JP2001352082A - Method for manufacturing semiconductor thin-film photoelectric converter - Google Patents

Method for manufacturing semiconductor thin-film photoelectric converter

Info

Publication number
JP2001352082A
JP2001352082A JP2000167108A JP2000167108A JP2001352082A JP 2001352082 A JP2001352082 A JP 2001352082A JP 2000167108 A JP2000167108 A JP 2000167108A JP 2000167108 A JP2000167108 A JP 2000167108A JP 2001352082 A JP2001352082 A JP 2001352082A
Authority
JP
Japan
Prior art keywords
photoelectric conversion
crystalline
layer
semiconductor thin
semiconductor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2000167108A
Other languages
Japanese (ja)
Other versions
JP4247947B2 (en
Inventor
Toru Sawada
徹 澤田
Susumu Fukuda
丞 福田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kanegafuchi Chemical Industry Co Ltd
Original Assignee
Kanegafuchi Chemical Industry Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kanegafuchi Chemical Industry Co Ltd filed Critical Kanegafuchi Chemical Industry Co Ltd
Priority to JP2000167108A priority Critical patent/JP4247947B2/en
Publication of JP2001352082A publication Critical patent/JP2001352082A/en
Application granted granted Critical
Publication of JP4247947B2 publication Critical patent/JP4247947B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy

Landscapes

  • Photovoltaic Devices (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a method for fabricating a semiconductor thin-film photoelectric converter, having high photoelectric conversion efficiency at a low cost through optical confinement effect. SOLUTION: In the method for manufacturing a semiconductor thin-film photoelectric converter, first and second crystalline photoelectric conversion sublayers (3i1, 3i2) included in a crystalline photoelectric conversion layer are deposited sequentially through plasma CVD method. Here, CVD conditions are set such that the volumetric crystallization rate of the second crystalline photoelectric conversion sublayer (3i2) is lower than that of the first crystalline photoelectric conversion sublayer (3i1). A surface irregularities structure is formed, by preferentially etching an amorphous micro region (3ia) distributed to the vicinity of the surface of the second crystalline photoelectric conversion sublayer (3i2), using hydrogen plasma.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は半導体薄膜光電変換
装置の製造方法に関し、特に、少なくとも1の結晶質光
電変換ユニットを含みかついわゆる光閉じ込め効果を有
する半導体薄膜光電変換装置の製造方法に関するもので
ある。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for manufacturing a semiconductor thin film photoelectric conversion device, and more particularly to a method for manufacturing a semiconductor thin film photoelectric conversion device including at least one crystalline photoelectric conversion unit and having a so-called light confinement effect. is there.

【0002】なお、本願明細書において、「多結晶」、
「微結晶」、および「結晶質」の用語は、半導体薄膜光
電変換装置の技術分野において通常用いられているよう
に、体積分率で50%未満の非晶質部分を含む場合にも
用いられる。
[0002] In the present specification, "polycrystal",
The terms “microcrystal” and “crystalline” are also used when including an amorphous portion of less than 50% by volume as commonly used in the technical field of semiconductor thin-film photoelectric conversion devices. .

【0003】[0003]

【従来の技術】半導体薄膜光電変換装置は、一般に、絶
縁基板上に順に積層された第1の電極、1以上の半導体
薄膜光電変換ユニット、および第2の電極を含んでい
る。そして、1つの光電変換ユニットはp型層とn型層
でサンドイッチされたi型層を含んでいる。
2. Description of the Related Art A semiconductor thin-film photoelectric conversion device generally includes a first electrode, one or more semiconductor thin-film photoelectric conversion units, and a second electrode sequentially stacked on an insulating substrate. One photoelectric conversion unit includes an i-type layer sandwiched between a p-type layer and an n-type layer.

【0004】光電変換ユニットの厚さの大部分を占める
i型層は実質的に真性の半導体層であって、光電変換作
用は主としてこのi型層内で生じる。したがって、i型
光電変換層は、光吸収の観点のみからすれば厚い方が好
ましい。他方、p型やn型の導電型層は光電変換ユニッ
ト内に拡散電位を生じさせる役割を果たし、この拡散電
位の大きさによって光電変換装置の重要な特性の1つで
ある開放端電圧の値が左右される。しかし、これらの導
電型層は光電変換に直接寄与しない不活性な層であり、
導電型層にドープされた不純物によって吸収される光は
発電に寄与しない損失となる。したがって、p型とn型
の導電型層は、十分な拡散電位を生じさせる範囲内であ
れば、できるだけ小さな厚さを有することが好ましい。
[0004] The i-type layer that occupies most of the thickness of the photoelectric conversion unit is a substantially intrinsic semiconductor layer, and the photoelectric conversion action mainly occurs in the i-type layer. Therefore, it is preferable that the i-type photoelectric conversion layer is thicker only from the viewpoint of light absorption. On the other hand, the p-type or n-type conductive layer plays a role of generating a diffusion potential in the photoelectric conversion unit, and the value of the open-end voltage, which is one of the important characteristics of the photoelectric conversion device, depends on the magnitude of the diffusion potential. Is affected. However, these conductive layers are inert layers that do not directly contribute to photoelectric conversion,
The light absorbed by the impurities doped in the conductivity type layer is a loss that does not contribute to power generation. Therefore, it is preferable that the p-type and n-type conductive layers have as small a thickness as possible within a range that generates a sufficient diffusion potential.

【0005】このようなことから、光電変換ユニット
は、それに含まれるp型とn型の導電型層が非晶質か結
晶質かにかかわらず、その主要部を占めるi型の光電変
換層が非晶質のものは非晶質ユニットと称され、i型層
が結晶質のものは結晶質ユニットと称される。
[0005] For this reason, the photoelectric conversion unit has an i-type photoelectric conversion layer occupying a main part thereof regardless of whether the p-type and n-type conductive layers contained therein are amorphous or crystalline. Amorphous units are referred to as amorphous units, and those in which the i-type layer is crystalline are referred to as crystalline units.

【0006】ところで、薄膜光電変換装置の変換効率を
向上させる方法の1つとして、いわゆる光閉じ込め効果
を利用する方法が知られている。このような光閉じ込め
効果のためには、透明電極と光電変換ユニットとの界
面、および光電変換ユニットと裏面電極との界面に微小
な凹凸界面構造が形成される。すなわち、これらの凹凸
界面構造による入射光の散乱屈折や散乱反射によって、
薄膜光電変換ユニット中における実質的な光路長が長く
なって、あたかもその中に入射光が閉じ込められたよう
な状態になる。このような光閉じ込め効果によって、薄
膜光電変換ユニットが入射光のほとんどを効率的に吸収
することが可能になって、光電変換効率が高められ得る
のである。
Incidentally, as one of the methods for improving the conversion efficiency of a thin film photoelectric conversion device, a method utilizing a so-called light confinement effect is known. To achieve such a light confinement effect, minute uneven interface structures are formed at the interface between the transparent electrode and the photoelectric conversion unit and at the interface between the photoelectric conversion unit and the back electrode. In other words, due to the scattered refraction and scattered reflection of incident light due to these uneven interface structures,
The substantial optical path length in the thin-film photoelectric conversion unit becomes longer, and it becomes as if the incident light is confined therein. With such a light confinement effect, the thin-film photoelectric conversion unit can efficiently absorb most of the incident light, and the photoelectric conversion efficiency can be improved.

【0007】図2は、特開平5−206491に開示さ
れた半導体薄膜光電変換装置の模式的な断面図を示して
いる。なお、本願の各図において、厚さや長さなどの寸
法関係は図面の明瞭化と簡略化のために適宜に変更され
ており、実際の寸法関係を表わしてはいない。
FIG. 2 is a schematic sectional view of a semiconductor thin film photoelectric conversion device disclosed in Japanese Patent Laid-Open No. Hei 5-206491. In the drawings of the present application, dimensional relationships such as thickness and length are appropriately changed for clarity and simplification of the drawings, and do not represent actual dimensional relationships.

【0008】図2の光電変換装置においては、ガラス基
板1上に微細な表面凹凸構造を有する酸化錫の透明電極
2が形成される。なお、一般には、このような透明電極
の材料としては、酸化錫の他にもインジウム錫酸化物
(ITO)や酸化亜鉛などの透明導電性酸化物(TC
O)が用いられ得る。また、透明電極の表面に微細な凹
凸構造を設ける方法の一例は、たとえばIEEE Electron
Device Letters, Vol. EDL-4, 1983, pp.157〜159にお
いて述べられている。
In the photoelectric conversion device shown in FIG. 2, a transparent electrode 2 of tin oxide having a fine surface uneven structure is formed on a glass substrate 1. Generally, as a material of such a transparent electrode, in addition to tin oxide, a transparent conductive oxide (TC) such as indium tin oxide (ITO) or zinc oxide is used.
O) can be used. One example of a method of providing a fine uneven structure on the surface of a transparent electrode is, for example, an IEEE Electron
Device Letters, Vol. EDL-4, 1983, pp. 157-159.

【0009】透明電極2上には、p型非晶質シリコンカ
ーバイド層3pとi型非晶質シリコン光電変換層3iが
プラズマCVD法によって堆積される。
On the transparent electrode 2, a p-type amorphous silicon carbide layer 3p and an i-type amorphous silicon photoelectric conversion layer 3i are deposited by a plasma CVD method.

【0010】光電変換層3i上には、常圧CVD法によ
って酸化シリコン膜4が堆積される。酸化シリコン膜4
は、周知のフォトリソグラフィ技術を利用して、複数の
微細なアイランド状にパターニングされる。こうして形
成されたアイランド状酸化シリコンパターン4をマスク
として用いながら、光電変換層3iの表面が水素プラズ
マでエッチングされて、複数の微細な凹部が形成され
る。すなわち、光電変換層3iの上面には、アイランド
状酸化シリコンパターン4を含めて微細な表面凹凸構造
が形成される。
A silicon oxide film 4 is deposited on the photoelectric conversion layer 3i by a normal pressure CVD method. Silicon oxide film 4
Is patterned into a plurality of fine islands using a known photolithography technique. Using the island-shaped silicon oxide pattern 4 thus formed as a mask, the surface of the photoelectric conversion layer 3i is etched with hydrogen plasma to form a plurality of fine concave portions. That is, a fine surface uneven structure including the island-shaped silicon oxide pattern 4 is formed on the upper surface of the photoelectric conversion layer 3i.

【0011】この表面凹凸構造上には、n型シリコン層
3nがプラズマCVD法で堆積されるとともに、アルミ
またはクロムなどからなる裏面金属電極5が蒸着法によ
って形成される。なお、一般には、裏面金属電極として
は、アルミやクロムに限られず、良好な光反射性と良好
な導電性を有する他の種々の金属材料をも利用すること
ができ、TCO層と金属層の積層として形成される場合
もある。
On this surface uneven structure, an n-type silicon layer 3n is deposited by a plasma CVD method, and a back metal electrode 5 made of aluminum or chromium is formed by an evaporation method. In general, the back metal electrode is not limited to aluminum or chromium, and various other metal materials having good light reflectivity and good conductivity can also be used. It may be formed as a laminate.

【0012】以上のようにして形成される図2の薄膜光
電変換装置においては、入射光6は、まず透明電極2と
光電変換ユニット3との間の凹凸界面2aによって散乱
屈折されて、光電変換ユニット3内へ斜め方向に入射す
る。その斜め方向の長い光路によっても光電変換層3i
中で吸収されなかった光は、光電変換ユニット3と裏面
電極5との間の凹凸界面5aによって散乱反射されて、
再び光電変換ユニット3内へ斜め方向に再入射する。さ
らに、再度凹凸界面2aに至った光はそこで再び散乱反
射され、こうして入射光6は光電変換ユニット3内に閉
じ込められて効率的に吸収され得ることになる。
In the thin-film photoelectric conversion device of FIG. 2 formed as described above, the incident light 6 is first scattered and refracted by the uneven interface 2a between the transparent electrode 2 and the photoelectric conversion unit 3, and the photoelectric conversion is performed. The light enters the unit 3 obliquely. Due to the long optical path in the oblique direction, the photoelectric conversion layer 3i
The light not absorbed in the inside is scattered and reflected by the uneven interface 5a between the photoelectric conversion unit 3 and the back surface electrode 5, and
The light again enters the photoelectric conversion unit 3 in an oblique direction. Further, the light that has reached the uneven interface 2a again is scattered and reflected again there, and thus the incident light 6 is confined in the photoelectric conversion unit 3 and can be efficiently absorbed.

【0013】[0013]

【発明が解決しようとする課題】図2に示されているよ
うな半導体薄膜光電変換装置においては、確かに、光閉
じ込め効果によって光電変換効率を高めることができ
る。しかし、光閉じ込め効果を生じさせるために必要と
される光電変換ユニット3と裏面電極5との間の微細な
凹凸界面構造5aを形成するために、わざわざ光電変換
層3i上に酸化シリコン膜4を形成して、それを複雑な
フォトリソグラフィを利用してアイランド状にパターニ
ングし、さらにそのアイランド状酸化シリコンパターン
4をマスクとして光電変換層3iの上面をエッチングし
なければならないというように、非常に複雑かつコスト
のかかる付加的な工程を必要としている。
In the semiconductor thin-film photoelectric conversion device as shown in FIG. 2, the photoelectric conversion efficiency can be certainly enhanced by the light confinement effect. However, in order to form a fine concavo-convex interface structure 5a between the photoelectric conversion unit 3 and the back electrode 5 which is necessary for producing the light confinement effect, the silicon oxide film 4 is bothersomely formed on the photoelectric conversion layer 3i. It is very complicated, for example, that it must be formed and patterned in the form of islands using complicated photolithography, and the upper surface of the photoelectric conversion layer 3i must be etched using the island-shaped silicon oxide pattern 4 as a mask. It also requires costly additional steps.

【0014】他方、たとえばi型非晶質シリコンが光電
変換し得る光の波長は長波長側において800nm程度
までであるが、i型結晶質シリコンはそれより長い約1
100nm程度の波長の光まで光電変換することができ
る。したがって、近年では、結晶質半導体光電変換ユニ
ットを利用して光電変換効率を高める試みがなされてい
る(たとえば、特開平11−145499参照)。
On the other hand, for example, the wavelength of light that can be photoelectrically converted by i-type amorphous silicon is up to about 800 nm on the longer wavelength side, while i-type crystalline silicon has a longer wavelength of about 1 nm.
Photoelectric conversion can be performed on light having a wavelength of about 100 nm. Therefore, in recent years, attempts have been made to increase the photoelectric conversion efficiency by using a crystalline semiconductor photoelectric conversion unit (for example, see Japanese Patent Application Laid-Open No. H11-145499).

【0015】かかる先行技術における状況に鑑み、本発
明は、少なくとも1の結晶質光電変換ユニットを含みか
つ光閉じ込め効果を有することによって高い光電変換効
率を実現し得る半導体薄膜光電変換装置を複雑な工程と
コストの増大を伴うことなく形成し得る製造方法を提供
することを目的としている。
In view of the situation in the prior art, the present invention provides a semiconductor thin film photoelectric conversion device that includes at least one crystalline photoelectric conversion unit and has a light confinement effect and can realize high photoelectric conversion efficiency. It is an object of the present invention to provide a manufacturing method which can be formed without increasing the cost.

【0016】[0016]

【課題を解決するための手段】本発明によれば、絶縁基
板上に順に積層された第1の電極、1以上の半導体薄膜
光電変換ユニット、および第2の電極を含み、この第2
電極に接している薄膜光電変換ユニットは順に積層され
た第1導電型半導体層、実質的に真性半導体の結晶質光
電変換層、および第2導電型半導体層を含む半導体薄膜
光電変換装置の製造方法は、結晶質光電変換層に含まれ
る第1と第2の結晶質光電変換サブ層をプラズマCVD
法によって順次堆積し、この際のCVD条件は第1結晶
質光電変換サブ層に比べて第2結晶質光電変換サブ層の
方が体積結晶化分率が小さくなる条件に設定され、第2
結晶質光電変換サブ層の表面近傍において分散して含ま
れる非晶質微小領域を水素プラズマを用いて優先的にエ
ッチングすることによって表面凹凸構造を形成し、この
表面凹凸構造上に第2導電型半導体層と第2電極が順に
堆積されることを特徴としている。
According to the present invention, a first electrode, at least one semiconductor thin-film photoelectric conversion unit, and a second electrode are sequentially stacked on an insulating substrate.
A method of manufacturing a semiconductor thin-film photoelectric conversion device including a first conductive semiconductor layer, a crystalline semiconductor photoelectric conversion layer of a substantially intrinsic semiconductor, and a second conductive semiconductor layer, wherein the thin-film photoelectric conversion units in contact with the electrodes are sequentially stacked. Uses plasma CVD to convert the first and second crystalline photoelectric conversion sub-layers contained in the crystalline photoelectric conversion layer.
The second crystalline photoelectric conversion sublayer is set in such a manner that the volume crystallization fraction is smaller in the second crystalline photoelectric conversion sublayer than in the first crystalline photoelectric conversion sublayer.
An amorphous minute region dispersed and contained in the vicinity of the surface of the crystalline photoelectric conversion sublayer is preferentially etched using hydrogen plasma to form a surface uneven structure, and the second conductive type is formed on the surface uneven structure. The semiconductor layer and the second electrode are sequentially deposited.

【0017】結晶質光電変換層が主成分としてシリコン
を含む場合には、第1と第2の結晶質光電変換サブ層に
おける体積結晶化分率はプラズマCVD法に用いられる
SiH4/H2混合ガスの混合比率を制御することによっ
て調節され得る。
In the case where the crystalline photoelectric conversion layer contains silicon as a main component, the volume crystallization fraction in the first and second crystalline photoelectric conversion sublayers is based on the SiH 4 / H 2 mixture used in the plasma CVD method. It can be adjusted by controlling the mixing ratio of the gas.

【0018】[0018]

【発明の実施の形態】(実施例)図1の模式的な断面図
において、本発明の一実施例による半導体薄膜光電変換
装置の製造方法が図解されている。
(Embodiment) FIG. 1 is a schematic cross-sectional view illustrating a method of manufacturing a semiconductor thin film photoelectric conversion device according to an embodiment of the present invention.

【0019】まず図1(A)において、絶縁基板1とし
て、白板ガラスが用いられた。ガラス基板1上には、第
1の電極2として、微細な表面凹凸構造を含む酸化錫膜
が熱CVD法によって約700nmの厚さに堆積される
とともに、酸化亜鉛膜がスパッタリング法によって30
nmの厚さに堆積された。透明電極2上には、周知のプ
ラズマCVD法によって、p型微結晶シリコン層3pが
6nmの厚さに堆積された。
First, in FIG. 1A, a white plate glass was used as the insulating substrate 1. On the glass substrate 1, as a first electrode 2, a tin oxide film having a fine surface unevenness is deposited to a thickness of about 700 nm by a thermal CVD method, and a zinc oxide film is formed by a sputtering method to a thickness of 30 nm.
deposited to a thickness of nm. On the transparent electrode 2, a p-type microcrystalline silicon layer 3p was deposited to a thickness of 6 nm by a known plasma CVD method.

