 CA14 EA00 EB00  ────────────────────────────────────────────────── ─── Continuing from the front page (72) Inventor Yoshihiro Ota 1-5-1, Otsuka, Inzai City, Chiba Prefecture F-term in Takenaka Corporation Technical Research Institute F-term (reference) 2E125 AA04 AA14 AB12 AC02 AG02 AG04 AG12 AG41 BB01 BB08 BB22 BB30 BC09 BD01 BE07 BE08 BF06 CA05 CA13 CA14 EA00 EB00

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】プレキャストコンクリート梁を、アンボン
ドPC鋼材を利用してプレストレスを導入し、プレキャ
ストコンクリート柱へ圧着接合するRC系構造物の自己
免震構法であって、 前記プレキャストコンクリート梁の長手方向に前記アン
ボンドPC鋼材を貫通させ、該アンボンドPC鋼材の両
端部を前記プレキャストコンクリート柱へ定着して、地
震等の水平力にしたがい前記アンボンドPC鋼材の弾性
伸び変形に伴う柱梁接合界面の浮き上がりを許容する構
成とすることを特徴とする、RC系構造物の自己免震構
法。
1. A self-isolation method for an RC structure in which a prestressed precast concrete beam is joined to a precast concrete column by introducing a prestress using an unbonded PC steel material, wherein a longitudinal direction of the precast concrete beam is used. The unbonded PC steel material is penetrated through, and both ends of the unbonded PC steel material are fixed to the precast concrete columns, and according to a horizontal force such as an earthquake, the rising of the beam-column joint interface caused by the elastic extension deformation of the unbonded PC steel material is reduced. A self-seismic construction method for RC-based structures, characterized in that it has an allowable configuration.
【請求項2】プレキャストコンクリート梁を、アンボン
ドPC鋼材を利用してプレストレスを導入し、プレキャ
ストコンクリート柱へ圧着接合したRC系構造物の自己
免震構造であって、 前記プレキャストコンクリート梁の長手方向に前記アン
ボンドPC鋼材が貫通され、該アンボンドPC鋼材の両
端部が前記プレキャストコンクリート柱へ定着され、地
震等の水平力にしたがい前記アンボンドPC鋼材の弾性
伸び変形に伴う柱梁接合界面の浮き上がりを許容する構
成とされていることを特徴とする、RC系構造物の自己
免震構造。
2. A self-isolation structure of an RC-based structure in which a precast concrete beam is prestressed by using an unbonded PC steel material and pressure-bonded to a precast concrete column, wherein a longitudinal direction of the precast concrete beam is used. The unbonded PC steel material penetrates through, and both ends of the unbonded PC steel material are fixed to the precast concrete columns, and according to a horizontal force such as an earthquake, the lifting of the beam-column joint interface due to the elastic extension deformation of the unbonded PC steel material is allowed. A self-isolating structure of an RC structure, characterized in that it is configured to perform the following.
【請求項3】プレキャストコンクリート柱に、プレキャ
ストコンクリート梁端部の圧壊防止措置が施されている
ことを特徴とする、請求項2に記載したRC系構造物の
自己免震構造。
3. The self-isolating structure for RC-based structures according to claim 2, wherein the precast concrete columns are provided with measures to prevent crushing of the ends of the precast concrete beams.
JP2000192442A 2000-06-27 2000-06-27 Self-isolated construction method and self-isolated structure of RC structure Expired - Fee Related JP4546620B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2000192442A JP4546620B2 (en) 2000-06-27 2000-06-27 Self-isolated construction method and self-isolated structure of RC structure

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2000192442A JP4546620B2 (en) 2000-06-27 2000-06-27 Self-isolated construction method and self-isolated structure of RC structure

Publications (2)

Publication Number Publication Date
JP2002004418A true JP2002004418A (en) 2002-01-09
JP4546620B2 JP4546620B2 (en) 2010-09-15

Family

ID=18691572

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000192442A Expired - Fee Related JP4546620B2 (en) 2000-06-27 2000-06-27 Self-isolated construction method and self-isolated structure of RC structure

Country Status (1)

Country Link
JP (1) JP4546620B2 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009052251A (en) * 2007-08-24 2009-03-12 Ohbayashi Corp Vibration controlled building, method of controlling vibration of building, reinforced concrete building, and method of imparting long period to reinforced concrete building
KR20150131980A (en) 2014-05-16 2015-11-25 구로사와 겐세츠 가부시키가이샤 Earthquake resisting design method on the basis of pc binding articulation construction method
WO2021032144A1 (en) * 2019-08-20 2021-02-25 华南理工大学 Prestress-free ductile steel structure with combination of articulated column and elastic resetting beam
CN113202184A (en) * 2021-05-20 2021-08-03 扬州工业职业技术学院 Beam-column assembled node suitable for reinforced concrete structure

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103924663B (en) * 2014-03-21 2016-04-13 北京工业大学 A kind of method for designing improving RC progressive collapse-resisting frame structure ability

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0447047A (en) * 1990-06-14 1992-02-17 Oriental Kensetsu Kk Method for connecting precast column and precast girder
JPH0882002A (en) * 1994-09-09 1996-03-26 Taisei Corp Rc structure and its constructing method
JPH0953276A (en) * 1995-08-15 1997-02-25 Kurosawa Kensetsu Kk Beam-column joint construction
JPH09317054A (en) * 1996-05-27 1997-12-09 Fujita Corp Crack preventive structure of reinforced concrete member in medium to small earthquake
JPH10299137A (en) * 1997-04-23 1998-11-10 Shimizu Corp Vibration control wall structure
JPH11172761A (en) * 1997-12-12 1999-06-29 Takenaka Komuten Co Ltd Rc-based vibration control structure

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0447047A (en) * 1990-06-14 1992-02-17 Oriental Kensetsu Kk Method for connecting precast column and precast girder
JPH0882002A (en) * 1994-09-09 1996-03-26 Taisei Corp Rc structure and its constructing method
JPH0953276A (en) * 1995-08-15 1997-02-25 Kurosawa Kensetsu Kk Beam-column joint construction
JPH09317054A (en) * 1996-05-27 1997-12-09 Fujita Corp Crack preventive structure of reinforced concrete member in medium to small earthquake
JPH10299137A (en) * 1997-04-23 1998-11-10 Shimizu Corp Vibration control wall structure
JPH11172761A (en) * 1997-12-12 1999-06-29 Takenaka Komuten Co Ltd Rc-based vibration control structure

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009052251A (en) * 2007-08-24 2009-03-12 Ohbayashi Corp Vibration controlled building, method of controlling vibration of building, reinforced concrete building, and method of imparting long period to reinforced concrete building
KR20150131980A (en) 2014-05-16 2015-11-25 구로사와 겐세츠 가부시키가이샤 Earthquake resisting design method on the basis of pc binding articulation construction method
US9534411B2 (en) 2014-05-16 2017-01-03 Kurosawa Construction Co., Ltd. Earthquake resisting design method on the basis of PC binding articulation construction method
WO2021032144A1 (en) * 2019-08-20 2021-02-25 华南理工大学 Prestress-free ductile steel structure with combination of articulated column and elastic resetting beam
US11808026B2 (en) 2019-08-20 2023-11-07 South China University Of Technology Resilient prestress-free steel structure formed by combining pin-ended columns with elastic centering beam
CN113202184A (en) * 2021-05-20 2021-08-03 扬州工业职业技术学院 Beam-column assembled node suitable for reinforced concrete structure
CN113202184B (en) * 2021-05-20 2022-12-06 扬州工业职业技术学院 Beam-column assembled node suitable for reinforced concrete structure

Also Published As

Publication number Publication date
JP4546620B2 (en) 2010-09-15

Similar Documents

Publication Publication Date Title
KR101632255B1 (en) Earthquake resisting design method on the basis of pc binding articulation construction method
JPH1096263A (en) Precast concrete support and assembling method of slab
JP4647714B1 (en) Buildings using walled columns with seismic prestressing
CN101029503A (en) Beam and pile assembled node of precast and prestressed concrete structure
JP4762406B2 (en) High-rise building
Bose et al. Behavior of AAC infilled RC frame under lateral loading
JP2002061282A (en) Columnar reinforced concrete construction member
JP2002004418A (en) Construction method and structure for self-base- isolation of rc type structure
JP3834637B2 (en) Permanent and emergency seismic reinforcement method for wall columns
JP5210337B2 (en) Buildings using vertical seismic control PC structural members with seismic prestress
Elgwady et al. Dynamic in-plane behavior of URM wall upgraded with composites
JP4419844B2 (en) Seismic reinforcement method for columnar structure, seismic reinforcement structure for columnar structure and seismic reinforcement structure
JP2000017615A (en) Prestressed concrete bridge pier
JP2006037586A (en) Earthquake-resisting wall using corrugated steel plate
JP4546621B2 (en) Self-isolated construction method and self-isolated structure of RC structure
KR100718585B1 (en) Punching-shear strengthening method with externally bonded prestressed frp strips
JP3865620B2 (en) Material end fixing structure of reinforced concrete structures
JP2008038559A (en) Vibration control wall
JP2006083545A (en) PCaPC FRAMING
Wibowo et al. Drift capacity of lightly reinforced soft storey structures
JP3002740B2 (en) Seismic reinforcement structure of columnar structure
Iqbal et al. Experimental study of prestressed timber columns under bi-directional seismic loading
JPH10220027A (en) Aseismatic reinforced construction
JPH0621475B2 (en) Structure of complex building structure
JPH11270174A (en) Reinforcing construction of bending deformation control type antiseismic structure

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070329

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20090331

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100216

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100413

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20100622

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20100702

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130709

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees