JP2002001520A - Soldering method and soldering structure - Google Patents

Soldering method and soldering structure

Info

Publication number
JP2002001520A
JP2002001520A JP2000181051A JP2000181051A JP2002001520A JP 2002001520 A JP2002001520 A JP 2002001520A JP 2000181051 A JP2000181051 A JP 2000181051A JP 2000181051 A JP2000181051 A JP 2000181051A JP 2002001520 A JP2002001520 A JP 2002001520A
Authority
JP
Japan
Prior art keywords
solder
soldering
thickness
heating
foil
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2000181051A
Other languages
Japanese (ja)
Inventor
Tomokuni Mitsui
朋晋 三井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Uchihashi Estec Co Ltd
Original Assignee
Uchihashi Estec Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Uchihashi Estec Co Ltd filed Critical Uchihashi Estec Co Ltd
Priority to JP2000181051A priority Critical patent/JP2002001520A/en
Publication of JP2002001520A publication Critical patent/JP2002001520A/en
Withdrawn legal-status Critical Current

Links

Landscapes

  • Electric Connection Of Electric Components To Printed Circuits (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a method of flux free soldering. SOLUTION: This method is to put a sheet of soldering foil between the faces to be connected of connecting materials 1, 1 and adhere closely the connecting faces by pressing with the pressing device 3 at a natural temperature of a preheating temperature lower than the melting point of soldering foil to bring them into close contact with each other, and melt the soldering foil by a heating furnace 4, while keeping the close adhesion, and cool down it after the pressing and heating conditions are kept for a specified time.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、はんだ付け構造及
びフラックスや還元性雰囲気を必要としないはんだ付け
方法に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a soldering structure and a soldering method which does not require a flux or a reducing atmosphere.

【0002】[0002]

【従来の技術】はんだ付けにおいては、溶融はんだの濡
れを促すために、被接合面から酸化膜を排除することが
不可欠であり、従来では、フラックスを使用して被接合
面の酸化膜を除去すると共に被接合面及び溶融はんだを
空気から遮断して加熱中での酸化膜の生成を防止してい
る。従来、ICの組立においては、リ−ドフレ−ムとし
てNiメッキやAuメッキを施したものを使用してIC
組立工程での加熱によるリ−ドフレ−ムの酸化を防止し
ているが、リ−ドフレ−ムのアウタリ−ドを配線基板等
の外部回路にはんだ付けする際は、はんだ付け時の加熱
による酸化を防止するためにフラックスを使用してい
る。また、このフラックスの使用に代え、還元性雰囲気
内ではんだ付けすることも提案されている。最近、はん
だ箔を被接合面間に配し、これらを加熱加圧してはんだ
箔を溶融させ、金属間化合物を積極的に生成させてはん
だ付けを行うことが提案されているが(特開2000−
52027号公報)、この加圧式はんだ付け法において
も、フラックスを必要としている。
2. Description of the Related Art In soldering, it is essential to remove an oxide film from a surface to be joined in order to promote the wettability of molten solder. Conventionally, an oxide film on a surface to be joined is removed using a flux. At the same time, the surface to be joined and the molten solder are shielded from the air to prevent formation of an oxide film during heating. Conventionally, in assembling an IC, a lead frame plated with Ni or Au is used.
Although the lead frame is prevented from being oxidized by heating during the assembling process, when soldering the outer lead of the lead frame to an external circuit such as a wiring board, the oxidization due to heating during soldering is required. Flux is used to prevent Further, instead of using this flux, it has been proposed to perform soldering in a reducing atmosphere. Recently, it has been proposed to place a solder foil between the surfaces to be joined, heat and press these to melt the solder foil, and actively generate an intermetallic compound to perform soldering (Japanese Patent Laid-Open No. 2000-2000). −
No. 52027), this pressurized soldering method also requires a flux.

【0003】[0003]

【発明が解決しようとする課題】しかしながら、フラッ
クス使用のはんだ付け法では、フラックス残渣によるは
んだ付け個所の経時的特性低下を防止するために、洗浄
後処理が必要であり、フロン系洗浄液のオゾン層破壊の
問題もあって、近来では、フラックスフリ−のはんだ付
けが要請されている。また、他の環境問題として、廃棄
電子電気機器のはんだ付け個所から溶出する鉛イオンの
有害性の問題があり、これに対処するためにはんだの鉛
フリ−化も要請されている。
However, in the soldering method using a flux, post-cleaning treatment is required in order to prevent deterioration of the soldering portion over time due to the flux residue. Recently, there has been a demand for flux-free soldering due to the problem of destruction. Further, as another environmental problem, there is a problem of harmfulness of lead ions eluted from a soldering portion of a waste electronic device, and in order to cope with this problem, lead-free solder is required.

【0004】本発明の目的は、上述の点に鑑み、フラッ
クスフリ−のはんだ付け方法を提供することにある。本
発明の更なる目的は、鉛フリ−はんだであるSn系はん
だを用いてフラックスフリ−のはんだ付けを可能とする
はんだ付け方法を提供することにある。
An object of the present invention is to provide a flux-free soldering method in view of the above points. It is a further object of the present invention to provide a soldering method that enables flux-free soldering using Sn-based solder, which is a lead-free solder.

