JP2001354733A - Side chain type liquid crystalline polymer and method for producing the same - Google Patents

Side chain type liquid crystalline polymer and method for producing the same

Info

Publication number
JP2001354733A
JP2001354733A JP2000137238A JP2000137238A JP2001354733A JP 2001354733 A JP2001354733 A JP 2001354733A JP 2000137238 A JP2000137238 A JP 2000137238A JP 2000137238 A JP2000137238 A JP 2000137238A JP 2001354733 A JP2001354733 A JP 2001354733A
Authority
JP
Japan
Prior art keywords
side chain
liquid crystal
crystal polymer
monomer unit
type liquid
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2000137238A
Other languages
Japanese (ja)
Inventor
Sadahiro Nakanishi
貞裕 中西
Shusaku Nakano
秀作 中野
Shu Mochizuki
周 望月
Masahiro Yoshioka
昌宏 吉岡
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nitto Denko Corp
Original Assignee
Nitto Denko Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nitto Denko Corp filed Critical Nitto Denko Corp
Priority to JP2000137238A priority Critical patent/JP2001354733A/en
Publication of JP2001354733A publication Critical patent/JP2001354733A/en
Pending legal-status Critical Current

Links

Landscapes

  • Liquid Crystal Substances (AREA)
  • Addition Polymer Or Copolymer, Post-Treatments, Or Chemical Modifications (AREA)
  • Polarising Elements (AREA)
  • Liquid Crystal (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a liquid crystalline polymer which has a controllable refraction index or birefringence. SOLUTION: The side chain type liquid crystalline polymer comprises (a) a monomer unit having a liquid crystalline fragmental side chain and (b) a monomer unit having a non-liquid crystalline fragmental side chain of an amomatic ring.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、側鎖型液晶ポリマ
ーおよびその製造方法に関する。本発明の側鎖型液晶ポ
リマーは、光学素子に好適な屈折率特性および複屈折率
特性を有し、たとえば、視角補償板、位相差板、コレス
テリック反射板等の各種光学素子に用いられる。
The present invention relates to a side chain type liquid crystal polymer and a method for producing the same. The side chain type liquid crystal polymer of the present invention has a refractive index characteristic and a birefringence characteristic suitable for an optical element, and is used for various optical elements such as a viewing angle compensator, a retardation plate and a cholesteric reflector.

【0002】[0002]

【従来の技術】液晶ポリマーは光学的異方特性を有する
ことから、液晶ディスプレイなどの光学用途への応用例
が数多く報告されている。たとえば、液晶ポリマーは、
その複屈折現象を利用して、視角補償板、位相差板、コ
レステリック反射板などの用途に用いられている。一般
に、サーモトロピック性の液晶ポリマーでは、ポリマー
を適当な温度に加熱するか、あるいは等方相からの冷却
によつて複屈折性を発現させることができ、当該複屈折
性は常光屈折率および異常光屈折率の差として表され
る。
2. Description of the Related Art Since liquid crystal polymers have optically anisotropic properties, many applications to optical applications such as liquid crystal displays have been reported. For example, a liquid crystal polymer is
Utilizing the birefringence phenomenon, it is used for applications such as a viewing angle compensator, a retardation plate, and a cholesteric reflector. In general, a thermotropic liquid crystal polymer can exhibit birefringence by heating the polymer to an appropriate temperature or by cooling from an isotropic phase. Expressed as the difference in light refractive index.

【0003】しかし、前記液晶ポリマーの屈折率および
複屈折性は、液晶ポリマーに固有な値であるため、液晶
ポリマーの屈折率および複屈折性を変化させるには液晶
ポリマーの素材そのものを変えて各々の液晶ポリマーの
屈折率および複屈折性を確認しなければならなかった。
However, since the refractive index and birefringence of the liquid crystal polymer are values unique to the liquid crystal polymer, changing the refractive index and birefringence of the liquid crystal polymer requires changing the material of the liquid crystal polymer itself. It was necessary to confirm the refractive index and birefringence of the liquid crystal polymer.

【0004】[0004]

【発明が解決しようとする課題】そこで本発明の目的
は、屈折率特性または複屈折率特性を制御しうる液晶ポ
リマーを提供することにある。
SUMMARY OF THE INVENTION An object of the present invention is to provide a liquid crystal polymer capable of controlling the refractive index characteristics or birefringence characteristics.

【0005】[0005]

【課題を解決するための手段】本発明者らは、上記課題
を解決すべく鋭意検討を重ねた結果、以下に示す側鎖型
液晶ポリマーにより、上記目的を達成しうることを見出
し本発明を完成するに至った。
Means for Solving the Problems The present inventors have made intensive studies to solve the above problems, and as a result, have found that the above object can be achieved by the following side chain type liquid crystal polymer. It was completed.

【0006】すなわち、本発明は、液晶性のフラグメン
ト側鎖を含有するモノマーユニット(a)と非液晶性の
芳香環フラグメント側鎖を含有するモノマーユニット
(b)を含有することを特徴とする側鎖型液晶ポリマ
ー、に関する。
That is, the present invention is characterized in that it comprises a monomer unit (a) containing a liquid crystal fragment side chain and a monomer unit (b) containing a non-liquid crystal aromatic ring fragment side chain. A chain type liquid crystal polymer.

【0007】本発明の側鎖型液晶ポリマーは、液晶性の
フラグメント側鎖を含有するモノマーユニット(a)の
他に、非液晶性の芳香環フラグメント側鎖を含有するモ
ノマーユニット(b)を有しているため、当該モノマー
ユニット(b)の割合(共重合比)を適宜に調整して側
鎖型液晶ポリマーを製造することにより、モノマーユニ
ット(a)の単独からなる側鎖型液晶ポリマーよりも屈
折率を小さくすることで側鎖型液晶ポリマーの屈折率を
所望の値に制御しうる。こうした側鎖型液晶ポリマーの
屈折率の制御により、当該側鎖型液晶ポリマーの複屈折
率も制御することができ、高性能な光学素子の作製が可
能となる。
The side chain type liquid crystal polymer of the present invention has a monomer unit (b) containing a non-liquid crystal aromatic ring fragment side chain in addition to a monomer unit (a) containing a liquid crystal fragment side chain. Therefore, by appropriately adjusting the ratio (copolymerization ratio) of the monomer unit (b) to produce a side-chain type liquid crystal polymer, the side-chain type liquid crystal polymer consisting of the monomer unit (a) alone can be produced. Also, by reducing the refractive index, the refractive index of the side chain type liquid crystal polymer can be controlled to a desired value. By controlling the refractive index of the side-chain liquid crystal polymer, the birefringence of the side-chain liquid crystal polymer can also be controlled, and a high-performance optical element can be manufactured.

【0008】前記モノマーユニット(a)におけるフラ
グメント側鎖は、アルコキシ基、シアノ基、フルオロ基
およびアルキル基から選ばれるいずれか少なくとも一つ
の置換基を、当該フラグメント側鎖の分子長軸に対して
平行な方向に(対象に)含むことが好ましい。このよう
な置換基を有するフラグメント側鎖を有するモノマーユ
ニットは、良好な屈折率特性、複屈折率特性を示す。
The fragment side chain in the monomer unit (a) has at least one substituent selected from an alkoxy group, a cyano group, a fluoro group and an alkyl group in parallel with the molecular length axis of the fragment side chain. It is preferable to include (in the object) in any direction. A monomer unit having a fragment side chain having such a substituent exhibits good refractive index characteristics and birefringence characteristics.

【0009】前記モノマーユニット(a)としては、た
とえば、一般式(a):
The monomer unit (a) includes, for example, a compound represented by the following general formula (a):

【化4】 (ただし、R1 は水素原子またはメチル基を、aは1〜
6の正の整数を、X1 は−CO2 −基または−OCO−
基を、R2 はシアノ基、アルコキシ基、フルオロ基また
はアルキル基を、bおよびcはそれぞれ1または2の整
数を示す。)で表されるモノマーユニットがあげられ
る。かかる一般式(a)で表されるモノマーユニットが
屈折率特性、複屈折率特性において好ましい。
Embedded image (However, R 1 is a hydrogen atom or a methyl group, a is 1 to
A positive integer of 6, X 1 represents a —CO 2 — group or —OCO—
R 2 represents a cyano group, an alkoxy group, a fluoro group or an alkyl group; b and c each represent an integer of 1 or 2; )). The monomer unit represented by the general formula (a) is preferable in the refractive index characteristics and the birefringence characteristics.

【0010】一方、前記モノマーユニット(b)におけ
るフラグメント側鎖は、非液晶性で、芳香環を有するも
のである。このような置換基を有する側鎖を有するモノ
マーユニットにより、屈折率特性、複屈折率特性の制御
が可能である。かかる芳香環フラグメント側鎖を有す
る、一般式(b)で表されるモノマーユニットの割合を
多くすることにより常光屈折率を大きくすることがで
き、また複屈折率を小さくすることができる。
On the other hand, the fragment side chain in the monomer unit (b) is non-liquid crystalline and has an aromatic ring. With the monomer unit having a side chain having such a substituent, the refractive index characteristics and the birefringence characteristics can be controlled. The ordinary light refractive index can be increased and the birefringence can be decreased by increasing the proportion of the monomer unit represented by the general formula (b) having such an aromatic ring fragment side chain.

【0011】前記モノマーユニット(b)としては、た
とえば、一般式(b):
As the monomer unit (b), for example, a compound represented by the general formula (b):

【化5】 (ただし、R3 は水素原子またはメチル基を、X2 は−
CO2 −基または−OCO−基、−O−または単結合
を、R4 は一般式(c):
Embedded image (However, R 3 represents a hydrogen atom or a methyl group, and X 2 represents-
R 2 represents a CO 2 — group or —OCO— group, —O— or a single bond, and R 4 has the general formula (c):

【化6】 で表される置換基を示す。)で表されるモノマーユニッ
トがあげられる。かかる一般式(b)で表されるモノマ
ーユニットが屈折率特性の制御において好ましい。
Embedded image And a substituent represented by )). The monomer unit represented by the general formula (b) is preferable in controlling the refractive index characteristics.

【0012】また、モノマーユニット(a)とモノマー
ユニット(b)の割合は、特に制限されるものではな
く、モノマーユニットの種類にもよって異なるが、モノ
マーユニット(b)の割合が多くなると側鎖型液晶ポリ
マーが液晶モノドメイン配向性を示さなくなるため、
(b)/{(a)+(b)}=0. 01〜0. 8(モル
比)とするのが好ましい。かかる範囲で、モノマーユニ
ット(b)の割合を適宜に変更して、側鎖型液晶ポリマ
ーの屈折率特性、複屈折率特性を制御する。
The ratio of the monomer unit (a) to the monomer unit (b) is not particularly limited, and differs depending on the type of the monomer unit. Liquid crystal polymer does not show liquid crystal monodomain alignment,
(B) / {(a) + (b)} = 0.01 to 0.8 (molar ratio) is preferable. Within this range, the ratio of the monomer unit (b) is appropriately changed to control the refractive index characteristics and birefringence characteristics of the side chain type liquid crystal polymer.

【0013】また、側鎖型液晶ポリマーの重量平均分子
量が、2千〜10万であるのが好ましい。重量平均分子
量をかかる範囲に調整することにより液晶ポリマーとし
ての性能を発揮する。側鎖型液晶ポリマーの重量平均分
子量が過少では非流動層としての成膜性に乏しくなる傾
向があるため、重量平均分子量は2.5千以上とするの
がより好ましい。一方、重量平均分子量が過多では液晶
としての配向性、特にラビング配向膜等を介したモノド
メイン化に乏しくなって均一な配向状態を形成しにくく
なる傾向があるため、重量平均分子量は5万以下とする
のがより好ましい。
The weight average molecular weight of the side chain type liquid crystal polymer is preferably from 2,000 to 100,000. By adjusting the weight average molecular weight in such a range, performance as a liquid crystal polymer is exhibited. If the weight average molecular weight of the side chain type liquid crystal polymer is too small, the film formability as a non-fluidized layer tends to be poor, so the weight average molecular weight is more preferably at least 25,000. On the other hand, if the weight average molecular weight is too large, the orientation as a liquid crystal, especially the monodomain formation via a rubbing alignment film or the like tends to be poor, and it is difficult to form a uniform alignment state, so that the weight average molecular weight is 50,000 or less. More preferably,

【0014】また、本発明の側鎖型液晶ポリマーは、通
常、モノドメイン配向性を有するものであり、任意の屈
折率値、複屈折率値のものが得られることから、液晶ポ
リマーの光学異方性を利用した各種の光学材料の高性能
化が可能となる。
The side chain type liquid crystal polymer of the present invention generally has a monodomain orientation, and can have any refractive index and birefringence. It is possible to improve the performance of various optical materials utilizing anisotropy.

【0015】さらに、本発明は、液晶性のフラグメント
側鎖を含有するモノマー(a)と、非液晶性の芳香環フ
ラグメント側鎖を含有するモノマー(b)を共重合する
ことにより、モノマー(a)の液晶性のフラグメント側
鎖の屈折率特性または複屈折率特性を制御することを特
徴とする前記側鎖型液晶ポリマーの製造方法、に関す
る。
Further, the present invention provides a method for producing a monomer (a) by copolymerizing a monomer (a) containing a liquid crystal fragment side chain and a monomer (b) containing a non-liquid crystal aromatic ring fragment side chain. And b) controlling the refractive index characteristic or birefringence characteristic of the liquid crystal fragment side chain.

【0016】前記側鎖型液晶ポリマーは、液晶性のフラ
グメント側鎖を含有するモノマー(a)の共重合成分と
して、非液晶性の芳香環フラグメント側鎖を含有するモ
ノマー(b)を用いたものであり、モノマー(b)の割
合を適宜に調整することにより、モノマー(a)の液晶
性のフラグメント側鎖の屈折率特性または複屈折率特性
を所望の値になるように制御した側鎖型液晶ポリマーを
製造することができる。
The side chain type liquid crystal polymer comprises a monomer (b) containing a non-liquid crystal aromatic ring fragment side chain as a copolymerization component of a monomer (a) containing a liquid crystal fragment side chain. By appropriately adjusting the proportion of the monomer (b), the side chain type in which the refractive index characteristic or birefringence characteristic of the liquid crystal fragment side chain of the monomer (a) is controlled to a desired value. Liquid crystal polymers can be manufactured.

【0017】また、本発明は、液晶性のフラグメント側
鎖を含有するモノマーユニット(a)を含有する側鎖型
液晶ポリマーの屈折率特性または複屈折特性を、前記側
鎖型液晶ポリマーに、共重合モノマーユニットとして、
非液晶性の芳香環フラグメント側鎖を含有するモノマー
ユニット(b)を含有させ、モノマーユニット(b)の
割合を変化させることにより、所望の値に制御する方
法、に関する。
Further, according to the present invention, the refractive index characteristic or the birefringence characteristic of the side chain type liquid crystal polymer containing the monomer unit (a) containing the liquid crystal fragment side chain is shared with the side chain type liquid crystal polymer. As a polymerization monomer unit,
The present invention relates to a method for controlling a desired value by containing a monomer unit (b) containing a side chain of a non-liquid crystalline aromatic ring fragment and changing the ratio of the monomer unit (b).

【0018】非液晶性の芳香環フラグメント側鎖を含有
するモノマーユニット(b)の割合の調整により、側鎖
型液晶ポリマーの屈折率特性、複屈折特性の制御ができ
る。
The refractive index characteristics and the birefringence characteristics of the side chain type liquid crystal polymer can be controlled by adjusting the ratio of the monomer unit (b) containing a non-liquid crystalline aromatic ring side chain.

【0019】さらに、本発明は、前記側鎖型液晶ポリマ
ーからなる光学素子に関する。さらに、本発明は、前記
光学素子を用いた液晶ディスプレイに関する。本発明の
側鎖型液晶ポリマーは、光学素子として有用で、液晶デ
ィスプレイに用いられる。
Further, the present invention relates to an optical element comprising the side chain type liquid crystal polymer. Further, the present invention relates to a liquid crystal display using the optical element. The side chain type liquid crystal polymer of the present invention is useful as an optical element and used for a liquid crystal display.

【0020】[0020]

【発明の実施の形態】本発明の側鎖型液晶ポリマーは、
前記モノマーユニット(a)、モノマーユニット(b)
に対応するアクリル系モノマーまたはメタクリル系モノ
マーを共重合することにより調製できる。なお、モノマ
ーユニット(a)、モノマーユニット(b)に対応する
モノマーは公知の方法により合成できる。モノマーユニ
ット(a)中の置換基となりうるアルキル基、アルコキ
シ基の炭素数は通常1〜6程度のものが用いられる。
BEST MODE FOR CARRYING OUT THE INVENTION The side chain type liquid crystal polymer of the present invention comprises
The monomer unit (a) and the monomer unit (b)
Can be prepared by copolymerizing an acrylic monomer or a methacrylic monomer corresponding to the above. The monomers corresponding to the monomer units (a) and (b) can be synthesized by a known method. An alkyl group or an alkoxy group which can be a substituent in the monomer unit (a) usually has about 1 to 6 carbon atoms.

【0021】共重合体の調製は、例えばラジカル重合方
式、カチオン重合方式、アニオン重合方式などの通例の
アクリル系モノマー等の重合方式に準じて行うことがで
きる。なお、ラジカル重合方式を適用する場合、各種の
重合開始剤を用いうるが、そのうちアゾビスイソブチロ
ニトリルや過酸化ベンゾイルなどの分解温度が高くもな
く、かつ低くもない中間的温度で分解するものが好まし
く用いられる。
The preparation of the copolymer can be carried out in accordance with a conventional polymerization system of acrylic monomers such as a radical polymerization system, a cationic polymerization system, and an anion polymerization system. When the radical polymerization method is applied, various polymerization initiators can be used, but the decomposition temperature of azobisisobutyronitrile or benzoyl peroxide is not high, and decomposes at an intermediate temperature that is not low. Are preferably used.

【0022】得られた側鎖型液晶ポリマーは、従来の配
向処理に準じた方法により、ネマチック液晶配向の非流
動層を形成する。配向処理法としては、たとえば、プラ
スチック基板上にポリイミドやポリビニルアルコール等
からなる配向膜を形成してそれをレーヨン布等でラビン
グ処理した後、その上に液晶ポリマーを展開してガラス
転移温度以上、等方相転移温度未満に加熱し、液晶ポリ
マー分子が配向した状態でガラス転移温度未満に冷却し
てガラス状態とし、当該配向が固定化された固化層を形
成する方法等が挙げられる。さらに,液晶ポリマーの配
向方法として上記ラビングの代わりに延伸フィルムを配
向膜として用いる方法やシンナメートやアゾベンゼンを
有するポリマーあるいはポリイミドに偏光紫外線を照射
して配向膜とする方法、磁場、電磁配向、ずり応力操
作、あるいは延伸による配向操作を用いることができ
る。
The obtained side chain type liquid crystal polymer forms a non-fluid layer having nematic liquid crystal alignment by a method according to a conventional alignment treatment. As an alignment treatment method, for example, after forming an alignment film made of polyimide or polyvinyl alcohol on a plastic substrate, rubbing it with a rayon cloth or the like, then developing a liquid crystal polymer on the film, and applying a glass transition temperature or higher, A method in which the liquid crystal polymer molecules are heated to a temperature lower than the isotropic phase transition temperature, cooled to a temperature lower than the glass transition temperature in a state where the liquid crystal polymer molecules are oriented to a glass state, and a solidified layer in which the orientation is fixed is formed. In addition, as a method of aligning the liquid crystal polymer, a method of using a stretched film as an alignment film instead of the above rubbing, a method of irradiating a polymer or polyimide containing cinnamate or azobenzene with polarized ultraviolet light to form an alignment film, a magnetic field, electromagnetic alignment, shear stress An operation or an orientation operation by stretching can be used.

【0023】前記の基板としては、例えばトリアセチル
セルロースやポリビニルアルコール、ポリイミドやポリ
アリレート、ポリエステルやポリカーボネート、ポリス
ルホンやポリエーテルスルホン、エポキシ系樹脂の如き
プラスチックからなるフィルム、あるいはガラス板など
の適宜なものを用いうる。基板上に形成した液晶ポリマ
ーの非流動層は、基板との一体物としてそのまま光学素
子の形成に用いることができ、基板より剥離してフィル
ムなどからなる光学素子の形成に用いることもできる。
As the substrate, for example, a film made of a plastic such as triacetyl cellulose, polyvinyl alcohol, polyimide, polyarylate, polyester, polycarbonate, polysulfone, polyethersulfone, or epoxy resin, or an appropriate substrate such as a glass plate Can be used. The non-fluidized layer of the liquid crystal polymer formed on the substrate can be used as it is with the substrate for forming an optical element as it is, or can be peeled off from the substrate and used for forming an optical element composed of a film or the like.

【0024】液晶ポリマーの展開は、加熱溶融方式によ
ってもよいし、溶剤による溶液として展開することもで
きる。その溶剤としては、例えば塩化メチレンやシクロ
ヘキサノン、トリクロロエチレンやテトラクロロエタ
ン、N−メチルピロリドンやN,N−ジメチルホルムア
ミド、テトラヒドロフランやジオキサン、ジメチルスル
ホキシドなどの適宜なものを用いうる。展開は、バーコ
ーターやスピナー、ロールコーターなどの適宜な塗工機
にて行うことができる。
The liquid crystal polymer may be developed by a heating and melting system or may be developed as a solution using a solvent. As the solvent, for example, an appropriate solvent such as methylene chloride, cyclohexanone, trichloroethylene, tetrachloroethane, N-methylpyrrolidone, N, N-dimethylformamide, tetrahydrofuran, dioxane, or dimethylsulfoxide can be used. The development can be performed by a suitable coating machine such as a bar coater, a spinner, and a roll coater.

【0025】形成する液晶ポリマーの非流動層の厚さ
は、0.5〜20μmが好ましい。厚さが薄すぎると複
屈折特性を示しにくくなるため、1μm以上が好まし
い。厚さが厚すぎると均一配向性に劣って複屈折特性を
示さない場合があり、また配向処理に長時間を要するこ
となどより10μm以下とするのが好ましい。なお、光
学素子の形成に際しては、当該液晶ポリマー以外のポリ
マーや安定剤、可塑剤などの無機や有機、あるいは金属
類などからなる種々の添加剤を必要に応じて配合するこ
とができる。
The thickness of the non-fluidized layer of the liquid crystal polymer to be formed is preferably 0.5 to 20 μm. If the thickness is too small, it is difficult to exhibit birefringence characteristics. If the thickness is too large, the birefringence property may not be exhibited due to poor uniform orientation. In addition, it is preferable that the thickness be 10 μm or less because the alignment treatment requires a long time. When forming the optical element, various additives other than the liquid crystal polymer, such as a polymer, a stabilizer, and an inorganic or organic material such as a plasticizer, or a metal can be added as necessary.

【0026】前記液晶ポリマーから得られる光学素子と
しては、視角補償板、位相差板、カラー反射板などが挙
げられる。これらいずれの光学素子においても、複屈折
の制御がその光学特性に大きく影響する。このように複
屈折を制御した液晶ポリマーから得られる光学素子は、
液晶ディスプレイの表示品位向上に役立つ。
Examples of the optical element obtained from the liquid crystal polymer include a viewing angle compensator, a retardation plate, and a color reflector. In any of these optical elements, control of birefringence greatly affects its optical characteristics. An optical element obtained from a liquid crystal polymer whose birefringence is controlled in this way is:
Useful for improving the display quality of liquid crystal displays.

【0027】[0027]

【実施例】以下に製造例、実施例をあげて本発明を具体
的に説明する。
EXAMPLES The present invention will be specifically described below with reference to production examples and examples.

【0028】合成例1(モノマーユニット(a)に対応
するモノマーの合成)
Synthesis Example 1 (Synthesis of monomer corresponding to monomer unit (a))

【化7】 式(a1)で表されるアクリル系モノマーの合成例を化
7に示した。
Embedded image A synthetic example of the acrylic monomer represented by the formula (a1) is shown in Chemical formula 7.

【0029】水酸化カリウム溶液(KOH300g,エ
タノール700ml,水300ml)に、4−ヒドロキ
シ安息香酸276g(2mol)と触媒量のヨウ化カリ
ウムを加えて溶解した。加温状態でエチレンクロロヒド
リン177g(2.2mol)をゆっくり加えて約15
時間還流した(反応とともに塩化カリウムが析出し
た)。反応終了後エタノールを留去し、水2リットル中
に反応液を加えた。この水溶液をジエチルエーテルで2
回洗浄後、水層を4×103 mol/m3 塩酸で酸性と
した。得られた沈殿物をろ過、乾燥後、エタノールで再
結晶して、4−(2−ヒドロキシエトキシ)安息香酸を
得た(収量290g,収率82%,純度98%)。
276 g (2 mol) of 4-hydroxybenzoic acid and a catalytic amount of potassium iodide were added to a potassium hydroxide solution (300 g of KOH, 700 ml of ethanol and 300 ml of water), and dissolved. While heating, 177 g (2.2 mol) of ethylene chlorohydrin was slowly added, and
Reflux for hours (potassium chloride precipitated with the reaction). After completion of the reaction, ethanol was distilled off, and the reaction solution was added to 2 liters of water. This aqueous solution is treated with diethyl ether 2
After washing twice, the aqueous layer was acidified with 4 × 10 3 mol / m 3 hydrochloric acid. The obtained precipitate was filtered, dried and then recrystallized from ethanol to obtain 4- (2-hydroxyethoxy) benzoic acid (yield 290 g, yield 82%, purity 98%).

【0030】4−(2−ヒドロキシエトキシ)安息香酸
182g(1mol)、ヒドロキノン40g、pートル
エンスルホン酸40g、アクリル酸600mlをベンゼ
ン/トルエン=1/1(重量比)の混合溶媒600ml
に溶解した。Dean−Stark管を用いて理論量の
水が系外に除かれるまで還流(約15時間)した。次に
反応液をジエチルエーテル4リットルに入れ、温水洗浄
を行なった。さらに飽和食塩水で洗浄後、無水硫酸ナト
リウムで乾燥した。溶媒を留去し、得られた固体をアセ
トン/ヘキサン=1/1(重量比)の混合溶媒で再結晶
し、4−(2−プロペノイルオキシエトキシ)安息香酸
を得た(収量153g,収率65%,純度97%)。
182 g (1 mol) of 4- (2-hydroxyethoxy) benzoic acid, 40 g of hydroquinone, 40 g of p-toluenesulfonic acid and 600 ml of acrylic acid were mixed with 600 ml of a mixed solvent of benzene / toluene = 1/1 (weight ratio).
Was dissolved. The mixture was refluxed using a Dean-Stark tube until the theoretical amount of water was removed from the system (about 15 hours). Next, the reaction solution was placed in 4 liters of diethyl ether and washed with warm water. After washing with a saturated saline solution, the mixture was dried over anhydrous sodium sulfate. The solvent was distilled off, and the obtained solid was recrystallized with a mixed solvent of acetone / hexane = 1/1 (weight ratio) to obtain 4- (2-propenoyloxyethoxy) benzoic acid (153 g, yield: 153 g). Rate 65%, purity 97%).

【0031】4−(2−プロペノイルオキシエトキシ)
安息香酸23.6g(0.1mol)をアセトン400
mlに加えた。さらにトリフルオロ酢酸無水物20.8
ml(0.15mol)を加えて攪拌した。4−シアノ
−4´−ヒドロキシビフェニル19.5g(0.1mo
l)を反応液に加え室温で6時間反応させた。反応液を
留去後、ジエチルエーテルに溶解して、水、炭酸水素ナ
トリウム飽和水溶液及び飽和食塩水で洗浄し、無水硫酸
ナトリウムで乾燥した。溶媒を留去し、得られた固体を
アセトニトリル600mlで再結晶し、目的物の(a
1)モノマーを得た(収量29.3g,収率71%,純
度99%)。
4- (2-propenoyloxyethoxy)
23.6 g (0.1 mol) of benzoic acid was added to acetone 400
ml. Further, trifluoroacetic anhydride 20.8
ml (0.15 mol) was added and stirred. 19.5 g of 4-cyano-4'-hydroxybiphenyl (0.1 mol
l) was added to the reaction solution and reacted at room temperature for 6 hours. After the reaction solution was distilled off, the residue was dissolved in diethyl ether, washed with water, a saturated aqueous solution of sodium hydrogen carbonate and saturated saline, and dried over anhydrous sodium sulfate. The solvent was distilled off, and the obtained solid was recrystallized from 600 ml of acetonitrile to obtain the desired compound (a).
1) A monomer was obtained (yield 29.3 g, yield 71%, purity 99%).

【0032】合成例2(モノマーユニット(b)に対応
するモノマーの合成)
Synthesis Example 2 (Synthesis of monomer corresponding to monomer unit (b))

【化8】 式(b1)で表されるアクリル系モノマーの合成例を化
8に示した。
Embedded image Formula 8 shows a synthesis example of the acrylic monomer represented by the formula (b1).

【0033】2−ナフトール7.21g(50mmo
l) 、アクリル酸3.78g(52mmol) 、ジメチ
ルアミノピリジン0.8g(66mmol,式中DMA
P)および少量の重合禁止剤として2, 6−ジ−ter
t−ブチル−p−クレゾールを含有する塩化メチレン溶
液100mlを200mlナスフラスコに仕込んで懸濁
液とし、次いでこれに塩化メチレン10mlで希釈した
ジシクロヘキシルカルボジイミド10.52g(51m
mol, 式中DCC) を少量ずつ加え終夜攪拌した。析
出したジシクロヘキシルウレアをろ別し、塩化メチレン
を加えて全量を300mlにしてから、ろ液を塩酸水溶
液、飽和炭酸水素ナトリウム水溶液、飽和食塩水で洗浄
し、無水硫酸マグネシウムで乾燥し、溶媒を留去した。
粗生成物をシリカゲルカラムクロマトグラフィー(展開
溶媒:塩化メチレン)により精製し、アクリル系モノマ
ー(b1:2−ナフチルアクリレート)を得た(収量
7.73g,収率78%)。
7.21 g of 2-naphthol (50 mmo
l), acrylic acid 3.78 g (52 mmol), dimethylaminopyridine 0.8 g (66 mmol, DMA in the formula)
P) and 2,6-di-ter as a small amount of polymerization inhibitor
100 ml of a methylene chloride solution containing t-butyl-p-cresol was charged into a 200 ml eggplant flask to form a suspension, and then 10.52 g of dicyclohexylcarbodiimide (51 m 2) diluted with 10 ml of methylene chloride was added thereto.
mol, DCC in the formula) was added little by little, and the mixture was stirred overnight. The precipitated dicyclohexylurea was filtered off, and the total volume was made up to 300 ml with methylene chloride. I left.
The crude product was purified by silica gel column chromatography (developing solvent: methylene chloride) to obtain an acrylic monomer (b1: 2-naphthyl acrylate) (7.73 g, 78% yield).

【0034】実施例(側鎖型液晶ポリマーの合成)Example (Synthesis of Side Chain Type Liquid Crystal Polymer)

【化9】 化9中、nは側鎖型液晶ポリマーを構成する(b1)モ
ノマーのモル%を示す。なお、化9は便宜的に側鎖型液
晶ポリマーをブロック体で表した。
Embedded image In Chemical Formula 9, n represents the mole% of the monomer (b1) constituting the side chain type liquid crystal polymer. In Chemical formula 9, the side chain type liquid crystal polymer is represented by a block for convenience.

【0035】表1に示す所定量の前記(a1)モノマー
と前記(b1:2−ナフチルアクリレート)およびジメ
チルアセトアミド(DMAc)/テトラヒドロフラン
(THF)=4/1(重量比)の混合溶媒30mlを三
つ口フラスコに仕込んだ後、窒素気流下で加熱攪拌して
モノマーを完全に溶解した。そこへ少量の前記混合溶媒
に溶解したアゾビスイソブチロニトリル(AIBN)1
00mgを滴下した。6時間還流した後、加熱を止め反
応液を室温に戻してから、反応溶液をメタノール150
ml中へ滴下してポリマーを再沈殿させた。ポリマーを
ろ別し、メタノール/THF=3/2(重量比)の混合
溶媒50mlで洗浄した後、ろ別、乾燥して側鎖型液晶
ポリマーを得た。反応基質の(a1)モノマーと(b
1)モノマーの使用量、(b1)モノマーの割合、得ら
れた側鎖型液晶ポリマーの収量、収率、重量平均分子量
を表1に示す。
A predetermined amount of the monomer (a1) shown in Table 1 and 30 ml of a mixed solvent of (b1: 2-naphthyl acrylate) and dimethylacetamide (DMAc) / tetrahydrofuran (THF) = 4/1 (weight ratio) were added to three portions. After charging the flask, the mixture was heated and stirred under a nitrogen stream to completely dissolve the monomers. Azobisisobutyronitrile (AIBN) 1 dissolved in a small amount of the mixed solvent
00 mg was added dropwise. After refluxing for 6 hours, the heating was stopped and the reaction solution was returned to room temperature.
The polymer was re-precipitated by dropping into ml. The polymer was separated by filtration, washed with 50 ml of a mixed solvent of methanol / THF = 3/2 (weight ratio), filtered and dried to obtain a side chain type liquid crystal polymer. The reaction substrate (a1) monomer and (b)
Table 1 shows 1) the amount of the monomer used, (b1) the proportion of the monomer, and the yield, yield, and weight average molecular weight of the obtained side chain liquid crystal polymer.

【0036】鉛入りガラス基板上にポリイミド(N−メ
チルピロリドン20%溶液)を2000rpm、10秒
の条件でスピンコートし、300℃で1時間加熱した
後、ラビングして配向膜とした。次いで、上記で得られ
た側鎖型液晶ポリマーのシクロヘキサノン溶液(濃度2
6重量%)を、配向膜上にスピンコートし、160℃で
加熱して側鎖型液晶ポリマーを配向させた。側鎖型液晶
ポリマーの膜厚は2.0〜2.4μmであった。
A polyimide (20% solution of N-methylpyrrolidone) was spin-coated on a lead-containing glass substrate at 2000 rpm for 10 seconds, heated at 300 ° C. for 1 hour, and rubbed to form an alignment film. Next, a solution of the side chain type liquid crystal polymer obtained above in cyclohexanone (concentration 2
6% by weight) was spin-coated on the alignment film, and heated at 160 ° C. to align the side chain type liquid crystal polymer. The thickness of the side chain type liquid crystal polymer was 2.0 to 2.4 μm.

【0037】[常光屈折率測定]得られた液晶ポリマー
配向物の常光屈折率を測定した結果を表1に示す。常光
屈折率測定は、Atago製アッベ屈折計1T型で測定
した。
[Measurement of refractive index of ordinary light] Table 1 shows the result of measuring the refractive index of ordinary light of the obtained liquid crystal polymer alignment product. The ordinary light refractive index was measured with an Atago Abbe refractometer 1T type.

【0038】[複屈析率測定]得られた液晶ポリマー配
向物の正面位相差(△n・d)および膜厚(d)を測定
した結果から、複屈折率(△n)を以下の式で算出し
た。正面位相差(△n・d)はセナルモン法により測定
した。結果を表1に示す。 複屈折率(△n)=正面位
相差(△n・d)/側鎖型液晶ポリマー配向物膜厚
(d)。
[Measurement of Birefringence] From the results of measuring the front retardation (Δnd) and the film thickness (d) of the obtained liquid crystal polymer alignment product, the birefringence (Δn) was calculated by the following equation. Was calculated. The front phase difference (Δn · d) was measured by the Senarmont method. Table 1 shows the results. Birefringence (Δn) = front retardation (Δn · d) / side chain type liquid crystal polymer alignment film thickness (d).

【0039】[位相差(Δn・ d) の波長分散測定]
モノクロメーターにより測定光の波長を変えて,セナル
モン法により液晶ポリマー配向物の正面位相差(Δn・
d) を測定した。位相差の波長分散(α)を以下のよ
うに定義した。結果を表1に示す。
[Measurement of chromatic dispersion of phase difference (Δn · d)]
The wavelength of the measurement light is changed by a monochromator, and the front phase difference (Δn ·
d) was measured. The chromatic dispersion (α) of the phase difference was defined as follows. Table 1 shows the results.

【0040】α=Δn・d(450nm)/Δn・d
(590nm)。
Α = Δn · d (450 nm) / Δn · d
(590 nm).

【0041】なお、(b1)モノマーを含まない((a
1)モノマーのみで形成される)側鎖型液晶ポリマーも
前記と同様に合成し、前記と同様にして常光屈折率
(1.545)、複屈折率(0.30)および位相差の
波長分散(α:1.170)を算出した。結果を表1に
示す。
Incidentally, (b1) a monomer was not contained ((a
1) A side chain type liquid crystal polymer (formed only of a monomer) is also synthesized in the same manner as described above, and the ordinary light refractive index (1.545), the birefringence (0.30), and the wavelength dispersion of the retardation are similarly obtained. (Α: 1.170) was calculated. Table 1 shows the results.

【0042】[0042]

【表1】 表1から、本発明の側鎖型液晶ポリマーは、(b1)モ
ノマーに代表される非液晶のフラグメント側鎖を含有す
るモノマーを調整することにより、常光屈折率を1.5
45から1.565まで連続的に制御しうることが認め
られる。
[Table 1] From Table 1, it can be seen that the side-chain type liquid crystal polymer of the present invention has an ordinary refractive index of 1.5 by adjusting a monomer containing a non-liquid crystal fragment side chain represented by (b1) monomer.
It is recognized that the control can be continuously performed from 45 to 1.565.

【0043】また、本発明の側鎖型液晶ポリマーは、
(b1)モノマーユニットの割合を調整することによ
り、(a1)フラグメントのみで形成される側鎖型液晶
ポリマーの複屈折率特性(Δn=0.30)を連続的に
制御しうることが認められる。
Further, the side chain type liquid crystal polymer of the present invention comprises:
It is recognized that the birefringence characteristic (Δn = 0.30) of the side chain type liquid crystal polymer formed by only the (a1) fragment can be continuously controlled by adjusting the ratio of the (b1) monomer unit. .

【0044】また、液晶ディスプレイの表示品位の向上
のためには液晶ディスプレイの液晶の複屈折(Δn)の
波長分散と位相差板の複屈折の波長分散が一致すること
が望ましいと考えられており、これまで、液晶のΔnに
応じて位相差板としてポリカーボネート(α:1.1
0)やポリエーテルサルホン(α:1.17)などの高
分子材料を延伸したものが使用されているが、表1に示
す通り、本発明の側鎖型液晶ポリマーは、ポリカーボネ
ートとポリエーテルサルホンの間の複屈折(Δn)の波
長分散を連続的に制御可能であり、位相差板の液晶ディ
スプレイの液晶の複屈折波長分散との一致が容易にな
る。
In order to improve the display quality of the liquid crystal display, it is considered that it is desirable that the wavelength dispersion of the birefringence (Δn) of the liquid crystal of the liquid crystal display coincides with the wavelength dispersion of the birefringence of the retardation plate. Heretofore, polycarbonate (α: 1.1:
) And polyethersulfone (α: 1.17) are used. As shown in Table 1, the side chain type liquid crystal polymer of the present invention comprises polycarbonate and polyether. The wavelength dispersion of the birefringence (Δn) between the sulfones can be continuously controlled, and it is easy to match the wavelength dispersion of the liquid crystal of the liquid crystal display of the retardation plate.

───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.7 識別記号 FI テーマコート゛(参考) G02F 1/13363 G02F 1/13363 (72)発明者 望月 周 大阪府茨木市下穂積1丁目1番2号 日東 電工株式会社内 (72)発明者 吉岡 昌宏 大阪府茨木市下穂積1丁目1番2号 日東 電工株式会社内 Fターム(参考) 2H049 BA06 BA42 BB42 BC22 2H091 FA11X FA11Z FA12X FA12Z FA14Z FB02 FD06 4H027 BA13 BD07 4J100 AL08P AL08Q BA02P BA20P BA40P BC43P BC44P BC49Q CA04 DA63 DA66 JA32 ──────────────────────────────────────────────────の Continued on the front page (51) Int.Cl. 7 Identification symbol FI Theme coat ゛ (Reference) G02F 1/13363 G02F 1/13363 (72) Inventor Shu Mochizuki 1-1-2 Shimohozumi, Ibaraki-shi, Osaka Nitto Denko Corporation (72) Inventor Masahiro Yoshioka 1-1-2 Shimohozumi, Ibaraki-shi, Osaka Nitto Denko Corporation F-term (reference) 2H049 BA06 BA42 BB42 BC22 2H091 FA11X FA11Z FA12X FA12Z FA14Z FB02 FD06 4H027 BA13 BD07 4J100 AL08P AL08Q BA02P BA20P BA40P BC43P BC44P BC49Q CA04 DA63 DA66 JA32

Claims (10)

【特許請求の範囲】[Claims] 【請求項1】 液晶性のフラグメント側鎖を含有するモ
ノマーユニット(a)と非液晶性の芳香環フラグメント
側鎖を含有するモノマーユニット(b)を含有すること
を特徴とする側鎖型液晶ポリマー。
1. A side chain type liquid crystal polymer comprising a monomer unit (a) containing a liquid crystal fragment side chain and a monomer unit (b) containing a non-liquid crystal aromatic fragment side chain. .
【請求項2】 液晶性のフラグメント側鎖を含有するモ
ノマーユニット(a)における、当該フラグメント側鎖
が、アルコキシ基、シアノ基、フルオロ基およびアルキ
ル基から選ばれるいずれか少なくとも一つの置換基を、
当該フラグメント側鎖の分子長軸に対して平行な方向に
含むことを特徴とする請求項1記載の側鎖型液晶ポリマ
ー。
2. In the monomer unit (a) containing a liquid crystal fragment side chain, the fragment side chain has at least one substituent selected from an alkoxy group, a cyano group, a fluoro group and an alkyl group,
2. The side chain type liquid crystal polymer according to claim 1, wherein the side chain type liquid crystal polymer is included in a direction parallel to the molecular long axis of the fragment side chain.
【請求項3】 液晶性フラグメント側鎖を含有するモノ
マーユニット(a)が、一般式(a): 【化1】 (ただし、R1 は水素原子またはメチル基を、aは1〜
6の正の整数を、X1 は−CO2 −基または−OCO−
基を、R2 はシアノ基、アルコキシ基、フルオロ基また
はアルキル基を、bおよびcはそれぞれ1または2の整
数を示す。)で表されるモノマーユニットである請求項
1または2記載の側鎖型液晶ポリマー。
3. The monomer unit (a) containing a liquid crystal fragment side chain has a general formula (a): (However, R 1 is a hydrogen atom or a methyl group, a is 1 to
A positive integer of 6, X 1 represents a —CO 2 — group or —OCO—
R 2 represents a cyano group, an alkoxy group, a fluoro group or an alkyl group; b and c each represent an integer of 1 or 2; 3. The side chain type liquid crystal polymer according to claim 1, which is a monomer unit represented by the formula:
【請求項4】 非液晶性の芳香環フラグメント側鎖を含
有するモノマーユニット(b)が、一般式(b): 【化2】 (ただし、R3 は水素原子またはメチル基を、X2 は−
CO2 −基または−OCO−基、−O−または単結合
を、R4 は一般式(c): 【化3】 で表される置換基を示す。)で表されるモノマーユニッ
トである請求項1〜3のいずれかに記載の側鎖型液晶ポ
リマー。
4. The monomer unit (b) containing a non-liquid crystalline aromatic ring fragment side chain has a general formula (b): (However, R 3 represents a hydrogen atom or a methyl group, and X 2 represents-
A CO 2 — group or —OCO— group, —O— or a single bond, and R 4 is a group represented by the general formula (c): And a substituent represented by The side chain type liquid crystal polymer according to any one of claims 1 to 3, which is a monomer unit represented by the formula:
【請求項5】 重量平均分子量が、2千〜10万である
請求項1〜4のいずれかに記載の側鎖型液晶ポリマー。
5. The side chain type liquid crystal polymer according to claim 1, wherein the weight average molecular weight is 2,000 to 100,000.
【請求項6】 モノドメイン配向性を有する請求項1〜
5のいずれかに記載の側鎖型液晶ポリマー。
6. The composition according to claim 1, which has a monodomain orientation.
6. The side chain type liquid crystal polymer according to any one of 5.
【請求項7】 液晶性のフラグメント側鎖を含有するモ
ノマー(a)と、非液晶性の芳香環フラグメント側鎖を
含有するモノマー(b)を共重合することにより、モノ
マー(a)の液晶性のフラグメント側鎖の屈折率特性ま
たは複屈折率特性を制御することを特徴とする請求項1
〜6のいずれかに記載の側鎖型液晶ポリマーの製造方
法。
7. A monomer (a) containing a liquid crystal fragment side chain and a monomer (b) containing a non-liquid crystal aromatic ring fragment side chain are copolymerized to give a liquid crystal property of the monomer (a). 2. The method according to claim 1, wherein the refractive index characteristic or the birefringence characteristic of the side chain of the fragment is controlled.
7. The method for producing a side chain type liquid crystal polymer according to any one of items 1 to 6.
【請求項8】 液晶性のフラグメント側鎖を含有するモ
ノマーユニット(a)を含有する側鎖型液晶ポリマーの
屈折率特性または複屈折率特性を、前記側鎖型液晶ポリ
マーに、共重合モノマーユニットとして、非液晶性の芳
香環フラグメント側鎖を含有するモノマーユニット
(b)を含有させ、モノマーユニット(b)の割合を変
化させることにより、所望の値に制御する方法。
8. The side chain type liquid crystal polymer comprising a monomer unit (a) having a liquid crystal fragment side chain and the side chain type liquid crystal polymer may be provided with a copolymer monomer unit. A method in which a monomer unit (b) containing a side chain of a non-liquid crystalline aromatic ring fragment is contained, and the ratio is controlled to a desired value by changing the ratio of the monomer unit (b).
【請求項9】 請求項1〜6 のいずれかに記載の側鎖型
液晶ポリマーからなる光学素子。
9. An optical element comprising the side chain type liquid crystal polymer according to claim 1.
【請求項10】 請求項9記載の光学素子を用いた液晶
ディスプレイ。
10. A liquid crystal display using the optical element according to claim 9.
JP2000137238A 2000-04-12 2000-05-10 Side chain type liquid crystalline polymer and method for producing the same Pending JP2001354733A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2000137238A JP2001354733A (en) 2000-04-12 2000-05-10 Side chain type liquid crystalline polymer and method for producing the same

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2000-110337 2000-04-12
JP2000110337 2000-04-12
JP2000137238A JP2001354733A (en) 2000-04-12 2000-05-10 Side chain type liquid crystalline polymer and method for producing the same

Publications (1)

Publication Number Publication Date
JP2001354733A true JP2001354733A (en) 2001-12-25

Family

ID=26589922

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000137238A Pending JP2001354733A (en) 2000-04-12 2000-05-10 Side chain type liquid crystalline polymer and method for producing the same

Country Status (1)

Country Link
JP (1) JP2001354733A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6913708B2 (en) 2003-02-24 2005-07-05 3M Innovative Properties Company Cholesteric liquid crystal drying process and solvent
US7029729B2 (en) 2003-02-24 2006-04-18 3M Innovative Properties Company Cholesteric liquid crystal additives
US7068344B2 (en) 2003-02-24 2006-06-27 3M Innovative Properties Company Cholesteric liquid crystal optical bodies and methods of manufacture and use
US7160586B2 (en) 2003-08-29 2007-01-09 3M Innovative Properties Company Cholesteric liquid crystal copolymers and additives

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6913708B2 (en) 2003-02-24 2005-07-05 3M Innovative Properties Company Cholesteric liquid crystal drying process and solvent
US7029729B2 (en) 2003-02-24 2006-04-18 3M Innovative Properties Company Cholesteric liquid crystal additives
US7068344B2 (en) 2003-02-24 2006-06-27 3M Innovative Properties Company Cholesteric liquid crystal optical bodies and methods of manufacture and use
US7160586B2 (en) 2003-08-29 2007-01-09 3M Innovative Properties Company Cholesteric liquid crystal copolymers and additives

Similar Documents

Publication Publication Date Title
JP4058481B2 (en) Polymerizable liquid crystal compound and optical film
US7070838B2 (en) Liquid crystalline compound, liquid crystal composition and their polymers
TWI390023B (en) Optical film
US6107427A (en) Cross-linkable, photoactive polymer materials
TWI418613B (en) A liquid crystal compound, a liquid crystal composition, an optical film, and an optical laminate
JP4058480B2 (en) Liquid crystalline (meth) acrylate compound, liquid crystal composition containing the compound, and optical film using them
JP5125171B2 (en) Polymerizable compound
JP5621584B2 (en) Polymerizable chiral compound, polymerizable liquid crystal composition, liquid crystalline polymer and optical anisotropic body
JP5407870B2 (en) Polymerizable liquid crystal compound, polymerizable liquid crystal composition, liquid crystal polymer and optical anisotropic body
JP4136193B2 (en) Liquid crystal polymer composition, retardation plate and elliptically polarizing plate
JP5396815B2 (en) Polymerizable compound, polymerizable liquid crystal compound, polymerizable liquid crystal composition, liquid crystal polymer and optical anisotropic body
JP4929546B2 (en) Polymerizable liquid crystal composition and optical anisotropic body using the same
US6248259B1 (en) Optically active monomer, liquid crystal polymer, and optical element
JP2001354734A (en) Side chain type liquid crystalline polymer and method for producing the same
JP2001213919A (en) Side chain type liquid crystal polymer and method for manufacturing the same
JP4766291B2 (en) Polymerizable liquid crystal compound, composition, and optical anisotropic body
EP1055721A2 (en) Liquid crystal polymer composition, oriented film and process for producing the film
JP2001354733A (en) Side chain type liquid crystalline polymer and method for producing the same
JP2001354732A (en) Side chain type liquid crystalline polymer and method for producing the same
JP2001316668A (en) Choresteric liquid crystal polymer composition
JP2001318225A (en) Method for controlling selective reflection wavelength band region of cholesteric liquid crystal aligned matter
CN103443087A (en) Polymerizable compound, polymerizable liquid crystal composition, polymeric compound, and film
KR20110040666A (en) Polymerizable naphthalene compound
JP2000327720A (en) Side chain type liquid crystal polymer, phase difference plate and oval polarizing plate
JP4872219B2 (en) Polymerizable compound

Legal Events

Date Code Title Description
A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20061225