【0020】p型微結晶シリコン層3p上には、同じく
プラズマCVD法によって、ノンドープ多結晶シリコン
からなる第1の光電変換サブ層3i1が1.6μmの厚
さに堆積された。これに続いて、同じくノンドープ多結
晶シリコンからなる第2の光電変換サブ層3i2が1.
0μmの厚さに堆積された。ただし、第1の結晶質光電
変換サブ層3i1に比べて、第2の結晶質光電変換サブ
層3i2は小さな体積結晶化分率を有している。このよ
うな体積結晶化分率は、プラズマCVD法において用い
られるSiH4/H2混合ガスの混合比率を制御すること
によって調節することができる。すなわち、第1の結晶
質光電変換サブ層3i1の堆積の際にはSiH4/H2
比率が1/80に設定されたのに対して、第2の結晶質
光電変換サブ層3i2の堆積の際にはSiH4/H2の比
率が1/65に設定された。
[0020] On the p-type microcrystalline silicon layer 3p, the same plasma CVD method, a first photoelectric conversion sublayer 3i 1 made of non-doped polycrystalline silicon is deposited to a thickness of 1.6 [mu] m. Following this, also the non-doped polycrystalline second photoelectric conversion sublayer 3i made of silicon 2 is 1.
Deposited to a thickness of 0 μm. However, compared to the first crystalline photoelectric conversion sublayer 3i 1, crystalline photoelectric conversion sublayer 3i 2 of the second has a small volume crystallization fraction. Such a volume crystallization fraction can be adjusted by controlling the mixing ratio of the SiH 4 / H 2 mixed gas used in the plasma CVD method. That is, while the first crystalline photoelectric conversion sub-layer 3i 1 is deposited, the ratio of SiH 4 / H 2 is set to 1/80, whereas the second crystalline photoelectric conversion sub-layer 3i 2 is set. Was deposited, the ratio of SiH 4 / H 2 was set to 1/65.

【0021】すなわち、第2結晶質光電変換サブ層3i
2のプラズマCVD条件は第1結晶質光電変換サブ層3
1の場合に比べて結晶化しにくい条件であり、非晶質
部分の含まれる割合が増大することを意味している。し
たがって、図1(A)に示されているように、第2結晶
質光電変換サブ層3i2の成長初期においては、その下
地となっている大きな体積結晶化分率を有する第1結晶
質光電変換層3i1からの結晶成長を引き継いで結晶化
されやすい状態にあるが、成長が進むに従って非晶質部
分3iaの割合が増大する傾向にある。
That is, the second crystalline photoelectric conversion sub-layer 3i
The plasma CVD condition 2 is the first crystalline photoelectric conversion sublayer 3
This is a condition that is less likely to be crystallized than in the case of i 1 , which means that the proportion of the amorphous portion is increased. Thus, as shown in FIG. 1 (A), in the second initial growth of the crystalline photoelectric conversion sublayer 3i 2, first crystalline photoelectric having a large volume crystallinity fraction has its foundation Although the crystal inheriting the growth crystallized susceptible state from conversion layer 3i 1, there is a tendency that the proportion of amorphous portion 3i a accordance growth proceeds is increased.

【0022】図1(B)においては、第2結晶質光電変
換サブ層3i2の表面が水素プラズマによってエッチン
グされる。このとき、非晶質シリコンは結晶シリコンに
比べてはるかに大きなエッチング速度によってエッチン
グされる。その結果、図1(B)に示されているよう
に、第2結晶質光電変換サブ層3i2の表面に微細な凹
凸構造が形成される。なお、このような微細な凹凸構造
の凹部の底部において非晶質部分3iaが残存しても何
ら問題を生じることはない。
[0022] In FIG. 1 (B), second crystalline photoelectric conversion sublayer 3i 2 surface is etched by hydrogen plasma. At this time, the amorphous silicon is etched at a much higher etching rate than the crystalline silicon. As a result, as shown in FIG. 1 (B), the fine uneven structure is formed in the second crystalline photoelectric conversion sublayer 3i 2 of surface. It is not to cause any problem even if residual amorphous portion 3i a at the bottom of the recess of such a fine uneven structure.

【0023】図1(C)においては、第2結晶質光電変
換サブ層3i2の凹凸表面上に、n型微結晶シリコン層
がプラズマCVD法によって15nmの厚さに堆積され
た。こうして、pin接合を含む結晶質光電変換ユニッ
ト3が形成された。
[0023] In FIG. 1 (C) to a second crystalline photoelectric conversion sublayer 3i 2 of irregularities on the surface, n-type microcrystalline silicon layer is deposited to a thickness of 15nm by plasma CVD. Thus, the crystalline photoelectric conversion unit 3 including the pin junction was formed.

【0024】ここで、第2結晶質光電変換サブ層3i2
の凹凸表面上に形成されたn型微結晶シリコン層は極め
て薄い15nmの厚さを有するだけなので、そのn型微
結晶シリコン層3nの上面も、第2結晶質光電変換サブ
層3i2の上面の凹凸構造を反映した凹凸構造を有する
ことになる。なお、光電変換ユニット3に含まれるいず
れの半導体層の堆積の場合にも、基板温度は250℃に
設定された。
Here, the second crystalline photoelectric conversion sub-layer 3i 2
Because of the uneven n-type microcrystalline silicon layer formed on the surface only has a thickness of very thin 15 nm, even upper surface of the n-type microcrystalline silicon layer 3n, a second upper surface of the crystalline photoelectric conversion sublayer 3i 2 Has an uneven structure that reflects the uneven structure of FIG. Note that the substrate temperature was set to 250 ° C. in any of the depositions of the semiconductor layers included in the photoelectric conversion unit 3.

【0025】n型微結晶シリコン層3nの凹凸表面上に
は、第2の電極5として、厚さ90nmの酸化亜鉛膜、
厚さ200nmの銀膜、および厚さ5nmのチタン膜が
この順序でスパッタリング法によって堆積された。な
お、この酸化亜鉛膜は銀膜の高い反射率を維持するとと
もに、銀原子が光電変換ユニット3内へ拡散混入するこ
とを防止するように作用し得る。また、チタン膜は銀膜
を大気から保護するように作用し得る。
On the uneven surface of the n-type microcrystalline silicon layer 3n, as a second electrode 5, a 90 nm thick zinc oxide film,
A silver film having a thickness of 200 nm and a titanium film having a thickness of 5 nm were deposited in this order by a sputtering method. Note that this zinc oxide film can maintain the high reflectance of the silver film and can also act to prevent silver atoms from diffusing into the photoelectric conversion unit 3. Also, the titanium film can act to protect the silver film from the atmosphere.

【0026】こうして形成された実施例による半導体薄
膜光電変換装置を第2電極側から1cm角の受光面積を
有する光電変換素子に分離し、その光電変換特性が測定
された。すなわち、AM1.5のスペクトル分布を有す
る擬似太陽光を25℃の下で100mW/cm2のエネ
ルギ密度で照射したところ、開放端電圧が0.470
V、短絡電流密度が22.8mA/cm2、曲線因子が
0.760、そして変換効率が8.14%であった。
The semiconductor thin film photoelectric conversion device according to the embodiment thus formed was separated from the second electrode side into photoelectric conversion elements having a light receiving area of 1 cm square, and the photoelectric conversion characteristics were measured. That is, when simulated sunlight having a spectrum distribution of AM1.5 was irradiated at 25 ° C. with an energy density of 100 mW / cm 2 , the open-circuit voltage was 0.470.
V, short-circuit current density was 22.8 mA / cm 2 , fill factor was 0.760, and conversion efficiency was 8.14%.

【0027】(比較例)上述の実施例による半導体薄膜
光電変換装置に類似して、比較例による薄膜半導体光電
変換装置が作製された。この比較例による薄膜光電変換
装置においては、厚さ1.6μmの第1結晶質光電変換
サブ層3i1と厚さ1.0μmの第2結晶質光電変換サ
ブ層3i2の代わりに、それらの合計厚さに相当する厚
さ2.6μmのノンドープ多結晶シリコンからなる光電
変換層が第1結晶質光電変換サブ層3i1のCVD条件
と同じ条件で堆積されたことのみにおいて実施例と異な
っていた。
Comparative Example A thin-film semiconductor photoelectric conversion device according to a comparative example was manufactured similarly to the semiconductor thin-film photoelectric conversion device according to the above-described embodiment. In the thin-film photoelectric conversion device according to this comparative example, instead of the first crystalline photoelectric conversion sub-layer 3i 1 having a thickness of 1.6 μm and the second crystalline photoelectric conversion sub-layer 3i 2 having a thickness of 1.0 μm, these different from the embodiment only in that the photoelectric conversion layer made of non-doped polycrystalline silicon with a thickness of 2.6μm which corresponds to the total thickness was deposited under the same conditions as the 1 CVD condition of the crystalline photoelectric conversion sublayer 3i 1 Was.

【0028】このような比較例による半導体薄膜光電変
換装置に対して実施例の場合と同様の擬似太陽光を照射
して光電変換特性を測定したところ、開放端電圧が0.
472V、短絡電流密度が20.3mA/cm2、曲線
因子が0.755、そして変換効率が7.23%であっ
た。
When the photoelectric conversion characteristics of the semiconductor thin film photoelectric conversion device according to the comparative example were measured by irradiating the same pseudo-sunlight as that of the embodiment, the open-ended voltage was 0.1%.
472 V, short-circuit current density was 20.3 mA / cm 2 , fill factor was 0.755, and conversion efficiency was 7.23%.

【0029】以上のような実施例と比較例との比較から
わかるように、実施例による半導体薄膜光電変換装置に
おいては、比較例に比べて、開放端電圧がほぼ同等であ
るが他のすべての光電変換特性が向上していることがわ
かる。特に、短絡電流密度が顕著に改善しており、これ
に伴って変換効率も改善している。このことは、実施例
における第2電極5の下面における凹凸構造5aが光閉
じ込め効果を高めているからであると考えられる。
As can be seen from the comparison between the embodiment and the comparative example, in the semiconductor thin-film photoelectric conversion device according to the embodiment, the open-circuit voltage is almost equal to that of the comparative example, but all other devices are different. It can be seen that the photoelectric conversion characteristics have been improved. In particular, the short-circuit current density has been remarkably improved, and the conversion efficiency has been accordingly improved. This is considered to be because the uneven structure 5a on the lower surface of the second electrode 5 in the embodiment enhances the light confinement effect.

【0030】なお、上述の実施例ではpinの順に積層
された光電変換ユニットについて説明されたが、nip
の順に積層された光電変換ユニットを含む半導体薄膜光
電変換装置に対しても本発明が適用され得ることは言う
までもない。また、上述の実施例では単一の光電変換ユ
ニットのみを含む半導体薄膜光電変換装置について説明
されたが、第1電極2と結晶質光電変換ユニット3との
間にさらに1以上の非晶質光電変換ユニットおよび/ま
たは結晶質光電変換ユニットが積層されたタンデム型薄
膜光電変換装置に対しても本発明が適用され得ることも
言うまでもない。
In the above embodiment, the photoelectric conversion units stacked in the order of pins have been described.
It is needless to say that the present invention can also be applied to a semiconductor thin film photoelectric conversion device including a photoelectric conversion unit stacked in the following order. In the above-described embodiment, a semiconductor thin film photoelectric conversion device including only a single photoelectric conversion unit has been described. However, one or more amorphous photoelectric conversion devices may be further provided between the first electrode 2 and the crystalline photoelectric conversion unit 3. It goes without saying that the present invention can also be applied to a tandem thin-film photoelectric conversion device in which a conversion unit and / or a crystalline photoelectric conversion unit are stacked.

【0031】[0031]

【発明の効果】以上のように、本発明によれば、少なく
とも1つの結晶質光電変換ユニットを含みかつ光閉じ込
め効果を有することによって高い光電変換効率を有する
半導体薄膜光電変換装置を複雑な工程とコストの増大を
伴うことなく製造することが可能となる。
As described above, according to the present invention, a semiconductor thin film photoelectric conversion device including at least one crystalline photoelectric conversion unit and having a high photoelectric conversion efficiency by having a light confinement effect can be manufactured by a complicated process. It can be manufactured without increasing the cost.

【図面の簡単な説明】[Brief description of the drawings]

【図1】 本発明の一実施例による半導体薄膜光電変換
装置の製造工程を示す模式的な断面図である。
FIG. 1 is a schematic sectional view showing a manufacturing process of a semiconductor thin film photoelectric conversion device according to one embodiment of the present invention.

【図2】 先行技術による半導体薄膜光電変換装置の一
例を示す模式的な断面図である。
FIG. 2 is a schematic sectional view showing an example of a semiconductor thin film photoelectric conversion device according to the prior art.

【符号の説明】[Explanation of symbols]

1 絶縁基板、2 第1の電極、3p p型半導体層、
3i 実質的に真性半導体の光電変換層、3i1 i型
多結晶シリコン光電変換層、3i2 比較的小さな体積
結晶化分率を有するi型結晶質シリコン光電変換層、3
n n型半導体層、5 第2の電極。
1 insulating substrate, 2 first electrode, 3 pp p-type semiconductor layer,
3i Substantially intrinsic semiconductor photoelectric conversion layer, 3i 1 i-type polycrystalline silicon photoelectric conversion layer, 3i 2 i-type crystalline silicon photoelectric conversion layer having relatively small volume crystallization fraction, 3
n n-type semiconductor layer, 5 second electrode.

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 絶縁基板上で順に積層された第1の電
極、1以上の半導体薄膜光電変換ユニット、および第2
の電極を含み、前記第2電極に接している前記薄膜光電
変換ユニットは順に積層された第1導電型半導体層、実
質的に真性半導体の結晶質光電変換層、および第2導電
型半導体層を含む半導体薄膜光電変換装置の製造方法で
あって、 前記結晶質光電変換層に含まれる第1と第2の結晶質光
電変換サブ層をプラズマCVDによって順次堆積し、こ
の際のCVD条件は第1結晶質光電変換サブ層に比べて
第2結晶質光電変換サブ層の方が体積結晶化分率が小さ
くなる条件に設定され、 前記第2結晶質光電変換サブ層の表面近傍において分散
して含まれる非晶質微小領域を水素プラズマを用いて優
先的にエッチングすることによって表面凹凸構造を形成
し、 その表面凹凸構造上に前記第2導電型半導体層と前記第
2電極が順に堆積されることを特徴とする半導体薄膜光
電変換装置の製造方法。
1. A first electrode, one or more semiconductor thin film photoelectric conversion units, and a second electrode, which are sequentially stacked on an insulating substrate.
The thin film photoelectric conversion unit in contact with the second electrode includes a first conductive semiconductor layer, a crystalline semiconductor photoelectric conversion layer of a substantially intrinsic semiconductor, and a second conductive semiconductor layer. A method for manufacturing a semiconductor thin-film photoelectric conversion device, comprising: sequentially depositing first and second crystalline photoelectric conversion sublayers included in the crystalline photoelectric conversion layer by plasma CVD, wherein the CVD conditions are: The second crystalline photoelectric conversion sub-layer is set to have a smaller volume crystallization fraction than the crystalline photoelectric conversion sub-layer, and is dispersed and included in the vicinity of the surface of the second crystalline photoelectric conversion sub-layer. Forming a surface uneven structure by preferentially etching the amorphous minute region to be formed using hydrogen plasma, and the second conductivity type semiconductor layer and the second electrode are sequentially deposited on the surface uneven structure. Especially The method of manufacturing a semiconductor thin film photoelectric conversion device according to.
【請求項2】 前記結晶質光電変換層は主成分としてシ
リコンを含み、前記第1と第2の結晶質光電変換サブ層
における前記体積結晶化分率は前記プラズマCVD法に
用いられるSiH4/H2混合ガスの混合比率を制御する
ことによって調節されることを特徴とする請求項1に記
載の半導体薄膜光電変換装置の製造方法。
2. The crystalline photoelectric conversion layer contains silicon as a main component, and the volume crystallization fraction in the first and second crystalline photoelectric conversion sub-layers is SiH 4 / Si used in the plasma CVD method. the method of manufacturing a semiconductor thin film photoelectric conversion device according to claim 1, characterized in that it is adjusted by controlling the mixing ratio of H 2 gas mixture.
JP2000167108A 2000-06-05 2000-06-05 Manufacturing method of semiconductor thin film photoelectric conversion device Expired - Fee Related JP4247947B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2000167108A JP4247947B2 (en) 2000-06-05 2000-06-05 Manufacturing method of semiconductor thin film photoelectric conversion device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2000167108A JP4247947B2 (en) 2000-06-05 2000-06-05 Manufacturing method of semiconductor thin film photoelectric conversion device

