JP2001351832A - Gel electrolyte - Google Patents

Gel electrolyte

Info

Publication number
JP2001351832A
JP2001351832A JP2000167110A JP2000167110A JP2001351832A JP 2001351832 A JP2001351832 A JP 2001351832A JP 2000167110 A JP2000167110 A JP 2000167110A JP 2000167110 A JP2000167110 A JP 2000167110A JP 2001351832 A JP2001351832 A JP 2001351832A
Authority
JP
Japan
Prior art keywords
molecular weight
gel electrolyte
polymer
average molecular
electrolyte
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2000167110A
Other languages
Japanese (ja)
Inventor
Yasuo Ando
保雄 安藤
Toshinori Fujii
利宣 藤井
Atsushi Sakamoto
敦 坂本
Kazuhiko Kawakami
和彦 河上
Tatsutoshi Tamura
逹利 田村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Meidensha Corp
Meidensha Electric Manufacturing Co Ltd
Original Assignee
Meidensha Corp
Meidensha Electric Manufacturing Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Meidensha Corp, Meidensha Electric Manufacturing Co Ltd filed Critical Meidensha Corp
Priority to JP2000167110A priority Critical patent/JP2001351832A/en
Publication of JP2001351832A publication Critical patent/JP2001351832A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES OR LIGHT-SENSITIVE DEVICES, OF THE ELECTROLYTIC TYPE
    • H01G11/00Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
    • H01G11/22Electrodes
    • H01G11/30Electrodes characterised by their material
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES OR LIGHT-SENSITIVE DEVICES, OF THE ELECTROLYTIC TYPE
    • H01G11/00Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
    • H01G11/54Electrolytes
    • H01G11/56Solid electrolytes, e.g. gels; Additives therein
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/13Energy storage using capacitors

Abstract

PROBLEM TO BE SOLVED: To provide gel electrolyte which is suitable for application to an electric double-layer capacitor. SOLUTION: The gel electrolyte is constituted of polymer, organic solvent and electrolytic salt. As the polymer, polyacrylonitrile is used, and as the organic solvent, propylene carbonate, ethylene carbonate or γ buthyrolactone, etc., are used, and furthermore, a molecular weight and molecular weight distribution for manufacturing a high polymer gel electrolyte film by heating and mixing salt for functioning as a capacitor are specified. Regarding a molecular amount, a number average molecular weight is made >=1.32×105 and the ratio of a weight average molecular weight to a number-average molecular weight is made <=3.15, and furthermore, a water amount of polyacrylonitrile is made <=0.5%.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、ゲル電解質に関す
る。詳しくは、電気二重層キャパシタに適用して好適な
ゲル電解質に関する。
[0001] The present invention relates to a gel electrolyte. Specifically, the present invention relates to a gel electrolyte suitable for application to an electric double layer capacitor.

【0002】[0002]

【従来の技術】現在用いられているコンピュータには、
メモリのバックアップ用として、電気二重層キャパシタ
が利用されている。このキャパシタは、小型で大容量で
あり、また、繰返し寿命が長いという特徴を有する。電
気二重層キャパシタは、Al電解コンデンサに代表され
る電極間に誘電体を有するコンデンサに比べ、体積あた
りの容量が300〜1000倍高い。
2. Description of the Related Art Currently used computers include:
An electric double layer capacitor is used for backing up a memory. This capacitor is characterized in that it is small, has a large capacity, and has a long repeated life. The electric double layer capacitor has a capacity per volume of 300 to 1000 times higher than a capacitor having a dielectric between electrodes typified by an Al electrolytic capacitor.