【0005】[0005]

【課題を解決するための手段】本発明に係るはんだ付け
方法は、はんだ箔を被接合面間に配し、常温またははん
だ箔融点よりも低い予備加熱のもとでの加圧治具による
加圧で被接合面とはんだ箔との接触界面を緊圧密着さ
せ、この緊圧密着状態を保ちつつ加熱によってはんだ箔
を溶融させ、その加圧加熱を所定時間保持し、而るの
ち、冷却することを特徴とする構成であり、はんだ箔に
厚み20μm〜200μmのSn系はんだ箔を使用し、
加圧治具の加圧力を0.5〜4kg/mmとし、予備
加熱の温度を230℃以下、好ましくは100℃以下と
し、はんだ箔を溶融させるための加熱温度を250℃〜
450℃とし、加熱保持時間を5〜600秒とすること
が適切であり、この場合、Sn系はんだには、Inを2
〜80重量%含有するものをもの、または、Au、A
g、Cu、Ni、Inの何れか1種または2種以上を
0.1〜5重量%含有するものをものを使用することが
できる。
According to the soldering method of the present invention, a soldering foil is disposed between surfaces to be joined, and the soldering is performed by a pressing jig at room temperature or under a preheating lower than the melting point of the soldering foil. The contact interface between the joining surface and the solder foil is tightly adhered by pressure, the solder foil is melted by heating while maintaining the tightly adhered state, the pressurized heating is maintained for a predetermined time, and then cooled. It is a configuration characterized by using a Sn-based solder foil having a thickness of 20 μm to 200 μm for the solder foil,
The pressing force of the pressing jig is 0.5 to 4 kg / mm 2 , the preheating temperature is 230 ° C or lower, preferably 100 ° C or lower, and the heating temperature for melting the solder foil is 250 ° C or higher.
It is appropriate that the temperature is 450 ° C. and the heating and holding time is 5 to 600 seconds.
~ 80% by weight, or Au, A
One containing 0.1 to 5% by weight of any one or more of g, Cu, Ni, and In can be used.

【0006】[0006]

【発明の実施の形態】以下、図面を参照しつつ本発明の
実施の形態について説明する。図1の(イ)〜(ハ)
は、本発明に係るはんだ付け方法を示す図面である。図
1の(イ)〜(ハ)において、1,1は被接合材を、2
ははんだ箔を、3は加圧治具(31は圧子、32は台)
を、4は昇降式の加熱炉(例えば、電気加熱式)をそれ
ぞれ示している。本発明によりはんだ付けを行うには、
まず、図1の(イ)に示すように、被接合材1,1の被
接合面間にはんだ箔2を配し、常温のもとでこれらを加
圧治具3で挾持加圧して被接合面とはんだ箔との接触界
面を緊圧密着させる。ついで、この緊圧密着状態を保ち
つつ、図1の(ロ)に示すように、加熱炉4を降下させ
ワ−クwを加熱炉4で包囲してはんだ箔2を溶融させ、
この加熱炉4によるワ−クwの加熱を所定時間保持し、
而るのち、図1の(ハ)に示すように加熱炉4を上昇さ
せてワ−クwを常温にまで冷却し、これにて本発明によ
るはんだ付けを終了する。
Embodiments of the present invention will be described below with reference to the drawings. (A) to (c) in FIG.
3 is a drawing showing a soldering method according to the present invention. In FIGS. 1A to 1C, reference numerals 1 and 1 denote materials to be joined;
Is a solder foil, 3 is a pressing jig (31 is an indenter, 32 is a table)
Numeral 4 denotes an elevating type heating furnace (for example, an electric heating type). To perform soldering according to the present invention,
First, as shown in FIG. 1 (a), a solder foil 2 is disposed between the surfaces to be joined of the materials 1 and 1 to be joined and pressed by a pressing jig 3 at room temperature. The contact interface between the joint surface and the solder foil is brought into tight contact with the solder foil. Then, while maintaining this tight contact state, as shown in FIG. 1 (b), the heating furnace 4 is lowered, and the work w is surrounded by the heating furnace 4, so that the solder foil 2 is melted.
The heating of the work w by the heating furnace 4 is maintained for a predetermined time,
Thereafter, as shown in FIG. 1C, the heating furnace 4 is raised to cool the work w to room temperature, and the soldering according to the present invention is completed.

【0007】上記において、加圧治具による常温でのワ
−クの挾持加圧で被接合面とはんだ箔との接触界面から
空気が排除され、この空気排除状態ではんだ箔の加熱溶
融が行われるから、加熱にもかかわらずエアレスのため
に、上記接触界面での酸化膜の生成を排除できる。常温
でワ−クを挾持加圧するのは、被接合面とはんだ箔との
接触界面を酸化膜を生成させることなくエアレスにする
ためであり、はんだ箔の融点よりも充分に低く実質的に
酸化を防止できる温度であれば、プレヒ−トしておくこ
とも可能である。上記加熱炉による加熱中も、加圧治具
による挾持加圧で被接合面とはんだとの界面が空気から
遮断されており、新たな酸化膜の生成が防止される。ま
た、被接合面に当初から存在する原始的酸化膜が、加圧
治具による挾持加圧で破壊されて被接合面とはんだとの
拡散反応が促進され、金属間化合物が成長していく。こ
の金属間化合物の成長は拡散反応支配であり、温度に依
存し、金属間化合物の厚みが温度と時間とによって定ま
る。而して、この所定の温度と所定の加熱時間とのもと
で金属間化合物の生成に消費されなかった溶融はんだ箔
部分は、その加熱保持時間中での加圧のために金属間化
合物層の間から追い出され、ほぼ10μm程度の厚みが
はんだ層として残存される 尤も、はんだ箔を薄くしたり、上記所定の温度を高くし
たり、あるいは所定の加熱時間を長くして金属間化合物
の生成に溶融はんだ箔の全厚みを消費させれば、はんだ
層を実質的になくすることができる。
In the above, air is eliminated from the contact interface between the surface to be joined and the solder foil by the clamping and pressing of the work at room temperature by the pressure jig. Therefore, the formation of an oxide film at the contact interface can be eliminated because of airlessness despite heating. The reason why the work is sandwiched and pressed at room temperature is to make the contact interface between the surface to be joined and the solder foil airless without forming an oxide film, and is substantially oxidized sufficiently lower than the melting point of the solder foil. It is also possible to preheat as long as the temperature can prevent the occurrence of the heat. Even during the heating by the heating furnace, the interface between the surface to be joined and the solder is shielded from the air by the sandwiching pressure by the pressing jig, so that the formation of a new oxide film is prevented. Further, the primitive oxide film existing from the beginning on the surface to be joined is broken by the clamping pressure by the pressing jig, so that the diffusion reaction between the surface to be joined and the solder is promoted, and the intermetallic compound grows. The growth of the intermetallic compound is governed by the diffusion reaction and depends on the temperature, and the thickness of the intermetallic compound is determined by the temperature and time. Thus, the molten solder foil portion that has not been consumed for the formation of the intermetallic compound under the predetermined temperature and the predetermined heating time is subjected to the intermetallic compound layer due to the pressurization during the heating and holding time. Although the thickness of about 10 μm remains as a solder layer, the thickness of the solder foil is reduced, the above-mentioned predetermined temperature is raised, or the predetermined heating time is prolonged to generate an intermetallic compound. If the entire thickness of the molten solder foil is consumed, the solder layer can be substantially eliminated.

【0008】このように、本発明に係るはんだ付け方法
によるはんだ付け構造では、図2に示すように、母材1
とはんだ層20との間に金属間化合物層21が形成さ
れ、優れた機械的強度を呈する。すなわち、金属間化合
物層21のヤング率が高く、かつ充分に強靱であり、金
属間化合物層21が力学的には母材1と同じように挙動
し、はんだ層20に作用する引っ張り応力fzに対し、
はんだ層20のx方向縮みを防止しようとするx方向応
力fx及びはんだ層20のy方向縮みを防止しようとす
るy方向応力fyがはんだ層全体に発生し(はんだ層2
0の厚みtが10μm程度以下と薄いため)、はんだ
層20に発生する応力が三次元応力となる結果、はんだ
層20がはんだ自体の機械的強度以上の強度を呈するよ
うになる。従って、本発明に係るはんだ付け方法によれ
ば、フラックスを使用することなく、或は還元性雰囲気
を使用することなく、優れた強度のはんだ付けが可能と
なる。
Thus, in the soldering structure according to the soldering method according to the present invention, as shown in FIG.
An intermetallic compound layer 21 is formed between the metal layer and the solder layer 20, and exhibits excellent mechanical strength. That is, the intermetallic compound layer 21 has a high Young's modulus and is sufficiently tough, and the intermetallic compound layer 21 behaves mechanically in the same manner as the base material 1, reducing the tensile stress fz acting on the solder layer 20. On the other hand,
An x-direction stress fx for preventing the shrinkage of the solder layer 20 in the x-direction and a y-direction stress fy for preventing the shrinkage of the solder layer 20 in the y-direction are generated in the entire solder layer (solder layer 2).
Since the thickness t 0 of 0 is as thin as not more than about 10 [mu] m), the results of stress generated in the solder layer 20 is a three-dimensional stress, the solder layer 20 comes to exhibit a strength of at least the mechanical strength of the solder itself. Therefore, according to the soldering method of the present invention, excellent strength soldering can be performed without using a flux or using a reducing atmosphere.

【0009】本発明において、はんだ箔には鉛フリ−は
んだ、例えばSn系はんだを使用することが好ましい。
このはんだ箔の厚みは、通常、20〜200μmとされ
る。20μm未満では、加圧治具による加圧で破断し易
く、200μmを越えると、金属間化合物の生成に寄与
せずに加熱加圧保持中に金属間化合物層間から追い出さ
れる割合が多くなるからである。上記加圧治具の加圧力
は、通常、0.5〜4kg/mmとされる。0.5k
g/mm2未満では、被接合面とはんだ箔との接触界面
の接触圧力が低すぎてその間の空気を満足に排除でき
ず、4kg/mmを越えるとその接触圧力が高すぎて
はんだ箔が破断し、その破断個所に空気がトラップされ
る畏れがあるからである。上記ワ−クをプレヒ−トする
場合の予熱温度は、通常、230℃以下、好ましくは、
100℃以下とされる。230℃を越えると、被接合面
とはんだ箔との接触界面を酸化膜の生成なく加圧治具の
加圧でエアレスにすることが実際上不可であるからであ
る。上記の加熱保持の温度及び時間が小さすぎると、金
属間化合物の成長が望めずに母材とはんだ層との実質的
な結合が得られず、他方、大きすぎると、はんだ付け部
の外表面の酸化や変形が避けられないので、温度が25
0℃〜450℃で、加熱加圧保持時間が600秒〜5秒
とされる。250℃未満では600秒以上の時間を必要
とし、作業性に劣り、450℃を越えると、僅かの加熱
時間の誤差でも金属間化合物の成長量が大きく異なり、
加熱の時間管理が困難となるからである。
In the present invention, it is preferable to use a lead-free solder, for example, a Sn-based solder for the solder foil.
The thickness of this solder foil is usually 20 to 200 μm. If it is less than 20 μm, it is easily broken by pressurization by a pressure jig, and if it exceeds 200 μm, the ratio of being expelled from the intermetallic compound layer during heating and holding without increasing the intermetallic compound increases. is there. The pressing force of the pressing jig is usually set to 0.5 to 4 kg / mm 2 . 0.5k
If it is less than g / mm 2, the contact pressure at the contact interface between the surface to be joined and the solder foil is too low to satisfactorily exclude air between them. If it exceeds 4 kg / mm 2 , the contact pressure is too high and the solder foil This is because there is a fear that air may be broken and air may be trapped at the broken point. The preheating temperature for preheating the work is usually 230 ° C. or lower, preferably
100 ° C. or less. If the temperature exceeds 230 ° C., it is practically impossible to make the contact interface between the surface to be joined and the solder foil airless by pressurizing the pressing jig without forming an oxide film. If the temperature and time of the above-mentioned heating and holding are too small, the growth of the intermetallic compound cannot be expected and a substantial bond between the base material and the solder layer cannot be obtained. Since oxidation and deformation of
At 0 ° C. to 450 ° C., the heating and pressing holding time is set to 600 seconds to 5 seconds. If the temperature is less than 250 ° C., a time of 600 seconds or more is required, and the workability is inferior.
This is because it becomes difficult to control the heating time.

【0010】上記Sn系はんだとしては、加熱温度×保
持時間を350℃〜400℃×120秒〜300秒とす
るように、Sn系はんだに、Inを2〜80重量%含有
するもの、例えばIn−48Sn、Sn−5InやA
u、Ag、Cu、Ni、Inの何れか1種または2種以
上を0.1〜5重量%含有するもの、例えば、Sn−5
Cu−1Ni、Sn−1Ni、Sn−3Ag−4Cu−
0.5In等を使用することができる。
As the above-mentioned Sn-based solder, an Sn-based solder containing 2 to 80% by weight of In, for example, In, so that the heating temperature × retention time is 350 ° C. to 400 ° C. × 120 seconds to 300 seconds. -48Sn, Sn-5In or A
one containing at least one of u, Ag, Cu, Ni, and In in an amount of 0.1 to 5% by weight, for example, Sn-5
Cu-1Ni, Sn-1Ni, Sn-3Ag-4Cu-
0.5In or the like can be used.

【0011】本発明に係るはんだ付けは、ICのリ−ド
フレ−ム(例えば、Fe−Ni−Co材)のアウタリ−
ドと配線基板の外部導体(銅導体)とのはんだ付けやI
Cのセラミックスケ−スパッケ−ジでの蓋プレ−トのは
んだ付け封止等に使用できる。特に、後述の実施例から
明らかな通り、被接合面がNiメッキで、はんだ箔が前
記したSn系はんだの場合、加熱温度×保持時間を35
0℃〜400℃×120秒〜300秒として金属間化合
物の厚み(図2におけるt1とt1'との平均値。以下、同
じ)を1〜15μm、好ましくは5〜10μm、はんだ
層の厚みを20μm以下、好ましくは5μm以下にで
き、優れた強度でのはんだ付けが可能である。また、後
述の実施例から明らかな通り、被接合面がAuメッキ
で、はんだ箔が前記したSn系はんだの場合は、加熱温
度×保持時間を350℃〜400℃×120秒〜300
秒として金属間化合物の厚みを1〜15μm、好ましく
は3〜8μm、はんだ層の厚みを20μm以下、好まし
くは10μm以下にでき、優れた強度でのはんだ付けが
可能である。また、後述の実施例から明らかな通り、被
接合面がCuメッキで、はんだ箔が前記したSn系はん
だの場合は、加熱温度×保持時間を350℃〜400℃
×120秒〜300秒として金属間化合物の厚みを1〜
15μm、好ましくは7〜15μm、はんだ層の厚みを
20μm以下、好ましくは8μm以下にでき、優れた強
度でのはんだ付けが可能である。
In the soldering according to the present invention, an outer lead frame (for example, Fe—Ni—Co material) of an IC is used.
Soldering between the lead and the external conductor (copper conductor) of the wiring board
It can be used for sealing and sealing the lid plate with a ceramic case package of C. In particular, as is clear from the examples described later, when the surface to be joined is Ni-plated and the solder foil is the above-mentioned Sn-based solder, the heating temperature × the holding time is set to 35.
The thickness of the intermetallic compound (average value of t1 and t1 'in FIG. 2; hereinafter the same) is set to 1 to 15 μm, preferably 5 to 10 μm, and the thickness of the solder layer as 0 ° C. to 400 ° C. × 120 seconds to 300 seconds. The thickness can be reduced to 20 μm or less, preferably 5 μm or less, and soldering with excellent strength can be performed. Further, as is clear from the examples described later, when the surface to be joined is Au-plated and the solder foil is the above-mentioned Sn-based solder, the heating temperature × the holding time is set at 350 ° C. to 400 ° C. × 120 seconds to 300 ° C.
In seconds, the thickness of the intermetallic compound can be 1 to 15 μm, preferably 3 to 8 μm, and the thickness of the solder layer can be 20 μm or less, preferably 10 μm or less, and soldering with excellent strength is possible. Further, as is clear from the examples described later, when the surface to be joined is Cu-plated and the solder foil is the above-mentioned Sn-based solder, the heating temperature × the holding time is set to 350 ° C. to 400 ° C.
× 120 seconds to 300 seconds and the thickness of the intermetallic compound is 1 to
The thickness of the solder layer can be reduced to 15 μm, preferably 7 to 15 μm, and the thickness of the solder layer can be reduced to 20 μm or less, preferably 8 μm or less, so that soldering with excellent strength is possible.

【0012】[0012]

【実施例】〔実施例1〕被接合材にNiメッキリ−ドフ
レ−ム材(Niメッキ厚みほぼ2〜6μm、リ−ドフレ
−ム材質Fe−Ni−Co)を、はんだ箔にIn−48
Sn,厚み60μm,平面寸法1mm×2mmを使用し
た。加圧治具には、先端外径φ1.2mmのステンレス
製圧子とステンレス受台とからなるものを使用し、加熱
炉には加熱温度350℃の電気炉を使用した。この加圧
治具を用い被接合面間にはんだ箔を加圧力2.7kg/
mmで挾持し、ついで加熱炉でワ−クを包囲し、この
加圧加熱を15秒間保持し、而るのち、加熱炉を取り除
いてワ−クを冷却した。この実施例品のはんだ付け接合
部の常温25℃での剥離強度は233gであり、はんだ
(In−48Sn)自体の強度の10倍以上であった。
また、はんだ付け接合部の金属間化合物層の厚みは5μ
m、はんだ層の厚みは5μmであった。
[Example 1] A Ni-plated lead frame material (Ni plating thickness of about 2 to 6 μm, lead frame material Fe-Ni-Co) was used as a material to be joined, and In-48 was used as a solder foil.
Sn, a thickness of 60 μm, and a plane dimension of 1 mm × 2 mm were used. As the pressing jig, a stainless steel indenter having a tip outer diameter of 1.2 mm and a stainless steel receiving table was used, and as the heating furnace, an electric furnace having a heating temperature of 350 ° C. was used. Using this pressing jig, a soldering force of 2.7 kg /
was clamped in mm 2, then word in a heating furnace - surrounding the click, the pressurizing and heating was maintained for 15 seconds, then而Ru, word by removing the heating furnace - cooling the click. The peel strength of the soldered joint of this example at room temperature and 25 ° C. was 233 g, which was 10 times or more the strength of the solder (In-48Sn) itself.
The thickness of the intermetallic compound layer at the solder joint is 5 μm.
m, and the thickness of the solder layer was 5 μm.