Publications (2)

Publication Number Publication Date
JP2001352082A true JP2001352082A (en) 2001-12-21
JP4247947B2 JP4247947B2 (en) 2009-04-02

Family

ID=18670312

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000167108A Expired - Fee Related JP4247947B2 (en) 2000-06-05 2000-06-05 Manufacturing method of semiconductor thin film photoelectric conversion device

Country Status (1)

Country Link
JP (1) JP4247947B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003332605A (en) * 2002-05-15 2003-11-21 Sharp Corp Surface roughening method of semiconductor substrate and solar battery
JP2010147412A (en) * 2008-12-22 2010-07-01 Fuji Electric Holdings Co Ltd Thin film solar cell battery and method of manufacturing the same

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003332605A (en) * 2002-05-15 2003-11-21 Sharp Corp Surface roughening method of semiconductor substrate and solar battery
JP4518731B2 (en) * 2002-05-15 2010-08-04 シャープ株式会社 Method for forming irregularities on the surface of a polycrystalline silicon substrate
JP2010147412A (en) * 2008-12-22 2010-07-01 Fuji Electric Holdings Co Ltd Thin film solar cell battery and method of manufacturing the same

Also Published As

Publication number Publication date
JP4247947B2 (en) 2009-04-02

Similar Documents

Publication Publication Date Title
US6388301B1 (en) Silicon-based thin-film photoelectric device
JP4257332B2 (en) Silicon-based thin film solar cell
JP5147818B2 (en) Substrate for photoelectric conversion device
US7964431B2 (en) Method to make electrical contact to a bonded face of a photovoltaic cell
WO2003065462A1 (en) Tandem thin-film photoelectric transducer and its manufacturing method
JP2008053731A (en) Nano-wire in thin film silicon solar cell
JP2006319068A (en) Multi-junction silicone thin film photoelectric converter and its manufacturing method
JP2003179241A (en) Thin film solar cell
JP2000252500A (en) Silicon thin-film photoelectric conversion device
WO2012037379A2 (en) Single and multi-junction light and carrier collection management cells
JP3416364B2 (en) Photovoltaic element and method for manufacturing the same
US6759645B2 (en) Hybrid thin-film photoelectric transducer and transparent laminate for the transducer
JP4193962B2 (en) Solar cell substrate and thin film solar cell
JP2004260014A (en) Multilayer type thin film photoelectric converter
JP2000261011A (en) Silicon-based thin-film photoelectric transducer
JP2009117463A (en) Thin-film photoelectric conversion device
JP2000058892A (en) Silicon based thin film photoelectric converter
JPH05102504A (en) Photovoltaic element
JP4247947B2 (en) Manufacturing method of semiconductor thin film photoelectric conversion device
JP2002280581A (en) Semiconductor thin film photoelectric converter manufacturing method
JP5542025B2 (en) Photoelectric conversion device
JP2000252504A (en) Silicon thin film optoelectric transducer device and manufacture thereof
JP3241234B2 (en) Thin film solar cell and method of manufacturing the same
JP4358493B2 (en) Solar cell
JP2001015780A (en) Rear surface electrode for silicon-system thin-film photoelectric conversion device and silicon-system thin- film photoelectric conversion device provided therewith

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060901

RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7423

Effective date: 20080912

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20080917

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20080917

TRDD Decision of grant or rejection written
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20090106

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20090108

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20090109

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120123

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120123

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130123

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130123

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140123

Year of fee payment: 5

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140123

Year of fee payment: 5

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees