JP2001355821A - Heat storage type deodorizing device - Google Patents

Heat storage type deodorizing device

Info

Publication number
JP2001355821A
JP2001355821A JP2000177905A JP2000177905A JP2001355821A JP 2001355821 A JP2001355821 A JP 2001355821A JP 2000177905 A JP2000177905 A JP 2000177905A JP 2000177905 A JP2000177905 A JP 2000177905A JP 2001355821 A JP2001355821 A JP 2001355821A
Authority
JP
Japan
Prior art keywords
heat storage
gas
filled
temperature side
storage material
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2000177905A
Other languages
Japanese (ja)
Inventor
Kunihiro Funamoto
邦広 船本
Osamu Onishi
修 尾西
Kokichi Komine
高吉 小峰
Masami Ohara
政美 大原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyo Seikan Group Holdings Ltd
Osaka Gas Engineering Co Ltd
Original Assignee
Toyo Seikan Kaisha Ltd
Osaka Gas Engineering Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyo Seikan Kaisha Ltd, Osaka Gas Engineering Co Ltd filed Critical Toyo Seikan Kaisha Ltd
Priority to JP2000177905A priority Critical patent/JP2001355821A/en
Publication of JP2001355821A publication Critical patent/JP2001355821A/en
Pending legal-status Critical Current

Links

Landscapes

  • Treating Waste Gases (AREA)
  • Incineration Of Waste (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a heat storage type deodorizing device, restricting the rising of an inner pressure by restricting a resistance due to a pressure loss in the air passage of high temperature side to conduct gas, transmitted from low temperature side toward high temperature side, so as to flow smoothly without being precluded and capable of preventing the leakage of gas from the communicating place between a first flow passage and an air passage to a second flow passage into a heat exchanger room without increasing the power of a seal fan. SOLUTION: The heat storage type deodorizing device is provided with a plurality of air passages 2a, filled with heat storage material 2C and formed in parallel in the circumferential direction, and a heat storage body 2, constituted so as to be rotatable by driving so that exhaust gas passing condition for storing heat by exhaust gas from a combustion chamber is changed into treated gas passing condition and that the treated gas passing condition for preheating the passing treated gas is changed into the exhaust gas passing condition. In such a deodorizing device, respective flow passage sectional areas in the air passage 2a filled with the heat storage material 2C are formed so that the same areas are increased as the sections are approached to the high temperature side.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、例えば、塗装工場
や印刷工場などから排出される気体中の有機溶剤や塗料
ミストなどの臭気成分を燃焼処理、つまり、酸化分解処
理するための装置で、詳しくは、被処理気体中の臭気成
分を燃焼処理する燃焼室を設け、蓄熱材を充填した複数
の通気路を周方向に並置形成すると共に、前記複数の通
気路のうち、燃焼室からの排気を通過させることにより
蓄熱する排気通過状態であった物が被処理気体通過状態
となり、かつ、通過させる被処理気体を前記排気により
蓄熱した熱量で予熱する被処理気体通過状態であった物
が排気通過状態となるように前記通気路に沿った軸芯周
りに駆動回転自在に構成してある蓄熱体を設けて、熱交
換部を構成してある蓄熱型脱臭装置に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an apparatus for burning, that is, oxidatively decomposing odor components such as an organic solvent and a paint mist in a gas discharged from a painting factory or a printing factory. Specifically, a combustion chamber for burning odor components in the gas to be treated is provided, a plurality of ventilation paths filled with a heat storage material are formed side by side in the circumferential direction, and exhaust gas from the combustion chamber among the plurality of ventilation paths is provided. The object that was in the exhaust gas passing state in which heat is stored by passing the gas is in the gas-to-be-processed state, and the object that was in the gas-passing state in which the gas to be passed is preheated by the heat stored by the exhaust gas is the exhaust gas. The present invention relates to a heat storage type deodorizing device in which a heat storage body which is configured to be rotatable around an axis along the ventilation path so as to be in a passing state is provided and a heat exchange unit is formed.

【0002】[0002]

【従来の技術】従来、この種の蓄熱型脱臭装置として
は、蓄熱材を充填した通気路内における各流路断面を、
高温側及び低温側共に同じ大きさになるように形成した
ものがあった。
2. Description of the Related Art Conventionally, as this type of heat storage type deodorizing apparatus, the cross section of each flow path in an air passage filled with a heat storage material has been described.
Some were formed to have the same size on both the high temperature side and the low temperature side.

【0003】[0003]

【発明が解決しようとする課題】燃焼室では、被処理気
体中の臭気成分を燃焼処理するためにバーナによる加熱
処理が行われるため、通気路においては燃焼室に近い側
ほど高温となり、ガスの熱膨張を生じるからガスの見か
け上の流速が早くなる。反対に、燃焼室から離れる側ほ
ど低温となり、ガスの熱収縮を生じるからガスの見かけ
上の流速が遅くなる。そこで、低温側の通気路を通った
ガスが高温側にくるとガスが熱膨張を起こして見かけ上
の流速が早くなるのであるが、上述した従来の蓄熱型脱
臭装置のように通気路内における高温側の各流路断面と
低温側の各流路断面とを同じ大きさに形成したものだ
と、高温側の通気路では熱膨張のため圧損による抵抗が
高くなって内圧が上昇し易くなるため、低温側から透過
するガスが阻害されてスムーズに流れなくなる。また、
前記蓄熱型脱臭装置では、熱交換器室内に蓄熱体を設置
して、蓄熱体に連通させた燃焼室へ被処理気体を導入す
るための第1流路と、燃焼室からの排気を外部へ排出す
るための第2流路との連通箇所からガスが漏れないよう
に前記熱交換器室内の圧力を高くするガスシールが設け
られているが、前記高温側の通気路における内圧が前記
ガスシール圧を上回った場合、前記第1流路と前記第2
流路との連通箇所からガスが前記熱交換器室内へ漏れて
しまうシール破壊が起こってしまう。このシール破壊に
よって、前記第1流路から燃焼室内へ導入される被処理
気体が熱交換器室内に漏れて臭気成分が未処理のまま前
記第2流路内に侵入して外部に排出されてしまう虞があ
った。このため、シールファンの動力を上げて熱交換器
室内の内圧を第1流路、第2流路及び通気路内の内圧よ
りも高くして、熱交換器室内へガスが漏れないようにす
る必要が生じるから、シールファンの動力エネルギー消
費が余分に必要になって不経済なものとなっていた。
In the combustion chamber, a heating process is performed by a burner to burn off the odor component in the gas to be treated. Since the thermal expansion occurs, the apparent flow velocity of the gas is increased. Conversely, the farther away from the combustion chamber, the lower the temperature and the contraction of the gas, which causes the apparent flow velocity of the gas to decrease. Therefore, when the gas that has passed through the low-temperature side ventilation path comes to the high-temperature side, the gas undergoes thermal expansion and the apparent flow velocity increases, but in the ventilation path as in the above-described conventional thermal storage deodorizer, If the cross section of each flow path on the high temperature side and the cross section of each flow path on the low temperature side are formed to the same size, the resistance due to pressure loss increases due to thermal expansion in the ventilation path on the high temperature side, and the internal pressure tends to rise. Therefore, the gas permeating from the low temperature side is hindered and does not flow smoothly. Also,
In the heat storage type deodorizing device, a heat storage body is installed in a heat exchanger room, a first flow path for introducing a gas to be treated into a combustion chamber connected to the heat storage body, and exhaust gas from the combustion chamber to the outside. A gas seal is provided to increase the pressure in the heat exchanger chamber so that gas does not leak from a portion communicating with the second flow path for discharging. If the pressure exceeds the pressure, the first flow path and the second flow path
A seal breakage occurs in which gas leaks into the heat exchanger chamber from a location communicating with the flow path. Due to this seal destruction, the gas to be treated introduced into the combustion chamber from the first flow path leaks into the heat exchanger chamber, and the odor component enters the second flow path without being treated and is discharged to the outside. There was a risk of it. For this reason, the power of the seal fan is increased to make the internal pressure in the heat exchanger chamber higher than the internal pressure in the first flow path, the second flow path, and the ventilation path, so that gas does not leak into the heat exchanger chamber. Because of the necessity, the power consumption of the seal fan is required extra, which is uneconomical.

【0004】従って、本発明の目的は、上記問題点を解
消し、高温側の通気路での圧損による抵抗を抑制して内
圧上昇を抑制し、低温側から高温側に向けて透過するガ
スが阻害されることなくスムーズに流れると共に、シー
ルファンの動力を上げることなく第1流路と第2流路に
対する通気路との連通箇所から熱交換器室内へガスが漏
れるのを防止できる蓄熱型脱臭装置を提供するところに
ある。
Accordingly, an object of the present invention is to solve the above-mentioned problems, to suppress the increase in internal pressure by suppressing the resistance due to pressure loss in the ventilation path on the high-temperature side, and to reduce the gas permeating from the low-temperature side to the high-temperature side. A heat storage type deodorizer that can flow smoothly without obstruction and can prevent gas from leaking into the heat exchanger room from the communication point between the first flow path and the ventilation path to the second flow path without increasing the power of the seal fan. Equipment.

【0005】[0005]

【課題を解決するための手段】〔構成〕請求項1の発明
の特徴構成は図4に例示するごとく、被処理気体中の臭
気成分を燃焼処理する燃焼室を設け、蓄熱材2Cを充填
した複数の通気路2aを周方向に並置形成すると共に、
前記複数の通気路2aのうち、燃焼室からの排気を通過
させることにより蓄熱する排気通過状態であった物が被
処理気体通過状態となり、かつ、通過させる被処理気体
を前記排気により蓄熱した熱量で予熱する被処理気体通
過状態であった物が排気通過状態となるように前記通気
路2aに沿った軸芯周りに駆動回転自在に構成してある
蓄熱体2を設けて、熱交換部を構成してある蓄熱型脱臭
装置であって、前記蓄熱材2Cを充填した通気路2a内
における各流路断面を、高温側ほどその流路断面が大と
なるように形成してあるところにある。
As shown in FIG. 4, a combustion chamber for combusting odor components in a gas to be treated is provided and filled with a heat storage material 2C. A plurality of ventilation paths 2a are formed side by side in the circumferential direction,
Of the plurality of ventilation paths 2a, an object that has been in an exhaust passage state in which heat is stored by passing exhaust gas from a combustion chamber is in a gas-to-be-processed state, and the heat quantity in which the gas to be processed is stored by the exhaust gas. A heat storage unit 2 that is configured to be rotatable around an axis along the ventilation path 2a is provided so that an object that has been in a gas passing state to be preheated in an exhaust gas passing state is provided. In the heat storage type deodorizing apparatus thus configured, the cross section of each flow path in the ventilation path 2a filled with the heat storage material 2C is formed such that the flow path cross section becomes larger as the temperature becomes higher. .

【0006】請求項2の発明の特徴構成は図7(イ)に
例示するごとく、前記各流路が、前記通気路2a内に充
填した複数の蓄熱材2Cどうしの隙間により形成されて
いるところにある。
As shown in FIG. 7A, a characteristic configuration of the second aspect of the present invention is that each of the flow paths is formed by a gap between a plurality of heat storage materials 2C filled in the ventilation path 2a. It is in.

【0007】請求項3の発明の特徴構成は図7(ロ)に
例示するごとく、前記各流路が、前記通気路2a内に充
填した複数の蓄熱材壁2E間に形成された空間により形
成されているところにある。
As shown in FIG. 7 (b), the flow path is formed by a space formed between a plurality of heat storage material walls 2E filled in the ventilation path 2a. Where they are.

【0008】請求項4の発明の特徴構成は図7(ハ)に
例示するごとく、前記各流路が、前記通気路2a内に充
填した蓄熱材2Cに形成の連通孔2Fにより形成されて
いるところにある。
As shown in FIG. 7 (C), the flow path is formed by a communication hole 2F formed in a heat storage material 2C filled in the ventilation path 2a. There.

【0009】尚、上述のように、図面との対照を便利に
するために符号を記したが、該記入により本発明は添付
図面の構成に限定されるものではない。
Note that, as described above, reference numerals are provided for convenience of comparison with the drawings, but the present invention is not limited to the configuration shown in the accompanying drawings.

【0010】〔作用及び効果〕請求項1の発明により、
前記蓄熱材を充填した通気路内における各流路断面を、
高温側ほどその流路断面が大となるように形成してある
から、通気路における低温側から高温側に向けて透過す
るガスを阻害されることなくスムーズに流すことができ
る。つまり、通気路における高温側でガスが熱膨張を生
じて見かけ上の流速が早くなったとしても高温側ほどそ
の流路断面を大に形成してあるため高温側の通気路での
圧損による抵抗を抑制して内圧の上昇を抑制することが
できるから、低温側から高温側に向けて阻害されること
なく透過ガスをスムーズに流すことができる。その結
果、透過ガスを低温側から高温側に向けてスムーズに流
すことが出来ると共に、シールファンの動力を上げるこ
となく通気路に連通させた第1流路と第2流路との連通
箇所から熱交換器室内へガスが漏れるのを防止できる。
[Operation and Effect] According to the first aspect of the present invention,
Each flow path cross section in the ventilation path filled with the heat storage material,
Since the cross section of the flow path is formed larger on the higher temperature side, the gas permeating from the lower side to the higher side in the ventilation path can flow smoothly without hindrance. In other words, even if the gas is thermally expanded on the high-temperature side in the ventilation path and the apparent flow velocity is increased, the flow path cross-section is formed larger on the high-temperature side, so the resistance due to pressure loss in the high-temperature side ventilation path is increased. Therefore, the rise of the internal pressure can be suppressed, so that the permeated gas can flow smoothly from the low temperature side to the high temperature side without being hindered. As a result, the permeated gas can flow smoothly from the low-temperature side to the high-temperature side, and from the communication point between the first flow path and the second flow path connected to the ventilation path without increasing the power of the seal fan. Gas can be prevented from leaking into the heat exchanger room.

【0011】請求項2の発明によれば、請求項1の発明
による作用効果を叶えることができるのに加えて、前記
各流路が、前記通気路内に充填した複数の蓄熱材どうし
の隙間により形成されているから、通気抵抗の異なった
各流路断面を形成する作業が容易となる。つまり、例え
ば、球形形状の蓄熱材を通気路内に充填して、複数の蓄
熱材どうし間に隙間を形成する場合、直径の大きな蓄熱
材を充填するのに比して、直径の小さな蓄熱材を充填す
る方が、通気路内に小さな隙間が沢山形成されることに
なって透過ガスが隙間を通る際に摺接する表面積の総計
が大きくなり、その結果、透過ガスに対する通気抵抗が
大きくなる。そこで、上記現象を利用して、異なった直
径を有した蓄熱材を、通気路内の空間に充填するだけの
操作で通気抵抗を調整することができ、通気路における
通気抵抗の異なった各流路断面の形成作業の作業性を向
上させることができるようになった。
According to the second aspect of the present invention, in addition to the effect of the first aspect of the present invention, each of the flow paths has a gap between the plurality of heat storage materials filled in the ventilation path. Therefore, the operation of forming the cross sections of the respective flow paths having different ventilation resistances is facilitated. In other words, for example, when a spherical heat storage material is filled in the ventilation path to form a gap between a plurality of heat storage materials, the heat storage material having a small diameter is compared to filling a heat storage material having a large diameter. Filling causes a large number of small gaps to be formed in the ventilation path, so that the total surface area of sliding contact of the permeated gas when passing through the gaps increases. As a result, the permeation resistance to the permeated gas increases. Therefore, by utilizing the above-described phenomenon, the airflow resistance can be adjusted by simply filling the space in the air passage with the heat storage materials having different diameters. The workability of the work of forming the road cross section can be improved.

【0012】請求項3の発明によれば、請求項1の発明
による作用効果を叶えることができるのに加えて、前記
各流路が、前記通気路内に充填した複数の蓄熱材壁間に
形成された空間により形成されているから、蓄熱材を通
気路内に設置形成する形成作業だけで異なった流路断面
を有した各流路を形成することができる。つまり、例え
ば、蓄熱材を通気路内に設置形成するときに蓄熱材壁ど
うしの壁間距離を、高温側では大きくし、低温側では小
さくなるようにして設置形成することによって、高温側
ほどその流路断面を大に、低温側ほどその流路断面を小
に形成することができる。その結果、蓄熱材の設置作業
に伴って流路を形成することができるから、流路形成作
業の作業性を向上させることができるようになった。
According to the third aspect of the present invention, in addition to the effect of the first aspect of the present invention, each of the flow paths may be provided between a plurality of heat storage material walls filled in the ventilation path. Since the heat storage material is formed by the formed space, each flow path having a different flow path cross section can be formed only by the forming operation of installing and forming the heat storage material in the ventilation path. That is, for example, when the heat storage material is installed and formed in the ventilation path, the distance between the heat storage material walls is set to be large on the high-temperature side and small on the low-temperature side. The cross section of the flow path can be made larger, and the cross section of the flow path can be made smaller as the temperature becomes lower. As a result, the flow path can be formed in accordance with the operation of installing the heat storage material, so that the workability of the flow path forming operation can be improved.

【0013】請求項4の発明によれば、請求項1の発明
による作用効果を叶えることができるのに加えて、前記
各流路が、前記通気路内に充填した蓄熱材に形成の連通
孔により形成されているから、蓄熱材の設置作業だけで
流路を形成することができる。つまり、例えば、蓄熱材
が多孔セラミックスで形成されている場合、通気路にお
ける高温側ほど連通孔の大きな多孔セラミックスを設置
すると共に、低温側ほど連通孔の小さな多孔セラミック
スを設置するだけで、高温側ほどその流路断面を大に、
低温側ほどその流路断面を小に形成することができる。
その結果、流路形成作業の作業性を向上させることがで
きるようになった。
According to the fourth aspect of the present invention, in addition to the effects of the first aspect of the present invention, in addition to the above, each of the flow paths is formed with a communication hole formed in the heat storage material filled in the ventilation path. Therefore, the flow path can be formed only by the operation of installing the heat storage material. In other words, for example, when the heat storage material is formed of porous ceramics, simply install porous ceramics having larger communication holes toward the high temperature side in the ventilation path and install porous ceramics having smaller communication holes toward the lower temperature side. The larger the cross section of the flow path,
The lower the temperature, the smaller the cross section of the channel can be formed.
As a result, the workability of the flow path forming operation can be improved.

【0014】[0014]

【発明の実施の形態】以下に本発明の実施の形態を図面
に基づいて説明する。
Embodiments of the present invention will be described below with reference to the drawings.

【0015】蓄熱脱臭装置は、図1に示すように、被処
理気体G中の臭気成分を燃焼処理する燃焼室1と、蓄熱
材2Cを充填した複数の通気路2aを周方向に並置形成
すると共に、複数の通気路2aのうち、燃焼室1からの
排気を通過させることにより蓄熱する排気通過状態であ
った物が被処理気体通過状態となり、かつ、排気gによ
り蓄熱した熱量で通過させる被処理気体Gを予熱する被
処理気体通過状態であった物が排気通過状態となるよう
に通気路2aに沿った軸芯P周りに駆動回転自在に構成
してある蓄熱体2を設けた熱交換部3Aとからなる。
As shown in FIG. 1, the thermal storage deodorizer has a combustion chamber 1 for burning odor components in a gas G to be treated and a plurality of ventilation passages 2a filled with a heat storage material 2C, which are arranged side by side in the circumferential direction. At the same time, of the plurality of ventilation passages 2a, an object that has been in an exhaust passage state in which heat is stored by allowing exhaust gas from the combustion chamber 1 to pass is in a gas-to-be-processed state, and is subjected to passage with the amount of heat stored by the exhaust g. Heat exchange provided with a heat storage body 2 that is configured to be rotatable around an axis P along an air passage 2a so that an object that has been in a gas passing state to preheat a processing gas G is in an exhaust gas passing state. 3A.

【0016】図1,6に示すように、前記第1流路21
は、周方向の特定箇所に、蓄熱体2の一端面側から被処
理気体Gを供給する被処理気体供給ダクト5に連接した
被処理気体供給口部6(以下第1供給ダクトと称す
る。)と、他端面側において蓄熱体2を通過した被処理
気体Gを燃焼室1の受入口1aに排出する排出ダクト7
に連接した被処理気体排出口部8(以下第1排出ダクト
と称する。)とから構成されている。また、前記第2流
路22は、前記とは異なる周方向の特定箇所に、燃焼室
1の排気口1bから排出した排気gを蓄熱体2に他端面
側から供給する排気供給ダクト9に連接した排気供給口
部10(以下第2供給ダクトと称する。)と、一端面側
において蓄熱体2を通過した排気gを外部に排出する排
出ダクト11に連接した排気排出口部12(以下第2排
出ダクトと称する。)とから構成されている。
As shown in FIGS. 1 and 6, the first flow path 21
Is a gas supply port 6 (hereinafter referred to as a first supply duct) connected to a gas supply duct 5 for supplying a gas G to be processed from one end face side of the heat storage body 2 at a specific location in the circumferential direction. And a discharge duct 7 for discharging the gas G to be treated, which has passed through the heat storage body 2 on the other end face side, to the receiving port 1 a of the combustion chamber 1.
And a gas discharge port 8 (hereinafter referred to as a first discharge duct) connected to the gas discharge port. Further, the second flow path 22 is connected to an exhaust supply duct 9 that supplies the exhaust gas g discharged from the exhaust port 1b of the combustion chamber 1 to the regenerator 2 from the other end face at a specific location in the circumferential direction different from the above. Exhaust supply port 10 (hereinafter referred to as a second supply duct) and an exhaust discharge port 12 (hereinafter referred to as a second supply duct) connected at one end surface thereof to an exhaust duct 11 for exhausting the exhaust g passing through the heat storage body 2 to the outside. Discharge duct).

【0017】前記ガスシールは、排出ダクト11内の排
気gを環流ダクト27を介して熱交換器室3内に圧送す
るシールファン24により、第1供給ダクト6と第1排
出ダクト8内の内圧、及び、第2供給ダクト10と第2
排出ダクト12内の内圧、並びに上記複数のダクトに連
通する状態で蓄熱材2Cを充填してある複数の通気路2
a内における内圧よりも熱交換器室3内の内圧を高く維
持することによって、第1供給ダクト6と第1排出ダク
ト8内から被処理気体Gが通気路2aとの連通箇所から
熱交換器室3内に漏れ出さないようにすると共に、第2
供給ダクト10と第2排出ダクト12内から排気gが通
気路2aとの連通箇所Rから熱交換器室3内に漏れ出さ
ないように構成されている。このとき、低温側の被処理
気体供給ダクト5内の圧力を圧力センサASで検知し、
制御装置SSによりその検知圧力よりも10〜50mm
Aq高くなるようにシールファン24によるシール圧力
を自動制御する。
The gas seal is formed by a seal fan 24 which feeds the exhaust gas g in the discharge duct 11 into the heat exchanger chamber 3 through the recirculation duct 27 by the internal pressure in the first supply duct 6 and the first discharge duct 8. And the second supply duct 10 and the second
The internal pressure in the discharge duct 12 and the plurality of ventilation paths 2 filled with the heat storage material 2C in a state of communicating with the plurality of ducts.
By maintaining the internal pressure in the heat exchanger chamber 3 higher than the internal pressure in a, the gas G to be treated flows from inside the first supply duct 6 and the first discharge duct 8 to the heat exchanger from the communication point with the ventilation path 2a. Not to leak into the room 3
It is configured such that exhaust g from inside the supply duct 10 and the second discharge duct 12 does not leak into the heat exchanger chamber 3 from the communication point R with the ventilation path 2a. At this time, the pressure in the gas supply duct 5 on the low temperature side is detected by the pressure sensor AS,
10-50mm from the detected pressure by the controller SS
The seal pressure by the seal fan 24 is automatically controlled so as to increase Aq.

【0018】図6に示すように、前記第1供給ダクト6
及び第1排出ダクト8夫々の両側壁部6a,6b,8
a,8bと蓄熱体2の端面との間には、第1供給ダクト
6及び第1排出ダクト8内の圧力と熱交換器室3内の圧
力との差による熱交換器室3内気体の第1供給ダクト6
及び第1排出ダクト8内への移入を許容する間隙13,
14が形成されており、前記第2供給ダクト10及び第
2排出ダクト12夫々の両側壁部10a,10b,12
a,12bと蓄熱体2の端面との間にも、第2供給ダク
ト10及び第2排出ダクト12内の圧力と熱交換器室3
内の圧力との差による熱交換器室内気体の第2供給ダク
ト10及び第2排出ダクト12内への移入を許容する間
隙15,16が形成されている。因みに、第1供給ダク
ト6及び第1排出ダクト8と蓄熱体2の端面との間隙1
3,14の実数値例を挙げると、0.1〜0.5mmで
あり、第2供給ダクト10及び第2排出ダクト12と蓄
熱体2の端面との間隙15,16の実数値例を挙げる
と、0.1〜0.5mmである。
As shown in FIG. 6, the first supply duct 6
And both side walls 6a, 6b, 8 of the first discharge duct 8, respectively.
a, 8b and the end face of the heat storage body 2, the gas in the heat exchanger chamber 3 due to the difference between the pressure in the first supply duct 6 and the first discharge duct 8 and the pressure in the heat exchanger chamber 3. First supply duct 6
And a gap 13 permitting transfer into the first discharge duct 8,
14, both side wall portions 10a, 10b, 12 of the second supply duct 10 and the second discharge duct 12, respectively.
a, 12b and the end face of the heat storage body 2, the pressure in the second supply duct 10 and the second discharge duct 12 and the heat exchanger chamber 3
Gaps 15 and 16 are formed to allow the heat exchanger chamber gas to flow into the second supply duct 10 and the second discharge duct 12 due to the difference with the internal pressure. Incidentally, the gap 1 between the first supply duct 6 and the first discharge duct 8 and the end face of the heat storage body 2
Examples of real numerical values 3 and 14 are 0.1 to 0.5 mm, and real numerical examples of gaps 15 and 16 between the second supply duct 10 and the second discharge duct 12 and the end face of the heat storage body 2 are given. And 0.1 to 0.5 mm.

【0019】また、前記第1供給ダクト6及び第1排出
ダクト8夫々の両側壁部6a,6b,8a,8bのそれ
ぞれには、一つの通気路2aの端部開口を覆う大きさ・
形状のシール用覆い板17a,17b,18a,18b
が連設されており、前記第2供給ダクト10及び第2排
出ダクト12夫々の両側壁部10a,10b,12a,
12bのそれぞれにも、一つの通気路2aの端部開口を
覆う大きさ・形状のシール用覆い板19a,19b,2
0a,20bが連設されている。前記燃焼室1には、被
処理気体Gを受け入れる受入口1aと排気gを排出する
排気口1bとが形成されており、受入口1aから受け入
れた被処理気体G中の臭気成分を燃焼処理、つまり酸化
分解処理するバーナ1Aが備えられている。
Each of the both side walls 6a, 6b, 8a, 8b of the first supply duct 6 and the first discharge duct 8 has a size to cover an end opening of one air passage 2a.
Sealing Cover Plates 17a, 17b, 18a, 18b
Are connected to each other, and both side walls 10a, 10b, 12a, of the second supply duct 10 and the second discharge duct 12 are provided.
12b, sealing cover plates 19a, 19b, 2 each having the size and shape to cover the end opening of one ventilation path 2a.
0a and 20b are continuously provided. The combustion chamber 1 is formed with a receiving port 1a for receiving the gas G to be treated and an exhaust port 1b for discharging the exhaust gas g. The odor component in the gas G to be treated received from the receiving port 1a is subjected to combustion processing. That is, a burner 1A for oxidative decomposition treatment is provided.

【0020】前記熱交換器室3には、図1に示すよう
に、前記燃焼室1からの排気gを外部へ排出するための
第2流路22を形成し、蓄熱材2Cを充填した複数の通
気路2aを周方向に並置形成すると共に、前記複数の通
気路2aのうち、燃焼室1からの排気gを前記第2流路
22を介して通過させることにより蓄熱する排気通過状
態であった物が被処理気体通過状態となり、かつ、前記
排気gにより蓄熱した熱量で前記第1流路21を介して
通過させる被処理気体Gを予熱する被処理気体通過状態
であった物が排気通過状態となるように前記通気路2a
に沿った軸芯P周りに駆動回転自在に構成してある蓄熱
体2Cを設けて、熱交換部3Aが構成されている。
As shown in FIG. 1, the heat exchanger chamber 3 is formed with a second flow path 22 for discharging the exhaust gas g from the combustion chamber 1 to the outside, and is filled with a heat storage material 2C. Are formed in parallel with each other in the circumferential direction, and of the plurality of ventilation paths 2a, the exhaust gas g from the combustion chamber 1 is passed through the second flow path 22 so as to store heat. The object that has passed through the first passage 21 with the amount of heat stored by the exhaust g passes through the first passage 21, and the object that passed through the first passage 21 passes through the gas to be treated. So that the air passage 2a
The heat exchange unit 3A is configured by providing a heat storage unit 2C that is configured to be rotatable around the axis P along the axis.

【0021】前記蓄熱体2は、図2の(イ)(ロ)にも
示すように、円筒状の本体2Aを設け、この本体2A内
を周方向複数個の通気路2aに仕切る複数の隔壁2Bを
設け、各通気路2a内に蓄熱材2Cを充填した構造、つ
まり、蓄熱材2Cを充填した複数の通気路2aを周方向
に並置形成した構造のものであって、熱交換器室3内に
軸芯P周りに回転自在に設置されており、熱交換器室3
外のモータ4により駆動されるようになっている。前記
蓄熱材2Cは、図5にも示すように、ステンレスやアル
ミ等の金属製の薄板材を一定高さで複数回折り曲げて波
状に形成したフィンFの上下に板材Bを介してまた別の
フィンFを積層して形成されている。そして、図4に示
すように、燃焼室1側に近い通気路2a内、つまり高温
側に充填する蓄熱材2Cは、一連に形成された波状の隣
り合うフィンFどうしのピッチを大に形成したものを使
用し、反対に、燃焼室1から離れた側の低温側に充填す
る蓄熱材2Cは、一連に形成された波状の隣り合うフィ
ンFどうしのピッチを小に形成したものを使用する。ま
た、隔壁2Bで仕切られた通気路2aに充填した蓄熱材
2Cの両ダクト側における端部は、図4に示すように、
円筒状の本体2Aよりも内側に引退した状態に形成して
あるため、第1供給ダクト6及び第1排出ダクト夫々の
側壁部に連接されたシール用覆い板17a,18aによ
って通気路2aの開口のほとんどが覆われていたとして
も、ダクト内に通気路2aの一部が開口しているならそ
の通気路2a内全体に被処理ガスGを通過させることが
可能である。(第2供給ダクト10及び第2排出ダクト
12における作用効果も同様である。) 因みに、この実施の形態では、本体2A内は16個の通
気路2aに均等分割されている。
As shown in FIGS. 2A and 2B, the heat storage body 2 is provided with a cylindrical main body 2A, and a plurality of partition walls which partition the inside of the main body 2A into a plurality of circumferential air passages 2a. 2B, and a structure in which a heat storage material 2C is filled in each ventilation path 2a, that is, a structure in which a plurality of ventilation paths 2a filled with the heat storage material 2C are formed side by side in the circumferential direction. Is installed rotatably around the axis P inside the heat exchanger room 3
It is driven by an external motor 4. As shown in FIG. 5, the heat storage material 2C is formed by bending a metal thin plate such as stainless steel or aluminum a plurality of times at a certain height to form a corrugated fin F above and below another fin F via a plate B. The fins F are formed by lamination. Then, as shown in FIG. 4, the heat storage material 2 </ b> C filled in the air passage 2 a close to the combustion chamber 1 side, that is, the high-temperature side, formed a large pitch between adjacent fins F formed in a series. On the other hand, as the heat storage material 2C to be charged into the low-temperature side remote from the combustion chamber 1, a pitch formed between adjacent fins F formed in a series and having a small pitch is used. The ends of both sides of the heat storage material 2C filled in the ventilation passage 2a partitioned by the partition 2B are, as shown in FIG.
Since it is formed in a state of being retracted inward from the cylindrical main body 2A, the opening of the ventilation path 2a is formed by the sealing cover plates 17a and 18a connected to the side walls of the first supply duct 6 and the first discharge duct, respectively. Is covered, it is possible to allow the gas to be processed G to pass through the entire ventilation path 2a if a part of the ventilation path 2a is open in the duct. (The same applies to the effects of the second supply duct 10 and the second discharge duct 12.) In this embodiment, the inside of the main body 2A is equally divided into 16 ventilation paths 2a.

【0022】次に、蓄熱型脱臭装置Sにおける気体の流
れに沿って説明する。図1に示すように、被処理気体G
は、第1ダクト6から蓄熱体2に設けた複数の通気路2
aのうち被処理気体G通過域にある通気路2aを通過す
るときに、その通気路2a内にある蓄熱材2Cに接触し
つつ第1排出ダクト8に形成してある受入口1aを介し
て燃焼室1内に排出供給される。このとき、燃焼室に近
い側の通気路2aほど高温になるため被処理ガスGが熱
膨張を起こしてその見かけ上の流速が早くなるが、通気
路2a内における高温側に充填した蓄熱材2Cは、低温
側に充填したものよりもフィンFのピッチを大に形成し
たものを使用しているため、被処理ガスGが通気路2a
内を透過する際に低温側から高温側に向けて熱膨張を起
こしていったとしてもフィンピッチを大に形成した透過
流路を形成してあるから、圧損を生じることなく被処理
ガスGを燃焼室1に向けてスムーズに流すことができ
る。(図4参照) そして、燃焼室1内で被処理気体G中の臭気成分を燃焼
処理するために燃焼室1内のバーナ1Aにより加熱処理
され、燃焼室1内に設けた排気口1bを介して第2供給
ダクト10から蓄熱体2Cに設けた複数の通気路2aを
通過するときに、その通気路2a内にある蓄熱材2Cに
接触しつつ第2排出ダクト12から外部へ排出される。
このとき、加熱処理された排気gは、熱膨張を起こして
その見かけ上の流速が早くなっているが、通気路2a内
における高温側に充填した蓄熱材2Cは、低温側に充填
したものよりもフィンFのピッチを大に形成したものを
使用しているため、圧損を生じることなく排気gを低温
側に向けて流すことができる。また、その際に、蓄熱材
2Cに排気内の熱が蓄熱されながら透過するから、低温
側に向かうほど排気温度が下がって排気gの熱収縮を生
じ、排気gの見かけ上の流速が遅くなるため、高温側に
充填した蓄熱材2Cのようにフィンピッチの大きな物よ
りもフィンピッチを小に形成したものを使用しても圧損
を生じることなく、蓄熱性能を向上させることができ
る。ちなみに、フィンFを形成する金属にステンレスを
採用した場合、耐熱性及び耐久性に優れた物となる。ま
た、コストなどを考慮した場合、高温側では耐熱性及び
耐久性に優れたステンレスを使用し、低温側では安価な
アルミを使用すると言ったように使い分けても良い。
Next, a description will be given along the flow of gas in the thermal storage type deodorizing device S. As shown in FIG.
Are a plurality of ventilation paths 2 provided in the heat storage body 2 from the first duct 6.
When passing through the gas passage 2a in the passage of the gas G to be treated, the gas a contacts the heat storage material 2C in the gas passage 2a via the receiving port 1a formed in the first discharge duct 8. It is discharged and supplied into the combustion chamber 1. At this time, since the temperature of the gas passage 2a closer to the combustion chamber becomes higher, the gas G to be processed undergoes thermal expansion and its apparent flow velocity becomes faster. However, the heat storage material 2C filled in the high temperature side in the gas passage 2a Uses a gas in which the pitch of the fins F is larger than that of the gas charged on the low-temperature side.
Even when thermal expansion occurs from the low-temperature side to the high-temperature side when passing through the inside, since the permeation flow path having a large fin pitch is formed, the gas G to be processed can be formed without pressure loss. It can flow smoothly toward the combustion chamber 1. (Refer to FIG. 4) Then, in order to burn out the odor component in the gas G to be treated in the combustion chamber 1, the odor component is heated by a burner 1 </ b> A in the combustion chamber 1, and is discharged through an exhaust port 1 b provided in the combustion chamber 1. When passing from the second supply duct 10 through the plurality of ventilation paths 2a provided in the heat storage body 2C, the heat is discharged from the second discharge duct 12 to the outside while contacting the heat storage material 2C in the ventilation path 2a.
At this time, the heat-treated exhaust g undergoes thermal expansion and has an apparent higher flow velocity. However, the heat storage material 2C filled in the high-temperature side in the ventilation path 2a is larger than that filled in the low-temperature side. Also, since the fins F having a large pitch are used, the exhaust g can flow toward the low temperature side without causing pressure loss. Further, at this time, since the heat in the exhaust gas is transmitted while being stored in the heat storage material 2C, the exhaust gas temperature decreases toward the lower temperature side, causing thermal contraction of the exhaust g, and the apparent flow velocity of the exhaust g decreases. Therefore, even when a material having a smaller fin pitch than a material having a large fin pitch, such as the heat storage material 2C filled on the high temperature side, is used, heat storage performance can be improved without causing pressure loss. By the way, when stainless steel is used as the metal forming the fin F, the fin F is excellent in heat resistance and durability. In consideration of cost and the like, stainless steel having excellent heat resistance and durability may be used on the high temperature side, and inexpensive aluminum may be used on the low temperature side.

【0023】この燃焼室1からの排気gを第2流路22
を介して通過させるときに、その通気路2a内にある蓄
熱材2Cに蓄熱する一方、燃焼室1に供給する被処理気
体Gを第1流路21を介して通気路2aを通過させると
きに、排気gから蓄熱した熱量で被処理気体Gを予熱で
きるように排気通過状態であった物が被処理気体通過状
態となり、かつ、被処理気体通過状態であった物が排気
通過状態となるように回転軸芯P周りに駆動回転自在に
蓄熱体2が構成されている。
The exhaust g from the combustion chamber 1 is supplied to the second passage 22
When passing through the first passage 21, heat is stored in the heat storage material 2C in the ventilation passage 2a, and when the gas G to be supplied to the combustion chamber 1 is passed through the ventilation passage 2a through the first flow passage 21. The object that has been in the exhaust gas passage state is now in the gas passage state, and the object that has been in the gas passage state is in the exhaust gas passage state so that the gas G to be treated can be preheated with the heat stored from the exhaust g. The heat storage body 2 is configured to be rotatable around the rotation axis P.

【0024】因みに、温度の実数値例を挙げると、第1
供給ダクト6での被処理気体Gの温度は160℃、蓄熱
体2により加熱された被処理気体Gを受け入れる第1排
出ダクト8での被処理気体Gの温度は670℃、燃焼後
の第2供給ダクト10での排気温度は760℃、蓄熱体
2を加熱した後の排気gを受け入れる第2排出ダクト1
2での排気gの温度は300℃である。 〔別実施形態〕以下に他の実施形態を説明する。 〈1〉蓄熱材は先の実施形態で説明したフィンのピッチ
を変えることによって各流路の流路断面の大きさを変更
する構成に限るものではなく、例えば、図7(イ)に示
すように、高温側の通気路2a内に直径の大きな球形形
状の蓄熱材2Cを充填すると共に、低温側の通気路2a
内に直径の小さな球形形状の蓄熱材2Cを充填したもの
であっても良い。つまり、直径の大きな蓄熱材2Cを充
填したときに形成される隙間は大きなものとなり、直径
の小さな蓄熱材2Cを充填したときに形成される隙間は
小さなものとなるため、異なった直径を有した蓄熱材2
Cを通気路2a内の空間に充填するだけの操作で異なっ
た大きさの隙間を形成することができ、通気路2aにお
ける各流路2D断面の形成作業の作業性を向上させるこ
とができる。蓄熱材の形状は球形のものに限らず任意で
ある。すなわち、充填したときに形成される隙間の大き
さが蓄熱材を充填するだけで任意の大きさの隙間が形成
される形状のものであれば良い。 〈2〉各流路を形成するには上記構成のものに限るもの
ではなく、例えば、図7(ロ)に示すように、通気路2
a内に複数の板状の蓄熱材壁2E(蓄熱材の一例)を設
置形成する際に、高温側ほど蓄熱材壁2Eどうしの壁間
距離を大きくとると共に、低温側ほど蓄熱材壁2Eどう
しの壁間距離を小さくとることによって流路2Dを形成
する構成のものであっても良い。これだと、蓄熱材2C
の設置作業に伴って流路を、高温側ほどその流路断面を
大に、低温側ほどその流路断面を小に形成することがで
きるため、流路形成作業の作業性を向上させることがで
きるようになった。 〈3〉各流路を形成するには上記構成のものに限るもの
ではなく、例えば、図7(ハ)に示すように、蓄熱材2
Cが連通孔2Fの大きさの異なったセラミックス2G
(蓄熱材の一例)で形成されたものであっても良い。こ
れだと、通気路2aにおける高温側ほど連通孔2Fの大
きな多孔セラミックス2Gを設置すると共に、低温側ほ
ど連通孔の小さな多孔セラミックス2Gを設置するだけ
の作業で高温側ほどその流路断面を大に、低温側ほどそ
の流路断面を小に形成することができるため、流路形成
作業の作業性を向上させることができる。 〈4〉各流路を形成するには上記構成のものに限るもの
ではなく、例えば、図7(ニ)に示すように、径の異な
った金属製又はセラミックス性のパイプ(蓄熱材の一
例)を使用したものであっても良い。つまり、高温側ほ
ど径の大きなパイプ2Hを軸芯P方向複数段に充填する
と共に、低温側ほど径の小さなパイプ2Hを軸芯P方向
複数段に充填することによって、高温側ほどその流路断
面を大に、低温側ほどその流路断面を小に形成すること
ができるため、流路形成作業の作業性を向上させること
ができる。
By the way, an example of the real value of the temperature is as follows.
The temperature of the gas G to be treated in the supply duct 6 is 160 ° C., the temperature of the gas G to be treated in the first discharge duct 8 that receives the gas G to be treated heated by the heat storage unit 2 is 670 ° C., and the temperature of the second gas after combustion is The exhaust temperature in the supply duct 10 is 760 ° C., and the second exhaust duct 1 that receives the exhaust g after heating the heat storage body 2
The temperature of the exhaust g at 2 is 300 ° C. [Another Embodiment] Another embodiment will be described below. <1> The heat storage material is not limited to the configuration in which the size of the cross section of each flow channel is changed by changing the pitch of the fins described in the above embodiment. For example, as shown in FIG. Is filled with a large-diameter spherical heat storage material 2C in the high-temperature side ventilation path 2a, and the low-temperature side ventilation path 2a
It may be filled with a spherical heat storage material 2C having a small diameter. In other words, the gap formed when the heat storage material 2C having a large diameter is filled becomes large, and the gap formed when the heat storage material 2C having a small diameter is filled becomes small, so that the gap has a different diameter. Heat storage material 2
It is possible to form gaps of different sizes only by filling the space in the ventilation path 2a with C, and it is possible to improve the workability of forming the cross section of each flow path 2D in the ventilation path 2a. The shape of the heat storage material is not limited to a spherical shape, and is arbitrary. That is, the size of the gap formed at the time of filling may be any shape as long as a gap of an arbitrary size is formed only by filling the heat storage material. <2> The formation of each flow path is not limited to the above configuration. For example, as shown in FIG.
When a plurality of plate-shaped heat storage material walls 2E (an example of a heat storage material) are installed and formed in a, the distance between the heat storage material walls 2E is increased on the higher temperature side, and the heat storage material walls 2E on the lower temperature side. The flow path 2D may be formed by reducing the distance between the walls. In this case, heat storage material 2C
With the installation work, the flow path can be formed to have a larger cross section on the higher temperature side and smaller on the lower temperature side, so that the workability of the flow path forming operation can be improved. Now you can. <3> The formation of each flow path is not limited to the above-described configuration. For example, as shown in FIG.
C is a ceramic 2G having a communication hole 2F having a different size.
(An example of a heat storage material) may be used. In this case, the porous ceramics 2G having the larger communication holes 2F are installed on the higher temperature side of the ventilation passage 2a, and the cross section of the flow channel is increased on the higher temperature side by merely installing the porous ceramics 2G having the smaller communication holes on the lower temperature side. In addition, the lower the temperature, the smaller the cross section of the flow path can be formed, so that the workability of the flow path forming operation can be improved. <4> The formation of each flow path is not limited to the above-described configuration. For example, as shown in FIG. 7D, metal or ceramic pipes having different diameters (an example of a heat storage material) May be used. That is, the pipe 2H having a larger diameter is filled in a plurality of stages in the direction of the axis P on the higher temperature side, and the pipe 2H having a smaller diameter is filled in a plurality of stages in the direction of the axis P on the lower side. The flow path cross-section can be made smaller as the temperature increases, and the workability of the flow path forming operation can be improved.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の一実施形態の蓄熱型脱臭装置を示す概
略縦断側面図
FIG. 1 is a schematic longitudinal sectional side view showing a heat storage type deodorizing apparatus according to an embodiment of the present invention.

【図2】本発明の一実施形態の蓄熱材を示す斜視図FIG. 2 is a perspective view showing a heat storage material according to one embodiment of the present invention.

【図3】本発明の一実施形態の蓄熱体を示す縦断正面図FIG. 3 is a longitudinal sectional front view showing a heat storage body according to an embodiment of the present invention.

【図4】本発明の一実施形態の蓄熱体要部を示す縦断側
面図
FIG. 4 is a longitudinal sectional side view showing a main part of a heat storage body according to one embodiment of the present invention.

【図5】本発明の一実施形態の蓄熱体を示す展開断面図FIG. 5 is a developed cross-sectional view showing a heat storage body according to one embodiment of the present invention.

【図6】本発明の一実施形態の蓄熱型脱臭装置を示す展
開断面図
FIG. 6 is a developed sectional view showing a heat storage type deodorizing apparatus according to an embodiment of the present invention.

【図7】別実施形態の蓄熱体要部を示す縦断側面図FIG. 7 is a longitudinal sectional side view showing a main part of a heat storage body according to another embodiment.

【符号の説明】[Explanation of symbols]

1 燃焼室 2a 通気路 2C 蓄熱材 2E 蓄熱材壁 2F 連通孔 3A 熱交換部 G 被処理気体 g 排気 P 回転軸芯 DESCRIPTION OF SYMBOLS 1 Combustion chamber 2a Ventilation path 2C Heat storage material 2E Heat storage material wall 2F Communication hole 3A Heat exchange part G Gas to be treated g Exhaust P Rotary shaft core

───────────────────────────────────────────────────── フロントページの続き (72)発明者 尾西 修 大阪府大阪市東成区中道一丁目4番2号 大阪ガスエンジニアリング株式会社内 (72)発明者 小峰 高吉 神奈川県横浜市泉区新橋町1029番地19号 (72)発明者 大原 政美 静岡県清水市西久保446番地11号 Fターム(参考) 3K078 BA17 EA02 EA06 EA07 EA09 4D002 AB03 AC10 BA05 CA05 HA08 ──────────────────────────────────────────────────続 き Continuing on the front page (72) Osamu Onishi, Osaka Gas Engineering Co., Ltd. 1-4-2 Nakamichi, Higashinari-ku, Osaka, Osaka Prefecture (72) Inventor Takayoshi Komine Shimbashi-cho, Izumi-ku, Yokohama-shi, Kanagawa 1029 No. 19 (72) Inventor Masami Ohara 446 No. 11 Nishikubo, Shimizu-shi, Shizuoka F-term (reference) 3K078 BA17 EA02 EA06 EA07 EA09 4D002 AB03 AC10 BA05 CA05 HA08

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】 被処理気体中の臭気成分を燃焼処理する
燃焼室を設け、蓄熱材を充填した複数の通気路を周方向
に並置形成すると共に、前記複数の通気路のうち、燃焼
室からの排気を通過させることにより蓄熱する排気通過
状態であった物が被処理気体通過状態となり、かつ、通
過させる被処理気体を前記排気により蓄熱した熱量で予
熱する被処理気体通過状態であった物が排気通過状態と
なるように前記通気路に沿った軸芯周りに駆動回転自在
に構成してある蓄熱体を設けて、熱交換部を構成してあ
る蓄熱型脱臭装置であって、前記蓄熱材を充填した通気
路内における各流路断面を、高温側ほどその流路断面が
大となるように形成してある蓄熱型脱臭装置。
1. A combustion chamber for combusting an odor component in a gas to be treated is provided, a plurality of ventilation paths filled with a heat storage material are formed side by side in a circumferential direction, and among the plurality of ventilation paths, The object that was in the exhaust gas passing state in which heat is stored by passing the exhaust gas becomes the gas to be processed state, and the object that was in the gas passing state in which the gas to be passed is preheated by the amount of heat stored by the exhaust gas. A heat storage type deodorizing device, comprising: a heat storage body that is configured to be rotatable and rotatable around an axis along the ventilation path such that the heat storage device is in an exhaust passage state; A heat storage type deodorizing device, wherein the cross section of each flow path in an air passage filled with a material is formed such that the cross section of the flow path becomes larger as the temperature becomes higher.
【請求項2】 前記各流路が、前記通気路内に充填した
複数の蓄熱材どうしの隙間により形成されている請求項
1記載の蓄熱型脱臭装置。
2. The heat storage type deodorizing device according to claim 1, wherein each of the flow paths is formed by a gap between a plurality of heat storage materials filled in the ventilation path.
【請求項3】 前記各流路が、前記通気路内に充填した
複数の蓄熱材壁間に形成された空間により形成されてい
る請求項1記載の蓄熱型脱臭装置。
3. The heat storage type deodorizing device according to claim 1, wherein each of the flow paths is formed by a space formed between a plurality of heat storage material walls filled in the ventilation path.
【請求項4】 前記各流路が、前記通気路内に充填した
蓄熱材に形成の連通孔により形成されている請求項1記
載の蓄熱型脱臭装置。
4. The heat storage type deodorizing device according to claim 1, wherein each of the flow paths is formed by a communication hole formed in a heat storage material filled in the ventilation path.
JP2000177905A 2000-06-14 2000-06-14 Heat storage type deodorizing device Pending JP2001355821A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2000177905A JP2001355821A (en) 2000-06-14 2000-06-14 Heat storage type deodorizing device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2000177905A JP2001355821A (en) 2000-06-14 2000-06-14 Heat storage type deodorizing device

Publications (1)

Publication Number Publication Date
JP2001355821A true JP2001355821A (en) 2001-12-26

Family

ID=18679427

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000177905A Pending JP2001355821A (en) 2000-06-14 2000-06-14 Heat storage type deodorizing device

Country Status (1)

Country Link
JP (1) JP2001355821A (en)

Similar Documents

Publication Publication Date Title
CN106415146B (en) Concurrent heat exchanger with heat exchange channels extending transversely along main flow direction
JP3595360B2 (en) Combustion control method for tubular heating furnace and tubular heating furnace
KR100678335B1 (en) Regenerative thermal oxidizer with no switching vlave
JPH03110356A (en) Boiler
JP2017078567A (en) Heat exchanger
US3468634A (en) Concentric tube odor eliminator
JPH0351696A (en) Lamination type heat exchanger
US4836183A (en) Rotary body room air heater
JP2001355821A (en) Heat storage type deodorizing device
JP2001355979A (en) Heat storage type deodorizing apparatus
CN107781829A (en) A kind of rotation RTO bodies of heater and its heat preserving method that can realize interim blowing out insulation
JP3583057B2 (en) Rotary heat exchanger
JP2008045762A (en) Valve and heat storage type deodorizing device
JPS63302296A (en) Indirect type air heater
JP2000193228A (en) Combustion type deodorizer
JP2001027412A (en) Regenerative combustion burner
JP2002349727A (en) Passage selector valve and waste gas treatment equipment
JP2004069164A (en) Deodorizing device
JP3310503B2 (en) Industrial furnaces and burners for regenerative combustion
JP3720905B2 (en) Industrial furnace combustion equipment
JPH0243114B2 (en)
JP3583024B2 (en) Thermal storage deodorizer
KR200380624Y1 (en) Regenerative thermal oxidizer with no switching vlave
KR100297112B1 (en) Air conditioner
JPH0225549A (en) Cast ingot continuous heating furnace

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20040108

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20040305

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20040513