JP2002003993A - High strength steel sheet and high strength galvanized steel sheet - Google Patents

High strength steel sheet and high strength galvanized steel sheet

Info

Publication number
JP2002003993A
JP2002003993A JP2000183870A JP2000183870A JP2002003993A JP 2002003993 A JP2002003993 A JP 2002003993A JP 2000183870 A JP2000183870 A JP 2000183870A JP 2000183870 A JP2000183870 A JP 2000183870A JP 2002003993 A JP2002003993 A JP 2002003993A
Authority
JP
Japan
Prior art keywords
steel sheet
less
strength
strain
high strength
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2000183870A
Other languages
Japanese (ja)
Inventor
Katsumi Nakajima
勝己 中島
Takeshi Fujita
毅 藤田
Toshiaki Urabe
俊明 占部
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Engineering Corp
Original Assignee
NKK Corp
Nippon Kokan Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NKK Corp, Nippon Kokan Ltd filed Critical NKK Corp
Priority to JP2000183870A priority Critical patent/JP2002003993A/en
Priority to EP10190623A priority patent/EP2312009A1/en
Priority to EP10190624A priority patent/EP2312010A1/en
Priority to KR10-2002-7000794A priority patent/KR100473497B1/en
Priority to CNB2004100319738A priority patent/CN1286999C/en
Priority to CNB018017495A priority patent/CN1190513C/en
Priority to PCT/JP2001/005209 priority patent/WO2001098552A1/en
Priority to EP01941087A priority patent/EP1318205A4/en
Publication of JP2002003993A publication Critical patent/JP2002003993A/en
Priority to US10/043,903 priority patent/US6743306B2/en
Priority to US10/792,546 priority patent/US7252722B2/en
Pending legal-status Critical Current

Links

Abstract

PROBLEM TO BE SOLVED: To provide a high strength steel sheet having superior press processability at the forming (mainly by bulging) of such as hood, door, fender, side panel, surface roughing resistance after pressing, excellent in surface characteristic and secondary processability. SOLUTION: The high strength steel sheet has a chemical composition consisting of, by mass, 0.0040-0.01% C, <=1.0% Si, 0.1-1.0% Mn, 0.01-0.07% P, <=0.02% S, 0.01-0.1% sol.Al, <=0.004% N, 0.01-0.14% Nb and the balance essentially iron with inevitable impurities and also has >=0.21 n-value at <=10% deformation by the uniaxial tensile test and satisfies the following inequality: YP<=-60×d+770 (wherein, YP represents yield strength [MPa]; and d represents average ferrite grain diameter [μm]).

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、フード、ドア、フ
ェンダー、サイドパネル等の主に自動車外板パネル等、
張出し主体の成形に優れ、かつプレス成形後の耐肌荒れ
性、耐二次加工脆性、表面性状が良好な高強度冷延鋼板
もしくは高強度亜鉛系めっき鋼板に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates mainly to automobile outer panel panels such as hoods, doors, fenders, side panels and the like.
The present invention relates to a high-strength cold-rolled steel sheet or a high-strength galvanized steel sheet which is excellent in forming mainly by overhanging, and has good surface roughness after press forming, resistance to secondary working brittleness, and good surface properties.

【0002】[0002]

【従来の技術】近年、安全性向上による高強度化と、部
品の一体化による部品点数の削減およびプレス工程の省
略化が進められており、自動車ボディ用鋼板に対して
は、極めて高いプレス成形性を有する高強度鋼板が求め
られている。従来、鋼板のプレス成形性は深絞り性およ
び張出し性の向上の観点から検討されてきた。
2. Description of the Related Art In recent years, efforts have been made to increase strength by improving safety, reduce the number of parts by integrating parts, and omit the pressing process. There is a demand for a high-strength steel sheet having heat resistance. Conventionally, the press formability of a steel sheet has been studied from the viewpoint of improving the deep drawing property and the overhang property.

【0003】冷延鋼板の深絞り成形性に対しては、r値
を高める技術が多く開示されている。また、張出し成形
性に対しては、一般に全伸び、均一伸び(一様伸び)と
高ひずみ域のn値、例えば均一伸びが20%以上の材料で
は10%と20%の2点法のn値を高めることが重要とされて
きた。
[0003] With respect to the deep drawability of cold rolled steel sheets, many techniques for increasing the r value have been disclosed. For stretch formability, generally, the elongation, the uniform elongation (uniform elongation) and the n value in the high strain region, for example, for a material having a uniform elongation of 20% or more, n of the two-point method of 10% and 20% It has been important to increase the value.

【0004】例えば、特開平5-78784号公報には、Tiを
添加した極低炭素鋼にMnとCrを積極的に添加して、Siや
Pを制御し、引張り強さが343MPa〜490MPa、平均r値と伸
びが良好な技術が提案されている。これにより、降伏応
力の上昇は抑制しつつ強度を上昇でき、面形状性が良好
で耐デント性に優れた高強度冷延鋼板が得られるという
ものである。
[0004] For example, Japanese Patent Application Laid-Open No. 5-78784 discloses that Mn and Cr are positively added to ultra-low carbon steel to which Ti is added, and Si or
A technique has been proposed in which P is controlled, tensile strength is 343 MPa to 490 MPa, average r value and elongation are good. Thus, the strength can be increased while suppressing the increase in the yield stress, and a high-strength cold-rolled steel sheet having good surface shape and excellent dent resistance can be obtained.

【0005】特開平8-92656号公報では、極低炭素鋼板
に対し、Ar3〜500℃で熱間潤滑圧延後、熱延板再結晶処
理を行い、冷間圧延、冷延板再結晶焼鈍を行うことによ
り、r値を3.0以上に高める技術が開示されている。この
技術は、特に、C、S、Nを大幅に低減してNb、Bを添
加し、冷延板再結晶焼鈍を700〜950 ℃で行うことによ
り、深絞り性を上昇させるというものである。
In Japanese Patent Application Laid-Open No. Hei 8-92656, a very low carbon steel sheet is subjected to hot lubrication rolling at Ar 3 to 500 ° C., then hot rolled sheet recrystallization treatment, cold rolling, cold rolled sheet recrystallization annealing To increase the r value to 3.0 or more. This technique is to increase the deep drawability by adding Nb and B while greatly reducing C, S and N, and performing cold-rolled sheet recrystallization annealing at 700 to 950 ° C. .

【0006】[0006]

【発明が解決しようとする課題】しかし、特開平5-7878
4号公報記載の技術では、成形性においては、サイドパ
ネル等の張出し主体の成形の場合、r値と伸びのみでは
十分な成形性が得られず、特に平面ひずみ張出し成形部
ではひずみ伝播不足によりパンチ肩部で破断する問題が
生じていた。さらに、CrやMnについては0.9%以上添加
することから、コスト面で不利となっていた。
SUMMARY OF THE INVENTION However, Japanese Patent Application Laid-Open No. 5-7878
In the technology described in Japanese Patent Publication No. 4 (2004), in the formability, in the case of molding mainly by overhanging a side panel or the like, sufficient formability cannot be obtained only by the r value and elongation, and particularly in the plane strain overhang forming portion due to insufficient strain propagation. There was a problem of breaking at the punch shoulder. Further, since Cr and Mn are added in an amount of 0.9% or more, there is a disadvantage in cost.

【0007】また、特開平8-92656号公報で示される鋼
板は、冷間圧延後、700〜950℃で冷延板再結晶焼鈍を行
うと記載されているが、実際の焼鈍温度は実施例で見る
と880〜910℃であり、再結晶焼鈍としては非常に高温の
焼鈍である。そのため、この鋼板は、結晶粒径が大き
く、プレス成形後の表面性状、特に肌荒れが懸念され、
自動車外板等の表面厳格材には適さない。このように、
プレス成形性とプレス後の良好な表面性状を両立させる
ことは、これまで大変困難であった。
[0007] Further, it is described that the steel sheet disclosed in JP-A-8-92656 is subjected to cold-rolled sheet recrystallization annealing at 700 to 950 ° C after cold rolling. The temperature is 880 to 910 ° C., which is a very high temperature recrystallization annealing. Therefore, this steel sheet has a large crystal grain size, and surface properties after press forming, particularly,
Not suitable for strict surface materials such as automobile outer panels. in this way,
Until now, it has been very difficult to achieve both good press formability and good surface properties after pressing.

【0008】さらに、この公報記載の技術では、Nが0.0
020%以下と低く規定されており、実施例の鋼の大半は3
〜5ppmである。このレベルまでNを低減させることは、
鋼の工業的な製造方法としては実施困難である。その
他、C,Sについても大半が5ppm以下であり、これも通常
の薄板用鋼の製造では困難であり、特別な溶銑処理や脱
ガス処理を必要とする。
Further, according to the technology described in this publication, N is set to 0.0
It is specified as low as 020% or less.
~ 5ppm. Reducing N to this level is
It is difficult to implement as an industrial method for producing steel. In addition, most of C and S are 5 ppm or less, which is also difficult in the production of ordinary steel for sheet metal, and requires special hot metal treatment and degassing treatment.

【0009】これらの技術のように、r値を高めること
は、縮みフランジ変形を伴う深絞り性が要求される部位
に対しては有効であるが、張出し主体の成形では、十分
な成形性が得られない問題があった。さらにこの技術で
は、冷間圧延前にも焼鈍を行うことから、エネルギー消
費が大きいばかりでなく、生産性も低くコスト面でも不
利である。
[0009] As in these techniques, increasing the r-value is effective for a part requiring deep drawability accompanied by shrinkage flange deformation. There was a problem that could not be obtained. Further, in this technique, annealing is performed before cold rolling, so that not only energy consumption is large but also productivity is low and cost is disadvantageous.

【0010】張出し性に関しては、例えば「薄鋼板のプ
レス加工、(実教出版)、p.161」に述べられているよ
うに、材料の延性とn値の影響が強いとされてきた。
材料の延性は一般に全伸びで評価されるが、これは、均
一伸び(一様伸び)と局部伸びの和で表される。均一伸
びは、塑性理論により加工硬化係数n値に等しいことが
知られている。このn値は均一伸びに近い高ひずみ域に
おける2点法のn値で評価されてきた。しかし、材料を高
強度化するに伴い、軟質材と同等の全伸びやn値を得る
ことは困難となる。また、高歪域でのn値を高めても効
果が現れない場合が生じてきた。
Regarding the overhang property, as described in, for example, “Press Processing of Thin Steel Sheet, (Jikkyo Shuppan), p. 161”, it has been considered that the influence of the ductility of the material and the n value is strong.
The ductility of a material is generally evaluated by the total elongation, which is represented by the sum of uniform elongation (uniform elongation) and local elongation. It is known from the plastic theory that uniform elongation is equal to the work hardening coefficient n value. This n-value has been evaluated by the two-point method n-value in the high strain region near uniform elongation. However, as the strength of the material increases, it becomes difficult to obtain the same total elongation and n value as those of the soft material. Further, there have been cases where the effect does not appear even if the n value is increased in the high distortion region.

【0011】本発明の目的は、上記のような従来のプレ
ス成形用冷延鋼板の問題を解決し、フード、ドア、フェ
ンダー、サイドパネル等、張出し主体の成形における優
れたプレス成形性とプレス後の耐肌荒れ性を両立し、か
つ表面性状、耐二次加工脆性に優れた高強度薄鋼板を提
供することにある。
An object of the present invention is to solve the above-mentioned problems of the conventional cold-rolled steel sheet for press forming, and to provide excellent press formability and post-press forming in overhang forming such as hoods, doors, fenders and side panels. It is an object of the present invention to provide a high-strength thin steel sheet having both surface roughness resistance and excellent surface properties and secondary work brittleness resistance.

【0012】[0012]

【課題を解決するための手段】上記の課題は次の発明に
より解決される。第1の発明は、化学成分が、mass%
で、C:0.0040〜0.01%、Si:≦1.0%、Mn:0.1〜1.0
%、P:0.01〜0.07%、S:≦0.02%、sol.Al:0.01〜0.
1%、N:≦0.004%、Nb:0.01〜0.14%を含み、残部が
実質的に鉄からなり、単軸引張り試験による10%以下の
変形におけるn値が0.21以上であり、かつ次の式(1)を
満足することを特徴とする高強度薄鋼板である。YP≦-6
0×d+770 (1)但し、YPは降伏強度[MPa]、dはフ
ェライト平均粒径[μm]を表す。
The above object is achieved by the following invention. In the first invention, the chemical component is mass%
And C: 0.0040 to 0.01%, Si: ≦ 1.0%, Mn: 0.1 to 1.0
%, P: 0.01 to 0.07%, S: ≤ 0.02%, sol. Al: 0.01 to 0.
1%, N: ≦ 0.004%, Nb: 0.01 to 0.14%, the balance being substantially composed of iron, the n value in deformation of 10% or less by a uniaxial tensile test is 0.21 or more, and the following formula: It is a high-strength steel sheet that satisfies (1). YP ≦ -6
0 × d + 770 (1) where YP represents the yield strength [MPa] and d represents the average ferrite grain size [μm].

【0013】本発明は、フェンダー、サイドパネル等の
張出し成形主体の部品の成形性を支配する諸因子につい
て詳細に検討を行う中でなされた。その過程で、これら
の張出し成形主体の成形では、成形品の大部分を占める
パンチ底接触部では発生ひずみ量が小さく、側壁部のパ
ンチ肩やダイ肩近傍にひずみが集中していることが把握
された。
The present invention has been made while examining in detail the factors governing the formability of parts that are mainly formed by overhanging such as fenders and side panels. In the process, it is understood that in the overmolding mainly, the amount of generated strain is small at the punch bottom contact area, which occupies most of the molded product, and the strain is concentrated near the punch shoulder and die shoulder on the side wall. Was done.

【0014】これより、パンチ底接触部の広範囲の材料
について発生ひずみ量を増すことで、破断危険部である
側壁部のパンチ肩やダイ肩近傍へのひずみ集中の緩和が
可能となる。それには、従来、張出し性の評価に用いら
れていた高ひずみ域のn値ではなく、パンチ底接触部に
おける発生ひずみ量に相当する低ひずみ域のn値を向上
することが有効であることを知見した。さらに、優れた
張出し成形性を維持した上で、プレス加工後の耐肌荒れ
性を確保するには、低YPでかつ結晶粒を微細化する必要
があることを見出した。
Thus, by increasing the amount of strain generated in a wide range of materials at the punch bottom contact portion, it is possible to alleviate the concentration of strain near the punch shoulder and die shoulder of the side wall portion, which is a risk of fracture. To achieve this, it is effective to improve the n value in the low strain region corresponding to the amount of strain generated at the punch bottom contact part, instead of the n value in the high strain region, which was conventionally used for evaluating the overhang property. I learned. Further, they have found that it is necessary to have low YP and fine crystal grains in order to secure the surface roughness resistance after press working while maintaining excellent stretch formability.

【0015】そのためには、従来のIF鋼とは異なり、C
を40ppm以上添加した成分系で、炭窒化物生成元素とし
てNbを利用したNb-IF鋼とするのが効果的であること、
および、鋼板のミクロ組織と析出物の形態を制御するこ
とで、低歪域でのn値を著しく向上でき、しかも結晶粒
を微細化できることを、詳細な電子顕微鏡観察等の研究
により初めて見出した。本発明はこのような知見に基づ
き、更に、検討を重ねた結果なされたもので、その特徴
は以下の通りである。
[0015] Therefore, unlike conventional IF steel, C
Nb-IF steel using Nb as a carbonitride forming element in a component system with 40 ppm or more added,
Also, by controlling the microstructure and precipitate morphology of the steel sheet, it was possible to significantly improve the n value in the low strain range and to refine the crystal grains, and found for the first time through studies such as detailed electron microscopic observation. . The present invention has been made as a result of further studies based on such findings, and the features thereof are as follows.

【0016】まず、成分組成範囲(化学成分)の限定理
由について説明する。 C:0.0040〜0.01% Cは、 Nbと形成する炭化物が素材強度およびパネル成形
時における低ひずみ域での歪伝播に影響を及ぼし、強度
上昇と成形性を向上させる。C量が、0.0040%未満では
効果が得られず、0.01%を超えると強度および低ひずみ
域での十分な歪伝播は得られるものの、延性が低下し、
成形性が劣化する。従って、C量を0.0040〜0.01%の範
囲に規定する。
First, the reasons for limiting the component composition range (chemical components) will be described. C: 0.0040% to 0.01% C causes the carbide formed with Nb to affect the strength of the material and the propagation of strain in a low strain region during panel forming, thereby increasing the strength and improving the formability. If the C content is less than 0.0040%, no effect is obtained, and if it exceeds 0.01%, although sufficient strength and sufficient strain propagation in a low strain region can be obtained, ductility decreases,
Moldability deteriorates. Therefore, the amount of C is specified in the range of 0.0040 to 0.01%.

【0017】Si:≦1.0% Siは強度確保に有効な元素であるが、1.0%を超えて過
剰に添加されると化成処理性、表面性状が著しく劣化す
る。従って、Si量を1.0%以下に規定する。
Si: ≦ 1.0% Si is an element effective for securing the strength, but if added in excess of 1.0%, the chemical conversion property and the surface properties are significantly deteriorated. Therefore, the amount of Si is specified to be 1.0% or less.

【0018】Mn:0.1〜1.0% Mnは鋼中のSをMnSとして析出させることによってスラブ
の熱間割れを防止する作用を有するため、鋼には不可欠
な元素であり、Sを析出固定するために0.1%以上必要で
ある。またMnはめっき密着性を劣化させることなく鋼を
固溶強化できる元素でもあるが、1.0%を超える過剰な
添加は、降伏強度の過度の上昇による低ひずみ域でのn
値の低下を招くため好ましくない。したがって、Mn量を
0.1〜1.0%の範囲に規定する。
Mn: 0.1-1.0% Mn is an essential element in steel because it has an effect of preventing hot cracking of the slab by precipitating S in the steel as MnS. 0.1% or more is required. Mn is also an element capable of solid solution strengthening the steel without deteriorating the plating adhesion, but excessive addition exceeding 1.0% causes n in a low strain region due to an excessive increase in yield strength.
It is not preferable because the value is lowered. Therefore, the amount of Mn
It is specified in the range of 0.1 to 1.0%.

【0019】P:0.01〜0.07% Pは鋼の強化に有効な元素であり、この効果は0.01%以
上の添加で現れる。しかしPを 0.07%を超えて添加する
と、亜鉛めっきの際の合金化処理を劣化させ、めっき密
着不良およびそれに起因したうねりによるパネル外観不
良を生じる。従って、P量を0.01〜0.07%の範囲に規定
する。
P: 0.01 to 0.07% P is an element effective for strengthening steel, and this effect appears when added at 0.01% or more. However, if P is added in excess of 0.07%, the alloying treatment at the time of zinc plating is deteriorated, resulting in poor plating adhesion and poor panel appearance due to undulation. Therefore, the P content is defined in the range of 0.01 to 0.07%.

【0020】S:≦0.02% SはMnSとして鋼中に存在し、過剰に含まれると延性の劣
化を招きプレス成形性が低下する。実用上、成形性に不
都合が生じないS量は 0.02%以下である。したがって、
S量を0.02%以下に規定する。
S: ≦ 0.02% S is present in steel as MnS, and if contained excessively, ductility is deteriorated and press formability is reduced. Practically, the S content at which no inconvenience occurs in moldability is 0.02% or less. Therefore,
S content is regulated to 0.02% or less.

【0021】sol.Al:0.01〜0.1% Alは鋼中NをAINとして析出させ、固溶Cを残さないよう
にするため、0.01%以上添加する。sol.Alが0.01%未満
では上記の効果が十分でなく、0.1%を超えて添加した
場合、固溶Alが延性低下を招くので、添加量を0.01〜0.
1%の範囲に規制する。
Sol. Al: 0.01 to 0.1% Al is added in an amount of 0.01% or more in order to precipitate N in steel as AIN and not to leave solid solution C. If the sol.Al is less than 0.01%, the above effect is not sufficient, and if the addition exceeds 0.1%, the solute Al causes a decrease in ductility.
Restrict to 1% range.

【0022】N:≦0.004% NはAlNとして析出し無害化されるが、sol.Alが下限量の
場合でも全てのNをAlNとして析出させるには、0.004%
以下にする必要がある。従って、N量を0.02%以下に規
定する。
N: ≦ 0.004% N precipitates as AlN and is rendered harmless. However, even when sol.Al is in the lower limit amount, to precipitate all N as AlN, 0.004%
It must be: Therefore, the amount of N is regulated to 0.02% or less.

【0023】Nb:0.01〜0.14% Nbは、Cと結合して微細炭化物を形成し、素材強度およ
びパネル成形時の低ひずみ域での歪伝播に影響し、成形
性、耐面ひずみ性を向上させる。しかし、0.01%未満で
は効果がなく、0.14%を超えると、降伏強度が上昇し、
低ひずみ域での十分な歪伝播が得られず、延性が低下
し、成形性が劣化する。従って、Nb量を0.01〜0.14%の
範囲に規定する。
Nb: 0.01 to 0.14% Nb combines with C to form fine carbides, which affects the strength of the material and the propagation of strain in a low strain range during panel forming, and improves the formability and surface distortion resistance. Let it. However, if it is less than 0.01%, there is no effect, and if it exceeds 0.14%, the yield strength increases,
Sufficient strain propagation in a low strain range cannot be obtained, ductility decreases, and formability deteriorates. Therefore, the amount of Nb is specified in the range of 0.01 to 0.14%.

【0024】次に、この発明の特徴として、材料の低ひ
ずみ域の歪伝播を大きくすることにより、パンチ底に接
する材料において広範囲でのひずみ発生量が増加し、張
出し成形性が向上する。ここで、低ひずみ域としては、
前述の成形性支配因子についての検討の結果、ひずみ量
として10%以下の領域とすればよいと言う知見を得た。
そこで、本発明では、単軸引張りの公称ひずみ10%以下
の領域のn値として、成形性の観点から必要な値を求め
た。その結果、n値を0.21以上とし、張出し成形性を著
しく向上させることができた。なお、10%以下の変形に
おけるn値としては、公称歪1%と10%の2点法のn値を用
いればよい。
Next, as a feature of the present invention, by increasing the strain propagation in the low strain region of the material, the amount of strain generated in the material in contact with the punch bottom in a wide range is increased, and the stretch formability is improved. Here, as the low strain range,
As a result of the study of the above-mentioned factors controlling the formability, it was found that the strain should be set to a region of 10% or less.
Therefore, in the present invention, a necessary value from the viewpoint of formability was determined as an n value in a region where the nominal strain of uniaxial tension was 10% or less. As a result, the n value was set to 0.21 or more, and the stretch formability was significantly improved. As the n value in the deformation of 10% or less, the n value of the two-point method of 1% and 10% of the nominal strain may be used.

【0025】さらに、本発明の鋼は、自動車外板等の表
面厳格材も対象としており、厳しいプレス成形後にも優
れた表面性状を確保する必要がある。そこで、高い張出
し成形性を確保し、かつプレス後の肌荒れ等を防止する
ための条件を、種々検討した。その過程で、降伏応力に
応じて結晶粒径を微細化する必要があることを見出し
た。検討の結果を上記の式(1)にまとめ、この式を満
足するよう結晶粒径を微細化することにより、プレス後
の肌荒れを防止することに成功した。以上より、この発
明では、降伏強度YP[MPa]およびフェライト平均粒径d
[μm]について、式(1)を満足するよう制御する。
Further, the steel of the present invention is intended for a material having a strict surface such as an automobile outer panel, and it is necessary to secure excellent surface properties even after severe press molding. Therefore, various conditions for ensuring high stretch formability and preventing roughening after pressing were examined. In the process, they have found that it is necessary to reduce the crystal grain size according to the yield stress. The results of the study are summarized in the above equation (1), and by reducing the crystal grain size so as to satisfy this equation, we succeeded in preventing roughening after pressing. As described above, in the present invention, the yield strength YP [MPa] and the average ferrite grain size d
[Μm] is controlled so as to satisfy Expression (1).

【0026】第2の発明は、第1の発明の高強度薄鋼板
において、化学成分をその記載に代えて、mass%で、
C:0.0040〜0.01%、Si:≦1.0%、Mn:0.1〜1.0%、
P:0.01〜0.07%、S:≦0.02%、sol.Al:0.01〜0.1
%、N:≦0.004%、Nb:0.01〜0.14%、Tiを0.05%以下
を含み、残部が実質的に鉄からなる、としたことを特徴
とする高強度薄鋼板である。
According to a second aspect of the present invention, there is provided the high-strength steel sheet according to the first aspect, wherein the chemical components are replaced by mass%
C: 0.0040-0.01%, Si: ≦ 1.0%, Mn: 0.1-1.0%,
P: 0.01 to 0.07%, S: ≤ 0.02%, sol. Al: 0.01 to 0.1
%, N: ≦ 0.004%, Nb: 0.01 to 0.14%, and 0.05% or less of Ti, and the balance is substantially composed of iron.

【0027】この発明は、第1の発明の化学成分に、さ
らにTiを添加して、熱延板の組織を微細化する。Tiは炭
窒化物を形成し、熱延板の組織を微細化することによ
り、成形性を改善する。しかしながら、Tiを0.05wt%を
超えて添加した場合、析出物が粗大化し、十分な効果が
得られない。従って、Ti量を0.05%以下に規定する。
In the present invention, the structure of the hot-rolled sheet is refined by further adding Ti to the chemical component of the first invention. Ti forms carbonitrides and refines the structure of the hot-rolled sheet to improve formability. However, when Ti is added in excess of 0.05 wt%, the precipitates become coarse, and a sufficient effect cannot be obtained. Therefore, the amount of Ti is specified to be 0.05% or less.

【0028】第3の発明は、第1の発明の高強度薄鋼板
において、化学成分をその記載に代えて、mass%で、
C:0.0040〜0.01%、Si:≦1.0%、Mn:0.1〜1.0%、
P:0.01〜0.07%、S:≦0.02%、sol.Al:0.01〜0.1
%、N:≦0.004%、Nb:0.01〜0.14%、B:0.002%以下
を含み、残部が実質的に鉄からなる、としたことを特徴
とする高強度薄鋼板である。
According to a third aspect, in the high-strength steel sheet according to the first aspect, the chemical composition is replaced by mass% by mass instead of the description.
C: 0.0040-0.01%, Si: ≦ 1.0%, Mn: 0.1-1.0%,
P: 0.01 to 0.07%, S: ≤ 0.02%, sol. Al: 0.01 to 0.1
%, N: ≦ 0.004%, Nb: 0.01 to 0.14%, B: 0.002% or less, with the balance being substantially composed of iron.

【0029】この発明は、前述の発明の化学成分に、さ
らにB を添加して耐二次加工脆性を改善する。このよう
にBは、結晶粒界を強化するが、0.002wt%を超えて添加
した場合、成形性を著しく損なう。従って、B量の上限
を0.002%に規定する。
According to the present invention, B is added to the above-mentioned chemical components to improve the resistance to secondary working embrittlement. As described above, B strengthens the crystal grain boundaries, but when added in excess of 0.002 wt%, the formability is significantly impaired. Therefore, the upper limit of the amount of B is set to 0.002%.

【0030】第4の発明は、第1の発明において、化学
成分を、mass%で、C:0.0040〜0.02%、Si:1.0%以
下、Mn:0.7〜3.0%、P:0.02〜0.15%、S:0.02%以
下、Al:0.01〜0.1%、N:0.004%以下、Nb:0.2%以
下、Ti:0.05%以下、B:0.002%以下、残部が実質的に
鉄および不可避的不純物からなる、としたことを特徴と
する高強度薄鋼板である。
According to a fourth aspect of the present invention, in the first aspect, the chemical components are expressed by mass% as C: 0.0040 to 0.02%, Si: 1.0% or less, Mn: 0.7 to 3.0%, P: 0.02 to 0.15%, S: 0.02% or less, Al: 0.01 to 0.1%, N: 0.004% or less, Nb: 0.2% or less, Ti: 0.05% or less, B: 0.002% or less, the balance substantially consisting of iron and unavoidable impurities. It is a high-strength thin steel sheet characterized by the following.

【0031】本発明は、第1の発明にさらに、成形性お
よび耐二次加工脆性の向上のために、TiとBを複合添加
する。その結果、Tiは炭窒化物を形成し、熱延板の組織
を微細化することにより成形性を改善し、Bは結晶粒界
を強化し、耐二次加工脆性を改善する。しかしながら、
Tiを0.05%を超えて添加した場合、析出物が粗大化し、
Bを0.002%を超えて添加した場合、成形性が大幅に低下
するので、Tiの上限を0.05%、B の上限を0.002%とす
る。
In the present invention, Ti and B are further added to the first invention in order to improve the formability and the resistance to secondary working brittleness. As a result, Ti forms carbonitrides and refines the structure of the hot-rolled sheet to improve formability, and B strengthens grain boundaries and improves secondary work brittleness resistance. However,
When Ti is added in excess of 0.05%, the precipitate becomes coarse,
If B is added in excess of 0.002%, the formability is greatly reduced. Therefore, the upper limit of Ti is set to 0.05% and the upper limit of B is set to 0.002%.

【0032】第5の発明は、第1ないし第4の発明記載
の高強度薄鋼板において、記載された化学成分に加え
て、さらにmass%で、Cr:1.0%以下、Mo:1.0%以下、
Ni:1.0%以下、Cu:1.0%以下のいずれか1種または2種
以上を含有していることを特徴とする高強度薄鋼板であ
る。
According to a fifth aspect of the present invention, there is provided the high-strength thin steel sheet according to any one of the first to fourth aspects of the present invention, further comprising:
It is a high-strength thin steel sheet containing one or more of Ni: 1.0% or less and Cu: 1.0% or less.

【0033】この発明は、前述の発明の化学成分に、さ
らにCr,Mo,Ni,Cuの1種以上を添加して鋼板をより高強
度とする。以下、各元素の限定理由を説明する。
According to the present invention, a steel sheet is further strengthened by adding at least one of Cr, Mo, Ni and Cu to the chemical components of the above-mentioned invention. Hereinafter, the reasons for limiting each element will be described.

【0034】Cr:1.0%以下 Crは強度を高めるために添加するが、1.0%を超えて添
加すると、成形性を低下させる。従って、Cr量の上限を
1.0%と規定する。
Cr: 1.0% or less Cr is added to increase the strength, but if added in excess of 1.0%, the formability is reduced. Therefore, the upper limit of Cr content
Defined as 1.0%.

【0035】Mo:1.0%以下 Moは、強度確保に有効な元素であるが、1.0%を超えて
添加すると、熱間圧延時にγ域(オーステナイト域)で
の再結晶を遅延させ、圧延負荷を増加させる。従って、
Mo量の上限を1.0%と規定する。
Mo: 1.0% or less Mo is an element effective for securing the strength, but if added in excess of 1.0%, recrystallization in the γ region (austenite region) during hot rolling is delayed, and the rolling load is reduced. increase. Therefore,
The upper limit of the amount of Mo is specified as 1.0%.

【0036】Ni:1.0%以下Ni は添加するが、1.0%を
超えて添加すると、変態点が大きく低下し、熱間圧 延時に低温変態相が現れやすくなる。従って、Ni量の上
限を1.0%と規定する。
Ni: 1.0% or less Ni is added. If Ni is added in excess of 1.0%, the transformation point is greatly reduced, and a low-temperature transformation phase tends to appear during hot rolling. Therefore, the upper limit of the amount of Ni is defined as 1.0%.

【0037】Cu:1.0%以下 Cu は固溶強化元素として有効であるが、1.0%を超えて
添加すると、熱間圧延時に低融点相を形成して表面欠陥
を生じやすくなる。従って、Cu量を1.0%以下に規定す
る。なお、Cu はNiとともに添加することが望ましい。
Cu: 1.0% or less Cu is effective as a solid solution strengthening element, but if added in excess of 1.0%, a low melting point phase is formed during hot rolling and surface defects are likely to occur. Therefore, the Cu content is specified to be 1.0% or less. It is desirable that Cu be added together with Ni.

【0038】第6の発明は、第1ないし第5の発明の鋼
板表面に亜鉛系めっき皮膜を付与したことを特徴とする
張出し成形性と耐肌荒れ性に優れた高強度亜鉛系めっき
鋼板である。
The sixth invention is a high-strength galvanized steel sheet excellent in stretch formability and surface roughening resistance, characterized in that a zinc-based plating film is provided on the steel sheet surface of the first to fifth inventions. .

【0039】この発明は、前述の発明の鋼板表面に、さ
らに亜鉛系めっき皮膜を施すことにより、鋼板に耐食性
を付与している。ここで、めっきの方法は特に限定され
ず、溶融亜鉛めっき、電気めっき、その他種々のめっき
方法を用いることができる。
The present invention imparts corrosion resistance to the steel sheet by further applying a zinc-based plating film to the surface of the steel sheet of the above-described invention. Here, the plating method is not particularly limited, and hot-dip galvanizing, electroplating, and other various plating methods can be used.

【0040】なお、これらの手段において「残部が実質
的に鉄である」とは、本発明の作用・効果を無くさない
限り、不可避的不純物をはじめ、他の微量元素を含有す
るものが本発明の範囲に含まれることを意味する。
In these means, "the balance is substantially iron" means that the substance containing other trace elements including unavoidable impurities is used in the present invention unless the function and effect of the present invention are lost. Is included in the range.

【0041】[0041]

【発明の実施の形態】発明の実施に当たっては、前述の
ように化学成分を調整すればよいが、一部の化学成分に
ついては、さらに次のようにすることにより、それぞれ
の特性を向上させることができる。
DESCRIPTION OF THE PREFERRED EMBODIMENTS In practicing the present invention, the chemical components may be adjusted as described above. However, for some of the chemical components, the respective characteristics are improved by the following. Can be.

【0042】Cについては、析出物の形態および分散状
態を適正に制御し、より優れた成形性およびより好まし
い総合性能を引き出すには、C添加量を0.0050〜0.0080
%、さらに望ましくは0.0050〜0.0074%の範囲に規制す
ることが好ましい。
As for C, in order to properly control the morphology and dispersion state of the precipitates and to bring out more excellent moldability and more preferable overall performance, the amount of C added is 0.0050 to 0.0080.
%, More preferably in the range of 0.0050 to 0.0074%.

【0043】Siについては、表面性状、めっき密着性を
向上させるには、0.7%以下に規制することが望まし
い。
The content of Si is desirably regulated to 0.7% or less in order to improve surface properties and plating adhesion.

【0044】Nbについては、低歪域におけるn値をより
向上するには、Nb添加量をNb>0.035%とすることが望
ましく、さらに成形性および総合性能を改善するには、
Nb≧0.08%とすることが望ましい。但し、コスト等を考
慮した場合、上限をNb≦0.14%とするのが好ましい。
With respect to Nb, in order to further improve the n value in the low strain range, it is desirable that the Nb content be Nb> 0.035%. In order to further improve the formability and the overall performance,
It is desirable that Nb ≧ 0.08%. However, in consideration of cost and the like, it is preferable to set the upper limit to Nb ≦ 0.14%.

【0045】Nbにより低歪域でn値が向上する理由は、
必ずしも明確でないが、電子顕微鏡を用いて詳細に組織
観察したところ、Nb,C量が適切に制御された場合、結
晶粒内に多量のNbCが析出し、粒界近傍に析出物の存在
しない析出物枯渇帯(以下、PFZ)が形成されており、
このPFZは析出物が枯渇しているため、粒内に比べ強度
が低く、低い応力レベルで塑性変形させることが可能と
なり、低歪域で高いn値が得られる。これには、NbとCの
原子当量比を適正な値に管理することが効果的であり、
検討の結果、Nb/C(原子等量比)を1.3〜2.5の範囲に規
制することが、n値の向上により好ましいことを見出し
た。
The reason why Nb improves the n value in a low distortion region is as follows.
Although not always clear, a detailed microscopic observation using an electron microscope reveals that when the amounts of Nb and C are properly controlled, a large amount of NbC precipitates in the crystal grains and no precipitates exist near the grain boundaries. A depletion zone (hereinafter PFZ) is formed,
Since the precipitates are depleted in the PFZ, the strength is lower than that in the grains, the plastic deformation can be performed at a low stress level, and a high n value can be obtained in a low strain range. To this end, it is effective to control the atomic equivalent ratio of Nb and C to an appropriate value,
As a result of the study, it has been found that it is more preferable to limit the Nb / C (atomic equivalent ratio) to a range of 1.3 to 2.5 for improving the n value.

【0046】Tiを添加する場合は、溶融亜鉛めっきの表
面性状の観点からは0.02%未満とし、必要な細粒化効果
を得るためには0.005%以上とするのが好ましい。
When Ti is added, the content is preferably less than 0.02% from the viewpoint of the surface properties of the hot-dip galvanizing, and is preferably 0.005% or more in order to obtain a necessary grain-reducing effect.

【0047】Bについては、前述のように本発明鋼はB無
添加でも優れた耐二次加工脆性を示すので、Bを添加す
る場合は、成形性の低下を極力抑えるため、望ましくは
B添加量を0.0001〜0.001%の範囲に規制するのが好まし
い。
Regarding B, as described above, the steel of the present invention exhibits excellent secondary work brittleness resistance even without the addition of B. Therefore, when B is added, a decrease in formability is suppressed as much as possible.
It is preferable to control the amount of B added to the range of 0.0001 to 0.001%.

【0048】製造方法については、前述のようにして成
分調整された鋼から熱延鋼板を製造し、冷間圧延および
焼鈍により冷延鋼板とする。さらに、必要に応じてその
表面に亜鉛めっきを施して亜鉛めっき鋼板とすることが
できる。なお、製造方法については、以下述べるように
することもできる。
As for the manufacturing method, a hot-rolled steel sheet is manufactured from the steel whose composition has been adjusted as described above, and then cold-rolled and annealed to obtain a cold-rolled steel sheet. Further, if necessary, the surface can be galvanized to obtain a galvanized steel sheet. The manufacturing method may be as described below.

【0049】例えば、薄物製造時の仕上圧延温度確保等
の目的のために、熱間圧延中、バーヒータにより加熱を
行ってもよい。また、熱延鋼板は酸洗による脱スケール
性と材質の安定性の観点から、巻取り温度を680℃以下
とするのが好ましい。また、巻取り温度の下限は、連続
焼鈍に供される場合は600℃、箱焼鈍に供される場合は5
40℃とするのが好ましい。
For example, heating may be performed by a bar heater during hot rolling for the purpose of ensuring the finishing rolling temperature during the production of thin materials. Further, from the viewpoints of descaling by pickling and stability of the material, the hot-rolled steel sheet is preferably set to a winding temperature of 680 ° C. or lower. In addition, the lower limit of the winding temperature is 600 ° C when subjected to continuous annealing, and 5 ° C when subjected to box annealing.
Preferably, the temperature is 40 ° C.

【0050】熱延鋼板表面の脱スケールにおいては、優
れた外板適性を付与するためには、一次スケールのみな
らず、熱間圧延時に生成する二次スケールについても十
分除去するのが好ましい。熱延鋼板を脱スケール後、冷
間圧延するにあたり、外板として必要な深絞り性を付与
するためには、冷間圧延率を50%以上とすることが好ま
しい。
In the descaling of the surface of the hot-rolled steel sheet, it is preferable to sufficiently remove not only the primary scale but also the secondary scale generated during hot rolling in order to impart excellent suitability for the outer plate. When the hot-rolled steel sheet is descaled and then cold-rolled, the cold-rolling ratio is preferably set to 50% or more in order to impart the deep drawability required for the outer plate.

【0051】また、冷延鋼板の焼鈍を連続焼鈍で実施す
る場合には、焼鈍温度を780〜880℃とすることが好まし
い。一方、焼鈍を箱焼鈍で実施する場合、箱焼鈍は均熱
時間が長いため、680℃以上の焼鈍温度で均一な再結晶
組織を得ることができるが、焼鈍温度の上限は750℃と
するのが好ましい。焼鈍後の冷延鋼板は、溶融亜鉛めっ
きもしくは電気めっきによって亜鉛系めっきを施すこと
ができる。さらに、めっき後に有機皮膜処理を施しても
よい。
In the case where the cold-rolled steel sheet is annealed by continuous annealing, the annealing temperature is preferably set to 780 to 880 ° C. On the other hand, when performing annealing by box annealing, since box annealing has a long soaking time, a uniform recrystallized structure can be obtained at an annealing temperature of 680 ° C or higher, but the upper limit of the annealing temperature is 750 ° C. Is preferred. The annealed cold-rolled steel sheet can be subjected to galvanizing by hot-dip galvanizing or electroplating. Further, an organic film treatment may be performed after plating.

【0052】本発明鋼板で規定する引張り特性、成分組
成について詳細に説明する。図1は、実部品スケールの
フロントフェンダモデル成形品について、破断危険部位
近傍の相当ひずみ分布の一例を示す図である。この成形
品の概要を図2に示す。図1より、破断危険部は側壁部と
なっており、発生ひずみは0.3前後まで上昇している
が、パンチ底部の発生ひずみは0.10以下となっている。
The tensile properties and composition of the steel sheet of the present invention will be described in detail. FIG. 1 is a diagram showing an example of an equivalent strain distribution in the vicinity of a fracture danger site for a front fender model molded product on an actual part scale. Fig. 2 shows the outline of this molded product. As shown in FIG. 1, the fracture-prone portion is the side wall portion, and the generated strain rises to about 0.3, but the generated strain at the punch bottom is 0.10 or less.

【0053】これより、材料の低ひずみ域の歪伝播を大
きくすることで、パンチ底に接する材料において広範囲
でひずみ発生量が増加し、張出し成形性が向上する。こ
の歪伝播については、材料の加工硬化(n値)の上昇に
より大きくなることが、塑性変形理論より知られてい
る。
Thus, by increasing the strain propagation of the material in the low strain range, the amount of strain generated in the material in contact with the punch bottom is increased over a wide range, and the stretch formability is improved. It is known from plastic deformation theory that the strain propagation increases with the increase in work hardening (n value) of the material.

【0054】そこで、10%以下の低ひずみ域での歪伝播
を大きくするため、10%以下の変形におけるn値を高く
する必要がある。ここでは、単軸引張りの公称ひずみ1
%と10%の2点法のn値を0.21以上とし、張出し成形性を
著しく向上させる。さらに張出し性の改善のために、公
称歪1%と10%の2点法のn値を0.214以上とすることが好
ましい。なお、単軸引張りはJIS5号試験による。
Therefore, in order to increase strain propagation in a low strain region of 10% or less, it is necessary to increase the n value in deformation of 10% or less. Here, the nominal strain of uniaxial tension 1
% And 10%, the n value of the two-point method is set to 0.21 or more, thereby significantly improving stretch formability. In order to further improve the overhang property, it is preferable that the n value of the two-point method of 1% and 10% of nominal strain be 0.214 or more. The uniaxial tension is based on JIS No. 5 test.

【0055】プレス後の肌荒れ防止については、本発明
においてさらに優れた表面性状を得るためには、降伏強
度YP[MPa]およびフェライト平均粒径d[μm]につい
ての条件の式(1)を、次の式(1')とすることがより
望ましい。 YP≦-60×d+750 (1')
In order to prevent surface roughness after pressing, in order to obtain more excellent surface properties in the present invention, the condition of yield strength YP [MPa] and ferrite average particle size d [μm] are expressed by the following equation (1). More preferably, the following equation (1 ′) is satisfied. YP ≦ -60 × d + 750 (1 ')

【0056】[0056]

【実施例】(実施例1)表1に示す化学成分の鋼を用い
て、以下の試験を行った。鋼番No.1〜10の鋼を溶製後、
連続鋳造によりスラブを製造した。このスラブを1200℃
に加熱後、仕上温度880〜940℃、巻取り温度540〜560℃
(箱焼鈍向け)、600〜660℃(連続焼鈍、連続焼鈍+溶
融亜鉛めっき向け)で熱間圧延して板厚2.8mmの熱延鋼
板とし、酸洗後50〜85%の冷間圧延を施した。
EXAMPLES (Example 1) The following tests were performed using steels having the chemical components shown in Table 1. After smelting steel of steel No. 1 ~ 10,
A slab was manufactured by continuous casting. 1200 ℃ this slab
After heating, finishing temperature 880 ~ 940 ℃, winding temperature 540 ~ 560 ℃
(For box annealing), hot-rolled at 600 to 660 ° C (for continuous annealing, continuous annealing + hot-dip galvanizing) to form a hot-rolled steel sheet with a thickness of 2.8 mm, and after pickling, 50-85% cold-rolled gave.

【0057】[0057]

【表1】 【table 1】

【0058】その後、連続焼鈍(焼鈍温度800〜860
℃)、箱焼鈍(焼鈍温度680℃〜740℃)また、連続焼鈍
+溶融亜鉛めっき(焼鈍温度800〜860℃)のいずれかを
実施した。連続焼鈍+溶融亜鉛めっきでは、焼鈍後460
℃で溶融亜鉛めっき処理を行い、直ちにインライン合金
化処理炉で500℃でめっき層の合金化処理を行った。ま
た、焼鈍または焼鈍・溶融亜鉛めっき後の鋼板には圧下
率0.7%の調質圧延を行った。
Thereafter, continuous annealing (annealing temperature 800 to 860)
C), box annealing (annealing temperature 680 ° C to 740 ° C), and continuous annealing + hot-dip galvanizing (annealing temperature 800 to 860 ° C). For continuous annealing + hot dip galvanizing, 460 after annealing
The hot-dip galvanizing treatment was performed at ℃, and the alloying treatment of the plating layer was immediately performed at 500 ° C. in an in-line alloying treatment furnace. The steel sheet after annealing or annealing and hot dip galvanizing was subjected to temper rolling at a reduction of 0.7%.

【0059】これらの鋼板の機械特性、結晶粒径を測定
した。なお、引張試験は、L方向より採取したJIS5号引
張試験片によって実施した。また、上記の鋼板でフロン
トフェンダーのプレス成形を行い、破断限界クッション
カを調査すると共に、プレス成形後の肌荒れ発生状況を
調査した。
The mechanical properties and grain size of these steel sheets were measured. The tensile test was performed using a JIS No. 5 tensile test piece sampled from the L direction. In addition, the front fender was press-formed with the above-mentioned steel sheet, and the break limit cushion force was investigated, and the occurrence of rough skin after the press molding was investigated.

【0060】さらに、二次加工脆性遷移温度の測定を行
った。ここでは、鋼板から直径105mmのブランクを打抜
き、一次加工としてカップ状に深絞り成形し(絞り比2.
1)、カップ高さ35mmとなるよう耳切り加工を施した。
次いで、得られたカップサンプルを、種々の冷媒(エチ
ルアルコール等)の中で温度を一定とした後に、二次加
工として円錐ポンチでカップ端部を拡げる加工を加え、
破壊形態が延性から脆性へ移行する温度を測定して二次
加工脆化遷移温度とした。以上の試験結果を表2に示
す。
Further, the secondary working brittle transition temperature was measured. Here, a blank with a diameter of 105 mm was punched from a steel plate and deep-drawn into a cup shape as the primary processing (drawing ratio 2.
1) The ears were cut so that the cup height was 35 mm.
Next, after making the obtained cup sample a constant temperature in various refrigerants (such as ethyl alcohol), a process of expanding the cup end portion with a conical punch as a secondary process is added,
The temperature at which the fracture mode transitioned from ductile to brittle was measured and defined as the secondary working embrittlement transition temperature. Table 2 shows the test results.

【0061】[0061]

【表2】 [Table 2]

【0062】本発明の鋼板No.1〜8は、破断限界クッシ
ョンカが65ton以上と高く、優れた張出し性を示した。
一方、比較材No.9〜12は、低歪域でのn値が小さく、45t
on以下の低いクッションカで破断が発生した。また、比
較材No.9〜12は、結晶粒径が大きく、プレス成形後に肌
荒れが認められた。
The steel sheets Nos. 1 to 8 of the present invention had high breaking limit cushion caps of 65 tons or more, and exhibited excellent overhanging properties.
On the other hand, the comparative materials No. 9 to 12 had a small n value in the low strain region, and
Breakage occurred with a low cushion force of on or less. In Comparative materials Nos. 9 to 12, the crystal grain size was large, and roughening was observed after press molding.

【0063】さらに、本発明例No.1〜8は、細粒でか
つ、析出物形態が最適に制御された組織を有するので、
いずれも極めて優れた耐二次加工脆性を示す。また、本
発明鋼は、優れた成形性に加えて、良好なテーラードブ
ランク性、疲労特性を有しており、さらに亜鉛めっき材
においては、非常に良好な表面性状を有することが確認
された。いずれも、特に自動車外板用鋼板として極めて
優れた総合性能を有することが実証された。
Furthermore, the inventive examples Nos. 1 to 8 have fine grains and a structure in which the precipitate morphology is optimally controlled.
All show extremely excellent secondary work brittleness resistance. In addition, it was confirmed that the steel of the present invention had good tailored blanking properties and fatigue properties in addition to excellent formability, and that the galvanized material had very good surface properties. All of them have been proved to have extremely excellent overall performance especially as a steel plate for an automobile outer panel.

【0064】(実施例2)図3に、前述の表2に示す鋼番N
o.3材(本発明例)とNo.10材(比較例)について、モデ
ル成形試験を行った。試験では、クッションカ40tonの
条件で、図2のフロントフェンダーモデルに成形した場
合の破断危険部近傍のひずみ分布を測定した。試験結果
を図3に示す。
Example 2 FIG. 3 shows steel numbers N shown in Table 2 above.
A model forming test was performed on o.3 material (Example of the present invention) and No. 10 material (Comparative Example). In the test, the strain distribution in the vicinity of the risk of fracture when the front fender model shown in FIG. The test results are shown in FIG.

【0065】本発明例(N0.3材、図中●印)では、比較
例(No.10材、図中○印)に比べて、パンチ底部での発
生ひずみ量が大きく、側壁部のひずみ発生が抑制されて
いる。これより、本発明例の鋼板は、破断に対し有利と
なっていることが明らかである。
In the example of the present invention (N0.3 material, ● mark in the figure), the amount of strain generated at the bottom of the punch was larger than that in the comparative example (No. 10 material, ○ mark in the figure), and the strain on the side wall was larger. The occurrence is suppressed. From this, it is clear that the steel sheet of the present invention is advantageous for breaking.

【0066】[0066]

【発明の効果】本発明は、所定量のCとNbを添加したNb-
IF鋼を用いて鋼板のミクロ組織と析出物の形態を制御す
ることにより、低歪域でのn値を著しく向上させ、しか
も結晶粒を微細化させることができる。その結果、本発
明の鋼板は、自動車のフェンダー、サイドパネル等の張
出し主体の成形において優れた成形性を有するととも
に、表面性状、耐二次加工脆性、プレス成形後の耐肌荒
れ性にも優れているので、特に自動車外板用鋼板として
有効である。
According to the present invention, Nb-containing a predetermined amount of C and Nb is added.
By controlling the microstructure and precipitate morphology of the steel sheet using IF steel, the n value in the low strain range can be significantly improved, and the crystal grains can be refined. As a result, the steel sheet of the present invention has excellent formability in forming mainly overhanging automobile fenders, side panels and the like, and also has excellent surface properties, resistance to secondary working brittleness, and resistance to surface roughness after press forming. Therefore, it is particularly effective as a steel plate for automobile outer panels.

【図面の簡単な説明】[Brief description of the drawings]

【図1】実部品スケールのフロントフェンダーモデル成
形品における破断危険部近傍の相当ひずみ分布の一例を
示す図。
FIG. 1 is a diagram showing an example of an equivalent strain distribution in the vicinity of a fracture-prone portion in a molded product of a front fender model on an actual part scale.

【図2】実部品スケールのフロントフェンダーモデル成
形品の概要を示す図。
FIG. 2 is a diagram showing an outline of a molded product of a front fender model on a real part scale.

【図3】フロントフェンダモデルに成形した場合の破断
危険部近傍のひずみ分布を示す図。
FIG. 3 is a diagram showing a strain distribution in the vicinity of a fracture risk part when molded into a front fender model.

─────────────────────────────────────────────────────
────────────────────────────────────────────────── ───

【手続補正書】[Procedure amendment]

【提出日】平成13年8月31日(2001.8.3
1)
[Submission date] August 31, 2001 (2001.8.3)
1)

【手続補正1】[Procedure amendment 1]

【補正対象書類名】明細書[Document name to be amended] Statement

【補正対象項目名】0022[Correction target item name] 0022

【補正方法】変更[Correction method] Change

【補正内容】[Correction contents]

【0022】N:≦0.004% NはAlNとして析出し無害化されるが、sol.Alが下限量の
場合でも全てのNをAlNとして析出させるには、0.004%
以下にする必要がある。従って、N量を0.004%以下に規
定する。
N: ≦ 0.004% N precipitates as AlN and is rendered harmless. However, even when sol.Al is in the lower limit amount, to precipitate all N as AlN, 0.004%
It must be: Therefore, the N content is specified to be 0.004 % or less.

【手続補正2】[Procedure amendment 2]

【補正対象書類名】明細書[Document name to be amended] Statement

【補正対象項目名】0036[Correction target item name] 0036

【補正方法】変更[Correction method] Change

【補正内容】[Correction contents]

【0036】Ni:1.0%以下 Ni は前述のように鋼板をより高強度とするために添加
するが、1.0%を超えて添加すると、変態点が大きく低
下し、熱間圧延時に低温変態相が現れやすくなる。従っ
て、Ni量の上限を1.0%と規定する。
Ni: 1.0% or less Ni is added in order to make the steel sheet higher in strength as described above. However, if it exceeds 1.0%, the transformation point is greatly reduced, and the low-temperature transformation phase during hot rolling is reduced. It becomes easy to appear. Therefore, the upper limit of the amount of Ni is defined as 1.0%.

【手続補正3】[Procedure amendment 3]

【補正対象書類名】明細書[Document name to be amended] Statement

【補正対象項目名】0057[Correction target item name] 0057

【補正方法】変更[Correction method] Change

【補正内容】[Correction contents]

【0057】[0057]

【表1】 [Table 1]

【手続補正4】[Procedure amendment 4]

【補正対象書類名】明細書[Document name to be amended] Statement

【補正対象項目名】0064[Correction target item name] 0064

【補正方法】変更[Correction method] Change

【補正内容】[Correction contents]

【0064】(実施例2)前述の表2に示す鋼番No.3材
(本発明例)とNo.10材(比較例)について、モデル成
形試験を行った。試験では、クッションカ40tonの条件
で、図2のフロントフェンダーモデルに成形した場合の
破断危険部近傍のひずみ分布を測定した。試験結果を図
3に示す。
(Example 2) A model forming test was carried out on steel No. 3 (inventive example) and No. 10 (comparative example) shown in Table 2 above. In the test, the strain distribution in the vicinity of the risk of fracture when the front fender model shown in FIG. Figure of test result
See Figure 3.

フロントページの続き (51)Int.Cl.7 識別記号 FI テーマコート゛(参考) C23C 2/40 C23C 2/40 (72)発明者 占部 俊明 東京都千代田区丸の内一丁目1番2号 日 本鋼管株式会社内 Fターム(参考) 4K027 AA02 AA05 AA23 AB05 AB28 AB42 AC12 AC73 AC87 Continued on the front page (51) Int.Cl. 7 Identification symbol FI Theme coat II (Reference) C23C 2/40 C23C 2/40 (72) Inventor Toshiaki Obube 1-2-1, Marunouchi, Chiyoda-ku, Tokyo Nippon Steel Pipe F term (reference) 4K027 AA02 AA05 AA23 AB05 AB28 AB42 AC12 AC73 AC87

Claims (6)

【特許請求の範囲】[Claims] 【請求項1】 化学成分が、mass%で、C:0.0040〜0.01
%、Si:≦1.0%、Mn:0.1〜1.0%、P:0.01〜0.07%、
S:≦0.02%、sol.Al:0.01〜0.1%、N:≦0.004%、N
b:0.01〜0.14%を含み、残部が実質的に鉄からなり、
単軸引張り試験による10%以下の変形におけるn値が0.2
1以上であり、かつ次の式を満足することを特徴とする
高強度薄鋼板。 YP≦-60×d+770 但し、YPは降伏強度[MPa]、dはフェライト平均粒径
[μm]を表す。
Claims: 1. The chemical component is mass%, C: 0.0040 to 0.01.
%, Si: ≦ 1.0%, Mn: 0.1-1.0%, P: 0.01-0.07%,
S: ≦ 0.02%, sol.Al: 0.01-0.1%, N: ≦ 0.004%, N
b: containing 0.01 to 0.14%, the balance substantially consisting of iron,
N value of 0.2 at deformation of 10% or less by uniaxial tensile test
A high-strength steel sheet that is at least 1 and satisfies the following expression. YP ≦ −60 × d + 770 where YP represents the yield strength [MPa] and d represents the average ferrite grain size [μm].
【請求項2】 請求項1記載の高強度薄鋼板において、化
学成分をその記載に代えて、mass%で、C:0.0040〜0.0
1%、Si:≦1.0%、Mn:0.1〜1.0%、P:0.01〜0.07
%、S:≦0.02%、sol.Al:0.01〜0.1%、N:≦0.004
%、Nb:0.01〜0.14%、Tiを0.05%以下を含み、残部が
実質的に鉄からなる、としたことを特徴とする高強度薄
鋼板。
2. The high-strength steel sheet according to claim 1, wherein the chemical component is replaced by mass% and C: 0.0040 to 0.0.
1%, Si: ≤1.0%, Mn: 0.1-1.0%, P: 0.01-0.07
%, S: ≦ 0.02%, sol.Al: 0.01 to 0.1%, N: ≦ 0.004
%, Nb: 0.01 to 0.14%, and 0.05% or less of Ti, and the balance substantially consists of iron.
【請求項3】 請求項1記載の高強度薄鋼板において、
化学成分をその記載に代えて、mass%で、C:0.0040〜
0.01%、Si:≦1.0%、Mn:0.1〜1.0%、P:0.01〜0.07
%、S:≦0.02%、sol.Al:0.01〜0.1%、N:≦0.004
%、Nb:0.01〜0.14%、B:0.002%以下を含み、残部が
実質的に鉄からなる、としたことを特徴とする高強度薄
鋼板。
3. The high-strength steel sheet according to claim 1,
Instead of the description of the chemical components, in terms of mass%, C: 0.0040-
0.01%, Si: ≤1.0%, Mn: 0.1-1.0%, P: 0.01-0.07
%, S: ≦ 0.02%, sol.Al: 0.01 to 0.1%, N: ≦ 0.004
%, Nb: 0.01 to 0.14%, B: 0.002% or less, with the balance substantially consisting of iron.
【請求項4】 請求項1記載の高強度薄鋼板において、
化学成分をその記載に代えて、mass%で、C:0.0040〜
0.01%、Si:≦1.0%、Mn:0.1〜1.0%、P:0.01〜0.07
%、S:≦0.02%、sol.Al:0.01〜0.1%、N:≦0.004
%、Nb:0.01〜0.14%、Ti:0.05%以下、B:0.002%以
下を含み、残部が実質的に鉄からなる、としたことを特
徴とする高強度薄鋼板。
4. The high-strength steel sheet according to claim 1,
Instead of the description of the chemical components, in terms of mass%, C: 0.0040-
0.01%, Si: ≤1.0%, Mn: 0.1-1.0%, P: 0.01-0.07
%, S: ≦ 0.02%, sol.Al: 0.01 to 0.1%, N: ≦ 0.004
%, Nb: 0.01 to 0.14%, Ti: 0.05% or less, B: 0.002% or less, and the balance is substantially composed of iron.
【請求項5】 請求項1ないし請求項4記載の高強度薄
鋼板において、記載された化学成分に加えて、さらにma
ss%で、Cr:1.0%以下、Mo:1.0%以下、Ni:1.0%以
下、Cu:1.0%以下のいずれか1種または2種以上を含有
していることを特徴とする高強度薄鋼板。
5. The high-strength thin steel sheet according to claim 1, further comprising, in addition to the described chemical components, ma
High-strength steel sheet characterized by containing one or more of ss%, Cr: 1.0% or less, Mo: 1.0% or less, Ni: 1.0% or less, Cu: 1.0% or less .
【請求項6】 請求項1ないし請求項5記載の鋼板表面
に亜鉛系めっき皮膜を付与したことを特徴とする高強度
亜鉛系めっき鋼板。
6. A high-strength galvanized steel sheet, wherein a zinc-based plating film is provided on the surface of the steel sheet according to claim 1.
JP2000183870A 2000-06-20 2000-06-20 High strength steel sheet and high strength galvanized steel sheet Pending JP2002003993A (en)

Priority Applications (10)

Application Number Priority Date Filing Date Title
JP2000183870A JP2002003993A (en) 2000-06-20 2000-06-20 High strength steel sheet and high strength galvanized steel sheet
CNB018017495A CN1190513C (en) 2000-06-20 2001-06-19 Thin steel sheet and method for prodn. thereof
EP10190624A EP2312010A1 (en) 2000-06-20 2001-06-19 Steel sheet and method for manufacturing the same
KR10-2002-7000794A KR100473497B1 (en) 2000-06-20 2001-06-19 Thin steel sheet and method for production thereof
CNB2004100319738A CN1286999C (en) 2000-06-20 2001-06-19 Thin steel sheet and method for manufacturing the same
EP10190623A EP2312009A1 (en) 2000-06-20 2001-06-19 Steel sheet and method for manufacturing the same
PCT/JP2001/005209 WO2001098552A1 (en) 2000-06-20 2001-06-19 Thin steel sheet and method for production thereof
EP01941087A EP1318205A4 (en) 2000-06-20 2001-06-19 Thin steel sheet and method for production thereof
US10/043,903 US6743306B2 (en) 2000-06-20 2002-01-11 Steel sheet and method for manufacturing the same
US10/792,546 US7252722B2 (en) 2000-06-20 2004-03-02 Steel sheet

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2000183870A JP2002003993A (en) 2000-06-20 2000-06-20 High strength steel sheet and high strength galvanized steel sheet

Publications (1)

Publication Number Publication Date
JP2002003993A true JP2002003993A (en) 2002-01-09

Family

ID=18684381

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000183870A Pending JP2002003993A (en) 2000-06-20 2000-06-20 High strength steel sheet and high strength galvanized steel sheet

Country Status (1)

Country Link
JP (1) JP2002003993A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006022383A (en) * 2004-07-09 2006-01-26 Jfe Steel Kk High-strength cold-rolled steel sheet superior in uniformity of material within coil, and manufacturing method therefor
KR101166995B1 (en) 2009-09-10 2012-07-24 현대제철 주식회사 Method for Manufacturing of High Strength and High Formability Galvanized Steel Sheet with Dual Phase
CN103993225A (en) * 2014-05-12 2014-08-20 攀钢集团攀枝花钢铁研究院有限公司 Cold rolled steel plate and preparation method thereof
CN104018072A (en) * 2014-06-18 2014-09-03 攀钢集团攀枝花钢铁研究院有限公司 Cold-rolled steel sheet and preparation method thereof
CN104120343A (en) * 2014-07-16 2014-10-29 攀钢集团攀枝花钢铁研究院有限公司 Cold-rolled steel sheet and preparing method thereof

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006022383A (en) * 2004-07-09 2006-01-26 Jfe Steel Kk High-strength cold-rolled steel sheet superior in uniformity of material within coil, and manufacturing method therefor
JP4513434B2 (en) * 2004-07-09 2010-07-28 Jfeスチール株式会社 High-strength cold-rolled steel sheet with excellent material uniformity in the coil and manufacturing method thereof
KR101166995B1 (en) 2009-09-10 2012-07-24 현대제철 주식회사 Method for Manufacturing of High Strength and High Formability Galvanized Steel Sheet with Dual Phase
CN103993225A (en) * 2014-05-12 2014-08-20 攀钢集团攀枝花钢铁研究院有限公司 Cold rolled steel plate and preparation method thereof
CN103993225B (en) * 2014-05-12 2016-03-02 攀钢集团攀枝花钢铁研究院有限公司 A kind of cold-rolled steel sheet and preparation method thereof
CN104018072A (en) * 2014-06-18 2014-09-03 攀钢集团攀枝花钢铁研究院有限公司 Cold-rolled steel sheet and preparation method thereof
CN104018072B (en) * 2014-06-18 2016-03-09 攀钢集团攀枝花钢铁研究院有限公司 A kind of cold-rolled steel sheet and preparation method thereof
CN104120343A (en) * 2014-07-16 2014-10-29 攀钢集团攀枝花钢铁研究院有限公司 Cold-rolled steel sheet and preparing method thereof
CN104120343B (en) * 2014-07-16 2016-02-10 攀钢集团攀枝花钢铁研究院有限公司 A kind of cold-rolled steel sheet and preparation method thereof

Similar Documents

Publication Publication Date Title
US7252722B2 (en) Steel sheet
EP2554699B1 (en) Steel sheet with high tensile strength and superior ductility and method for producing same
TWI406966B (en) High tensile strength galvanized steel sheet excellent in workability and method for manufacturing the same
EP2623622B1 (en) High-strength hot-dip galvanized steel sheet with excellent deep drawability and stretch flangeability, and process for producing same
JP4507851B2 (en) High-strength cold-rolled steel sheet and manufacturing method thereof
WO2013054464A1 (en) High-strength cold-rolled steel plate having excellent deep drawability and in-coil material uniformity, and method for manufacturing same
JP4414883B2 (en) High-strength cold-rolled steel sheet for ultra-deep drawing excellent in formability and weldability and its manufacturing method
JP4687260B2 (en) Manufacturing method of deep drawing high tensile cold-rolled steel sheet with excellent surface properties
JP2521553B2 (en) Method for producing cold-rolled steel sheet for deep drawing having bake hardenability
JP3534023B2 (en) High-strength steel sheet with excellent secondary work brittleness resistance and method for producing the same
JP3280692B2 (en) Manufacturing method of high strength cold rolled steel sheet for deep drawing
JP3908964B2 (en) Hot-dip galvanized high-strength steel sheet with excellent formability and manufacturing method thereof
JP2002003993A (en) High strength steel sheet and high strength galvanized steel sheet
JP4561200B2 (en) High-strength cold-rolled steel sheet with excellent secondary work brittleness resistance and manufacturing method thereof
JP3840855B2 (en) High-strength thin steel sheet with excellent secondary work brittleness resistance and formability and method for producing the same
JP2002003994A (en) High strength steel sheet and high strength galvanized steel sheet
JP2001207234A (en) High tensile strength steel sheet having high ductility and high hole expansibility, and its producing method
JP3695262B2 (en) High-strength thin steel sheet with excellent stretch formability
US20240132989A1 (en) Coiling temperature influenced cold rolled strip or steel
EP4186991A1 (en) Steel sheet having excellent formability and strain hardening rate
US20220298596A1 (en) Steel sheet having excellent uniform elongation and strain hardening rate, and method for producing same
JP3700500B2 (en) High-strength cold-rolled steel sheet with excellent stretch formability
JP3716439B2 (en) Manufacturing method of high-tensile alloyed hot-dip galvanized steel sheet with excellent plating characteristics
SE545209C2 (en) Coiling temperature influenced cold rolled strip or steel
JP4218598B2 (en) High tensile alloyed hot dip galvanized steel sheet with excellent plating characteristics

Legal Events

Date Code Title Description
RD01 Notification of change of attorney

Effective date: 20060921

Free format text: JAPANESE INTERMEDIATE CODE: A7421

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20061128

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20070327