【0013】〔比較例〕実施例1に対し、加圧治具のス
テンレス製圧子にヒ−タを付加し、ステンレス受台上に
載置したワ−クを350℃に加熱したステンレス製圧子
で、加圧力を実施例1と同じ2.7kg/mmとし、
加熱加圧保持時間を実施例1(加熱加圧保持時間15
秒)よりも極めて長い120秒として加熱加圧し、而る
のち、ステンレス製圧子を逃がしワ−クを冷却した。
[Comparative Example] In comparison with Example 1, a heater was added to the stainless steel indenter of the pressing jig, and the work placed on the stainless steel pedestal was heated to 350 ° C. with the stainless steel indenter. The pressure was set to 2.7 kg / mm 2, which is the same as in Example 1,
The heating / pressing holding time was set to the value in Example 1 (heating / pressing holding time: 15
The heating and pressurization was performed for an extremely long time of 120 seconds, and then the stainless steel indenter was released to cool the work.

【0014】この比較例品のはんだ付け接合部の常温2
5℃での剥離強度は実質上零であった。かかる結果は、
ワ−クを加圧挾持すると同時に加熱しているために、は
んだ箔と被接合面との接触界面に、エア排除終了まえの
加熱によって酸化膜が形成されたものと推定される。こ
れに対し、実施例1では、接触界面からのエア排出終了
後に加熱が行われているために、前記酸化膜の形成なく
良好なはんだ付けが行われたと推定される。
Normal temperature 2 of the soldered joint of this comparative example product
The peel strength at 5 ° C. was practically zero. The result is
It is presumed that an oxide film was formed at the contact interface between the solder foil and the surface to be joined due to heating before the end of the air elimination because the work was heated while being pressed and held. On the other hand, in Example 1, since the heating was performed after the discharge of the air from the contact interface was completed, it is presumed that good soldering was performed without forming the oxide film.

【0015】〔実施例2〕実施例1(加圧加熱保持時間
15秒)に対し、加圧加熱保持時間を300秒とした以
外、実施例1と同じとした。この実施例2のはんだ付け
接合部の300℃での剥離強度が96gであった。この
実施例2では、はんだ付け接合部のはんだ層の厚みが2
μm、金属間化合物層の厚みが 8μmであり、3
00℃でも充分な剥離強度を呈する理由は、はんだ付け
接合部が実質上金属間化合物層のみで構成されているた
めと推定される。
Example 2 The procedure was the same as that of Example 1 except that the heating time under pressure was changed to 300 seconds. The peel strength at 300 ° C. of the soldered joint of Example 2 was 96 g. In the second embodiment, the thickness of the solder layer at the soldered joint is 2
μm, the thickness of the intermetallic compound layer is 8 μm, and 3
The reason why sufficient peel strength is exhibited even at 00 ° C. is presumed to be that the soldered joint is substantially composed of only the intermetallic compound layer.

【0016】〔実施例3〕実施例2(被接合材がNiメ
ッキリ−ドフレ−ム材)に対し、被接合材としてNi板
を使用した以外、実施例2に同じとした。この実施例3
のはんだ付け接合部の300℃での剥離強度は実施例2
とほぼ等しく、また、はんだ付け接合部のはんだ層の厚
み、金属間化合物層の厚みも実施例2にほぼ等しいもの
であった。
Example 3 The procedure was the same as Example 2 except that a Ni plate was used as the material to be joined to Example 2 (the material to be joined was a Ni-plated lead frame material). Example 3
The peel strength at 300 ° C of the soldered joint of Example 2 was
Also, the thickness of the solder layer and the thickness of the intermetallic compound layer at the soldered joint were almost the same as in Example 2.

【0017】〔実施例4〕実施例2(はんだ箔の組成I
n−48Sn)に対し、はんだ箔の組成をSn−5In
とした以外、実施例2に同じとした。この実施例3のは
んだ付け接合部の300℃での剥離強度は43gであ
り、また、はんだ付け接合部のはんだ層の厚みが3μ
m、金属間化合物層の厚みが5μmであった。
Example 4 Example 2 (Composition I of solder foil)
n-48Sn), the composition of the solder foil was changed to Sn-5In.
The same as Example 2 except that The peel strength at 300 ° C. of the solder joint of Example 3 was 43 g, and the thickness of the solder layer of the solder joint was 3 μm.
m, and the thickness of the intermetallic compound layer was 5 μm.

【0018】〔実施例5〜7〕実施例2(はんだ箔の組
成In−48Sn)に対し、表1に示す組成のはんだ箔
を使用した以外、実施例2に同じとした。実施例5〜7
のはんだ付け接合部の300℃での剥離強度や金属間化
合物層の厚みは表1の通りであった。実施例4〜7のは
んだ付け接合部のはんだ層の厚みは2μmであった。
Examples 5 to 7 The same procedure as in Example 2 was performed except that the solder foil having the composition shown in Table 1 was used in Example 2 (composition of solder foil In-48Sn). Examples 5 to 7
Table 1 shows the peel strength at 300 ° C. and the thickness of the intermetallic compound layer of the soldered joint of Example 1. The thickness of the solder layer at the solder joints in Examples 4 to 7 was 2 μm.

【表1】 表1(Niメッキ材のはんだ付け接合) はんだ箔の組成 300℃剥離強度 金属間化合物層の厚み 実施例2 In−48Sn 96g 8μm 実施例5 Sn−5Cu−1Ni 36g 7μm 実施例6 Sn−1Ni 59g 8μm 実施例7 Sn−3Ag−4Au−0.5In 90g 8μmTable 1 (Soldering joint of Ni plating material) Composition of solder foil 300 ° C peel strength Thickness of intermetallic compound layer Example 2 In-48Sn 96 g 8 μm Example 5 Sn-5Cu-1Ni 36 g 7 μm Example 6 Sn-1Ni 59 g 8 μm Example 7 Sn-3Ag-4Au-0.5In 90 g 8 μm

【0019】〔実施例8〜10〕実施例2、実施例5〜
7のそれぞれ(被接合材にNiメッキリ−ドフレ−ム材
を使用)に対し、被接合材にAuメッキリ−ドフレ−ム
材を使用した以外、それぞれの実施例に同じとした。す
なわち、先端外径φ1.2mmのステンレス製圧子とス
テンレス受台とからなる加圧治具を用い、厚み60μ
m,平面寸法1mm×2mmの表2に示す組成のはんだ
箔をAuメッキリ−ドフレ−ム材間に加圧力2.7kg
/mmで挾持し、ついで加熱温度350℃の電気炉で
ワ−クを包囲し、この加圧加熱を300秒間保持し、而
るのち、電気炉を取り除いてワ−クを冷却した。この実
施例品のはんだ付け接合部の300℃での剥離強度や金
属間化合物層の厚みは表2に示す通りであり、はんだ層
の厚みは5μmであった。
[Embodiments 8 to 10] Embodiments 2 and 5
For each of No. 7 (using a Ni-plated lead frame material for the material to be joined), the same procedure was used in each of the examples except that an Au-plated lead frame material was used for the material to be joined. That is, using a pressing jig composed of a stainless steel indenter having a tip outer diameter of φ1.2 mm and a stainless steel pedestal, a thickness of 60 μm
m, a solder foil having a composition shown in Table 2 having a plane dimension of 1 mm × 2 mm and a pressing force of 2.7 kg applied between the Au plating lead frame materials.
/ Mm 2 , and then the work was surrounded by an electric furnace having a heating temperature of 350 ° C., the pressurized heating was maintained for 300 seconds, and then the electric furnace was removed to cool the work. The peel strength at 300 ° C. and the thickness of the intermetallic compound layer of the soldered joint of this example were as shown in Table 2, and the thickness of the solder layer was 5 μm.

【表2】 表2(Auメッキ材のはんだ付け接合) はんだ箔の組成 300℃剥離強度 金属間化合物層の厚み 実施例8 In−48Sn 30g 5μm 実施例9 Sn−5Cu−1Ni 40g 5μm 実施例10 Sn−1Ni 45g 6μm 実施例11 Sn−3Ag−4Au−0.5In 60g 6μmTable 2 (Soldering of Au plating material) Composition of solder foil 300 ° C peel strength Thickness of intermetallic compound layer Example 8 In-48Sn 30 g 5 μm Example 9 Sn-5Cu-1Ni 40 g 5 μm Example 10 Sn-1Ni 45g 6μm Example 11 Sn-3Ag-4Au-0.5In 60g 6μm

【0020】〔実施例12〜15〕実施例2、実施例5
〜7のそれぞれ(被接合材にNiメッキリ−ドフレ−ム
材を使用)に対し、被接合材にCu板材を使用した以
外、それぞれの実施例に同じとした。すなわち、先端外
径φ1.2mmのステンレス製圧子とステンレス受台と
からなる加圧治具を用い、厚み60μm,平面寸法1m
m×2mmの表2に示す組成のはんだ箔をCu板材間に
加圧力2.7kg/mm で挾持し、ついで加熱温度3
50℃の電気炉でワ−クを包囲し、この加圧加熱を30
0秒間保持し、而るのち、電気炉を取り除いてワ−クを
冷却した。この実施例品のはんだ付け接合部の300℃
での剥離強度や金属間化合物層の厚みは表3に示す通り
であり、はんだ層の厚みは3μmであった。
Embodiments 12 to 15 Embodiments 2 and 5
7 to 7 (Ni plating lead frame on the material to be joined)
Use of Cu plate material for the material to be joined
In addition, the same was applied to each example. That is, outside the tip
A stainless steel indenter with a diameter of φ1.2 mm and a stainless steel cradle
Using a pressure jig made of
mx2mm solder foil with the composition shown in Table 2
Pressure 2.7 kg / mm 2, Then heating temperature 3
The work was surrounded by an electric furnace at 50 ° C.
Hold for 0 seconds, then remove the electric furnace and remove the work
Cool. 300 ° C of the soldered joint of this example product
The peel strength and the thickness of the intermetallic compound layer are as shown in Table 3.
And the thickness of the solder layer was 3 μm.

【表3】 表3(Cu材のはんだ付け接合) はんだ箔の組成 300℃剥離強度 金属間化合物層の厚み 実施例12 In−48Sn 168g 10μm 実施例13 Sn−5Cu−1Ni 174g 10μm 実施例14 Sn−1Ni 178g 12μm 実施例15 Sn−3Ag−4Au−0.5In 192g 11μmTable 3 (Soldering joint of Cu material) Composition of solder foil 300 ° C peel strength Thickness of intermetallic compound layer Example 12 In-48Sn 168 g 10 μm Example 13 Sn-5Cu-1Ni 174 g 10 μm Example 14 Sn −1Ni 178 g 12 μm Example 15 Sn-3Ag-4Au-0.5In 192 g 11 μm

【0021】[0021]

【発明の効果】本発明によれば、フラックスを使用する
ことなくはんだ付けすることができ、電子部品の実装や
組立工程でのフラックス残渣の洗浄処理工程を省略して
作業能率を向上でき、また洗浄液によるオゾン層破壊の
問題も解消できる。特に、請求項2〜4の発明によれ
ば、フラックスフリ−のはんだ付けをSn系はんだによ
って行い得、はんだの鉛フリ−化の面からも環境保全を
促進できる。
According to the present invention, soldering can be performed without using a flux, and a washing process of a flux residue in a mounting and assembling process of an electronic component can be omitted to improve work efficiency. The problem of ozone layer destruction due to the cleaning liquid can be solved. In particular, according to the second to fourth aspects of the present invention, soldering of flux-free can be performed by Sn-based solder, and environmental protection can be promoted also from the viewpoint of lead-free soldering.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明に係るはんだ付け方法を示す図面であ
る。
FIG. 1 is a drawing showing a soldering method according to the present invention.

【図2】本発明に係るはんだ付け方法によるはんだ付け
接合構造を示す図面である。
FIG. 2 is a view showing a soldering joint structure by a soldering method according to the present invention.

【符号の説明】[Explanation of symbols]

1 被接合材 2 はんだ箔 3 加圧治具 4 加熱炉 DESCRIPTION OF SYMBOLS 1 Joining material 2 Solder foil 3 Pressing jig 4 Heating furnace

───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.7 識別記号 FI テーマコート゛(参考) H05K 3/34 507 H05K 3/34 507C 512 512C ──────────────────────────────────────────────────続 き Continued on the front page (51) Int.Cl. 7 Identification symbol FI Theme coat ゛ (Reference) H05K 3/34 507 H05K 3/34 507C 512 512C

Claims (8)

【特許請求の範囲】[Claims] 【請求項1】はんだ箔を被接合面間に配し、常温、また
ははんだ箔融点よりも低い予備加熱のもとでの加圧治具
による加圧で被接合面とはんだ箔との接触界面を緊圧密
着させ、この緊圧密着状態を保ちつつ加熱によってはん
だ箔を溶融させ、その加圧加熱を所定時間保持し、而る
のち、冷却することを特徴とするはんだ付け方法。
A solder foil is disposed between surfaces to be joined, and a contact interface between the surface to be joined and the solder foil is pressed by a pressing jig at room temperature or under preheating lower than the melting point of the solder foil. A soldering method wherein the solder foil is melted by heating while maintaining the tightly adhered state, the pressurized heating is maintained for a predetermined time, and then cooling is performed.
【請求項2】はんだ箔に厚み20μm〜200μmのS
n系はんだ箔を使用し、加圧治具の加圧力を0.5〜4
kg/mmとし、予備加熱の温度を100℃以下と
し、はんだ箔を溶融させるための加熱温度を250℃〜
450℃とし、加熱保持時間を5〜600秒とする請求
項1記載のはんだ付け方法。
2. A solder foil having a thickness of 20 .mu.m to 200 .mu.m.
Use n-type solder foil and set the pressing force of the pressing jig to 0.5-4.
kg / mm 2 , the preheating temperature is 100 ° C. or less, and the heating temperature for melting the solder foil is 250 ° C.
The soldering method according to claim 1, wherein the temperature is 450 ° C., and the heating and holding time is 5 to 600 seconds.
【請求項3】Sn系はんだに、Inを2〜80重量%含
有するものをものを使用する請求項2記載のはんだ付け
方法。
3. The soldering method according to claim 2, wherein said Sn-based solder contains 2 to 80% by weight of In.
【請求項4】Sn系はんだに、Au、Ag、Cu、N
i、Inの何れか1種または2種以上を0.1〜5重量
%含有するものを使用する請求項2記載のはんだ付け方
法。
4. Sn, solder, Au, Ag, Cu, N
3. The soldering method according to claim 2, wherein a material containing 0.1 to 5% by weight of at least one of i and In is used.
【請求項5】フラックスを使用しない請求項1〜4何れ
か記載のはんだ付け方法。
5. The soldering method according to claim 1, wherein no flux is used.
【請求項6】被接合面がNi面で、かつはんだがSn系
はんだであり、はんだ層とNi面との間に厚み1〜15
μmの合金層が形成され、はんだ層の厚みが20μm以
下とされているはんだ付け構造。
6. A joint surface is a Ni surface, the solder is a Sn-based solder, and a thickness of 1 to 15 is provided between the solder layer and the Ni surface.
A soldering structure in which a μm alloy layer is formed and the thickness of the solder layer is set to 20 μm or less.
【請求項7】被接合面がAu面で、かつはんだがSn系
はんだであり、はんだ層とAu面との間に厚み1〜15
μmの合金層が形成され、はんだ層の厚みが20μm以
下とされているはんだ付け構造。
7. The bonding surface is an Au surface, the solder is a Sn-based solder, and a thickness of 1 to 15 is provided between the solder layer and the Au surface.
A soldering structure in which a μm alloy layer is formed and the thickness of the solder layer is set to 20 μm or less.
【請求項8】被接合面がCu面で、かつはんだがSn系
はんだであり、はんだ層とCu面との間に厚み1〜15
μmの合金層が形成され、はんだ層の厚みが20μm以
下とされているはんだ付け構造。
8. The bonding surface is a Cu surface, the solder is Sn-based solder, and a thickness of 1 to 15 is provided between the solder layer and the Cu surface.
A soldering structure in which a μm alloy layer is formed and the thickness of the solder layer is set to 20 μm or less.
JP2000181051A 2000-06-16 2000-06-16 Soldering method and soldering structure Withdrawn JP2002001520A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2000181051A JP2002001520A (en) 2000-06-16 2000-06-16 Soldering method and soldering structure

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2000181051A JP2002001520A (en) 2000-06-16 2000-06-16 Soldering method and soldering structure

Publications (1)

Publication Number Publication Date
JP2002001520A true JP2002001520A (en) 2002-01-08

Family

ID=18682038

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000181051A Withdrawn JP2002001520A (en) 2000-06-16 2000-06-16 Soldering method and soldering structure

Country Status (1)

Country Link
JP (1) JP2002001520A (en)

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004296493A (en) * 2003-03-25 2004-10-21 Mitsubishi Materials Corp Heat sink, method of manufacturing the same, power module, and method of manufacturing the same
JP2005535460A (en) * 2002-08-21 2005-11-24 エミテック ゲゼルシヤフト フユア エミツシオンス テクノロギー ミツト ベシユレンクテル ハフツング Honeycomb manufacturing apparatus and method, and honeycomb body
JP2006156975A (en) * 2004-10-25 2006-06-15 Mitsubishi Materials Corp Juncture, power module substrate and power module and manufacturing method of juncture
JP2011005542A (en) * 2009-06-23 2011-01-13 Nihon Superior Co Ltd In-CONTAINING LEAD-FREE SOLDER ALLOY, AND SOLDERED JOINT USING THE SOLDER
US20110139858A1 (en) * 2009-12-15 2011-06-16 Seong Min Cho Carrier for manufacturing substrate and method of manufacturing substrate using the same
JPWO2012070262A1 (en) * 2010-11-22 2014-05-19 Dowaエレクトロニクス株式会社 Joining material, joined body, and joining method
JP2014515872A (en) * 2011-05-03 2014-07-03 ピルキントン グループ リミテッド Glazing with soldered connectors
EP3499554A1 (en) * 2017-12-13 2019-06-19 Heraeus Deutschland GmbH & Co. KG Method for producing a sandwich arrangement of two components with a solder therebetween through thermocompression below the melting point of the solder of a solder preform
US11285569B2 (en) 2003-04-25 2022-03-29 Henkel Ag & Co. Kgaa Soldering material based on Sn Ag and Cu
CN114261156A (en) * 2021-12-28 2022-04-01 郑州机械研究所有限公司 Multilayer sandwich brazing filler metal foil for titanium alloy brazing and preparation method thereof

Cited By (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005535460A (en) * 2002-08-21 2005-11-24 エミテック ゲゼルシヤフト フユア エミツシオンス テクノロギー ミツト ベシユレンクテル ハフツング Honeycomb manufacturing apparatus and method, and honeycomb body
JP4659456B2 (en) * 2002-08-21 2011-03-30 エミテック ゲゼルシヤフト フユア エミツシオンス テクノロギー ミツト ベシユレンクテル ハフツング Method for manufacturing honeycomb body and honeycomb body
JP2004296493A (en) * 2003-03-25 2004-10-21 Mitsubishi Materials Corp Heat sink, method of manufacturing the same, power module, and method of manufacturing the same
US11285569B2 (en) 2003-04-25 2022-03-29 Henkel Ag & Co. Kgaa Soldering material based on Sn Ag and Cu
JP2006156975A (en) * 2004-10-25 2006-06-15 Mitsubishi Materials Corp Juncture, power module substrate and power module and manufacturing method of juncture
JP2011005542A (en) * 2009-06-23 2011-01-13 Nihon Superior Co Ltd In-CONTAINING LEAD-FREE SOLDER ALLOY, AND SOLDERED JOINT USING THE SOLDER
US20110139858A1 (en) * 2009-12-15 2011-06-16 Seong Min Cho Carrier for manufacturing substrate and method of manufacturing substrate using the same
JP5986929B2 (en) * 2010-11-22 2016-09-06 Dowaエレクトロニクス株式会社 Joining method
JPWO2012070262A1 (en) * 2010-11-22 2014-05-19 Dowaエレクトロニクス株式会社 Joining material, joined body, and joining method
JP2014515872A (en) * 2011-05-03 2014-07-03 ピルキントン グループ リミテッド Glazing with soldered connectors
US9595768B2 (en) 2011-05-03 2017-03-14 Pilkington Group Limited Glazing with a soldered connector
EP3499554A1 (en) * 2017-12-13 2019-06-19 Heraeus Deutschland GmbH & Co. KG Method for producing a sandwich arrangement of two components with a solder therebetween through thermocompression below the melting point of the solder of a solder preform
WO2019115081A1 (en) * 2017-12-13 2019-06-20 Heraeus Deutschland GmbH & Co. KG Method for producing a stable sandwich arrangement of two components with solder situated therebetween
CN110770884A (en) * 2017-12-13 2020-02-07 贺利氏德国有限两合公司 Method for producing a robust sandwich arrangement of two components and solder located therebetween
US11081465B2 (en) 2017-12-13 2021-08-03 Heraeus Deutschland GmbH & Co. KG Method for producing a stable sandwich arrangement of two components with solder situated therebetween
CN114261156A (en) * 2021-12-28 2022-04-01 郑州机械研究所有限公司 Multilayer sandwich brazing filler metal foil for titanium alloy brazing and preparation method thereof

Similar Documents

Publication Publication Date Title
CN100578778C (en) Electronic device
KR101004589B1 (en) Lid for functional part and process for producing the same
JP3736452B2 (en) Solder foil
JP2004174522A (en) Composite solder, production method therefor, and electronic equipment
JP2000133670A (en) Bump, its forming method, and its manufacturing equipment
JPH04504230A (en) Method for manufacturing soldered articles
JPS59124150A (en) Bonding method
JPH06297185A (en) Dynamic solder paste composition
JP2002305213A (en) Solder foil, semiconductor device, and electronic device
TW201618627A (en) Method for producing a soldered connection
JP2002001520A (en) Soldering method and soldering structure
WO2000021346A1 (en) Soldering of a semiconductor chip to a substrate
JP2001044615A (en) Soldering method
JP2010000513A (en) Method of manufacturing joined structure
JP3400408B2 (en) Flip chip mounting method
CN1311950C (en) Pb-free solder alloy, and solder material and solder joint using same
JP4432541B2 (en) Electronics
JP2003223945A (en) LEAD PIN WITH Au-Ge SYSTEM BRAZING MATERIAL
US6390355B1 (en) Method for forming a metallic contact on an electronic printed circuit board and a product therefrom
JPH10335805A (en) Mounting method of electronic component
JP4079238B2 (en) Solder wire with metal Na core
JP2000135557A (en) Lead free heat resistant solder and soldering method
JP2000052027A (en) High temperature resistant metal jointing method
JP3540864B2 (en) Method of forming fine bumps
JPH06244339A (en) Regenerating method for defective metal coating

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070322

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20090515

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090526

A761 Written withdrawal of application

Free format text: JAPANESE INTERMEDIATE CODE: A761

Effective date: 20090605