【0003】この電気二重層キャパシタは、分極性電極
に電解質中のアニオン、カチオンをそれぞれ正極,負極
表面に物理吸着させて電気を蓄えるという原理で動作す
るため、その吸着する電極の表面積が大きいことが要求
される。そこで、現梅では、比表面積が1000〜30
00(m2/g)の活性炭がこの電気二重層キャパシタ
の電極として利用されている。電気二重層キャパシタ
は、この2つの電極の間に電解質が存在する構造を有し
ている。
The electric double layer capacitor operates on the principle that the anion and the cation in the electrolyte are physically adsorbed on the surfaces of the positive electrode and the negative electrode, respectively, on the polarizable electrode to store electricity, so that the surface area of the adsorbed electrode is large. Is required. Therefore, in the present plum, the specific surface area is 1000 to 30
00 (m 2 / g) activated carbon is used as an electrode of this electric double layer capacitor. The electric double layer capacitor has a structure in which an electrolyte exists between these two electrodes.

【0004】近年、この電気二重層キャパシタを、様々
な機盤のバックアップ電源として広く用いられるように
なってきた。適用対象の大容量化に伴い、バックアップ
として用いる電気二重層キャパシタも、大容量化が望ま
れている。このとき、大容量化のキャパシタにおいて
は、使用電圧の高いことや内部抵抗が低く大電流が流せ
ることが望ましい。
In recent years, this electric double layer capacitor has been widely used as a backup power supply for various machine boards. With an increase in capacity of an application object, an increase in capacity of an electric double layer capacitor used as a backup is also desired. At this time, it is desirable that a large-capacity capacitor has a high working voltage, a low internal resistance, and a large current.

【0005】電気二重層キャパシタの電解質は、水溶液
系、有機電解液系、有機電解液系にポリマーを混ぜゲル
化したゲル電解質系の3つがある。水溶液系は、電解液
として主に希硫酸が用いられている。希硫酸は電気伝導
度が大きい反面、分解電圧が1.2Vと低い。一方、有
機電解液系では、分解電圧は、水溶液系に比べ高い
(2.5〜3V)が、電気伝導度が小さい。
There are three types of electrolytes for electric double layer capacitors: an aqueous solution type, an organic electrolytic solution type, and a gel electrolyte type obtained by mixing a polymer with an organic electrolytic solution to form a gel. In an aqueous solution system, dilute sulfuric acid is mainly used as an electrolytic solution. Dilute sulfuric acid has high electrical conductivity, but has a low decomposition voltage of 1.2 V. On the other hand, in the organic electrolyte solution, the decomposition voltage is higher (2.5 to 3 V) than in the aqueous solution system, but the electric conductivity is small.

【0006】このように、水溶液系と有機溶液系とでお
互いに相反する性質を持っている。またゲル電解質系
は、有機電解液系と似た性質を持っているが、ポリマー
が含まれているため電気伝導度に関しては、有機電解液
系にやや劣る。しかし、ゲル電解質系はセパレータが不
要であり、キャパシタを構成するときに、優位な構造を
構築できるという利点がある。
[0006] As described above, the aqueous solution and the organic solution have mutually contradictory properties. Further, the gel electrolyte system has properties similar to those of the organic electrolyte system, but is slightly inferior to the organic electrolyte system in terms of electric conductivity because it contains a polymer. However, the gel electrolyte system does not require a separator, and has an advantage that a superior structure can be constructed when forming a capacitor.

【0007】[0007]

【発明が解決しようとする課題】電気二重層キャパシタ
の電解質にゲル電解質を用いる場合、電解質としての働
きとセパレータとしての働きを考えなければならない。
ゲル電解質に要求される条件は、イオン伝導度が高く、
電解質の分解電圧範囲が広く、強度が高いことが望まし
い。
When a gel electrolyte is used as an electrolyte of an electric double layer capacitor, it is necessary to consider the function as an electrolyte and the function as a separator.
The conditions required for gel electrolytes are high ionic conductivity,
It is desirable that the decomposition voltage range of the electrolyte is wide and the strength is high.

【0008】また、製品として機器内に設置される場
合、環境温度変化に対して変化が少ないことが要求され
る。環境温度は製品によって異なるが、電気自動車(E
V)、屋外盤等に設置される場合は−20℃〜80℃の
環境に耐える必要がある。特に、ゲル電解質の場合は、
樹脂セパレータと比較して高温側で弱く、応力がかかっ
た状況下ではゲルの塑性変形を生じる可能性が高かっ
た。
[0008] Further, when a product is installed in a device, it is required that the change with respect to the environmental temperature change is small. Although the environmental temperature varies depending on the product, electric vehicles (E
V) When installed on an outdoor panel or the like, it is necessary to withstand an environment of −20 ° C. to 80 ° C. In particular, in the case of gel electrolyte,
It was weaker on the high temperature side than the resin separator, and the possibility of causing plastic deformation of the gel under stress was high.

【0009】[0009]

【課題を解決するための手段】上記課題を解決する本発
明の請求項1に係るゲル電解質は、ポリマー、有機溶剤
及び電解質塩で構成されるゲル電解質であって、前記ポ
リマーとしてポリアクリロニトリル(PAN)を用いる
と共に前記有機溶剤としてプロピレンカーボネート(P
C)、エチレンカーボネート(EC)又はγブチロラク
トン(GBL)等を用い、更に、キャパシタとして作用
させるための塩を加熱混合し製膜した高分子ゲル電解質
を製作する際の分子量と分子量分布を特定したものであ
って、分子量に関し、数平均分子量を1.32×105
以上とし、かつ、数平均分子量に対する重量平均分子量
の比を3.15以下とし、更に、ポリアクリロニトリル
の水分量を0.5%以下としたことを特徴とする。
According to a first aspect of the present invention, there is provided a gel electrolyte comprising a polymer, an organic solvent and an electrolyte salt, wherein the polymer is polyacrylonitrile (PAN). ) And propylene carbonate (P
C) Using ethylene carbonate (EC) or γ-butyrolactone (GBL), etc., and further specifying a molecular weight and a molecular weight distribution when producing a polymer gel electrolyte formed by heating and mixing a salt to act as a capacitor and forming a film. The number average molecular weight of 1.32 × 10 5
The ratio of the weight average molecular weight to the number average molecular weight is set to 3.15 or less, and the water content of polyacrylonitrile is set to 0.5% or less.

【0010】上記課題を解決する本発明の請求項2に係
るゲル電解質は、請求項1において、前記電解質塩とし
てテトラエチルアンモニウム(TEA)、トリエチルメ
チルアンモニウム塩(TEMA)又はN−エチル−Nメ
チルピロリジウム(MEPYBF4)を使用したことを
特徴とする。
[0010] The gel electrolyte according to claim 2 of the present invention which solves the above-mentioned problem is the gel electrolyte according to claim 1, wherein the electrolyte salt is tetraethylammonium (TEA), triethylmethylammonium salt (TEMA) or N-ethyl-N-methylpyrrolidone. It is characterized by the use of indium (MEPYBF 4 ).

【0011】上記課題を解決する本発明の請求項3に係
るゲル電解質は、請求項1又は2において、前記高分子
ゲル電解質は電気二重層キャパシターへ適用されること
を特徴とする。尚、脱水方法は通常の加熱法、真空加熱
法などでよい。
A gel electrolyte according to a third aspect of the present invention for solving the above-mentioned problems is characterized in that, in the first or second aspect, the polymer gel electrolyte is applied to an electric double layer capacitor. The dehydration method may be an ordinary heating method, a vacuum heating method, or the like.

【0012】[0012]

【発明の実施の形態】本実施例では、ゲル電解質のポリ
マーにポリアクリロニトリル(PAN)を用いポリマー
の分子量を最適化させ、ゲル電解質の耐熱性を向上させ
る方法を示す。
DESCRIPTION OF THE PREFERRED EMBODIMENTS In this embodiment, a method for improving the heat resistance of a gel electrolyte by optimizing the molecular weight of the polymer by using polyacrylonitrile (PAN) as the polymer of the gel electrolyte will be described.

【0013】〔コーター装置を用いたゲル電解質作製方
法〕ゲル電解質は、ポリマー、有機溶媒、電解質塩で構
成される。ポリマーとしてはポリアクリロニトリル(P
AN)、有機溶媒としてはプロピレンカーボネート(P
C)、電解質塩としては四フッ化ホウ酸テトラエチルア
ンモニウム(TEABF4)を用いた。これらゲル電解
質は、それぞれの材料を所定量秤量し130℃で溶解
し、溶解後、自然放冷することによって、ある温度(ゲ
ル化開始温度)以下になると白色のゲル状物質となる性
質を持っている。
[Method of Producing Gel Electrolyte Using Coater Apparatus] The gel electrolyte is composed of a polymer, an organic solvent, and an electrolyte salt. As the polymer, polyacrylonitrile (P
AN), and propylene carbonate (P
C), was used tetraethylammonium tetrafluoroborate (TEABF 4) as an electrolyte salt. These gel electrolytes have the property of weighing a predetermined amount of each material, dissolving it at 130 ° C., dissolving, and then allowing it to cool naturally to become a white gel-like substance when the temperature falls below a certain temperature (gelation start temperature). ing.

【0014】ゲル状物質となる温度(ゲル化開始温度)
は、構成材料の組成、種類などによって異なり、一例を
挙げると、ポリマーとしてPANを適用した場合、PA
N10mol%で35℃、PAN13mol%で55℃
以下になるとゲル状の物質となる。コーター装置は、ド
クターブレード法にて基板にスラリーを均一に塗布する
ための装置である。一般的に電極材料を作製するために
用いられている。この装置をゲル電解質作製に適用し、
膜の厚さが0.2mmのゲル電解質膜を作製した。この
ゲル電解質を下記条件のPANで8サンプル作製させ
た。
Temperature at which a gel-like substance is formed (gelling start temperature)
Depends on the composition and type of the constituent materials. For example, when PAN is applied as a polymer, PA
35 ° C with N10mol%, 55 ° C with PAN13mol%
When it becomes below, it becomes a gel-like substance. The coater device is a device for uniformly applying a slurry to a substrate by a doctor blade method. Generally, it is used for producing an electrode material. This device is applied to gel electrolyte preparation,
A gel electrolyte membrane having a thickness of 0.2 mm was prepared. Eight samples of this gel electrolyte were prepared with PAN under the following conditions.

【0015】各サンプルについて、分子量検討を行った
ところ、表−1に示す結果となった。表−1に示すよう
に、PANの種類がBの場合は、数平均分子量が1.3
2×105より小さく、重量平均分子量(Mw)/数平
均分子量(Mn)の数値が3.15以上であったので、
製膜不可能であったが、PANの種類がB以外の場合
は、数平均分子量が1.32×105以上であり、重量
平均分子量(Mw)/数平均分子量(Mn)の数値が
3.15以下であるため、0.2mmの製膜が可能であ
った。また、PANの種類がEの場合を除く他、実用上
使用できるゲル強度を持つことが確認された。
When the molecular weight of each sample was examined, the results shown in Table 1 were obtained. As shown in Table 1, when the type of PAN is B, the number average molecular weight is 1.3.
Since it was smaller than 2 × 10 5 and the value of weight average molecular weight (Mw) / number average molecular weight (Mn) was 3.15 or more,
When the type of PAN was other than B, the number average molecular weight was 1.32 × 10 5 or more, and the value of weight average molecular weight (Mw) / number average molecular weight (Mn) was 3 .15 or less, a film formation of 0.2 mm was possible. Except for the case where the type of PAN was E, it was confirmed that the gel had practically usable gel strength.

【0016】[0016]

【表1】 [Table 1]

【0017】このゲル電解質を下記条件のPANで5サ
ンプル作製させた。各サンプルについて、水分量検討を
行ったところ、下記表−2に示す結果となった。表−2
に示すように、製膜性は、ポリマーの水分にも影響を受
けるので、水分量が0.5%以下のときは、良好な製膜
性を得ることができ、水分量が0.5%を越えると、表
面にやや荒れが発生したり、表面に膨れが生じた。
Five samples of this gel electrolyte were prepared with PAN under the following conditions. When the moisture content of each sample was examined, the results shown in Table 2 below were obtained. Table-2
As shown in the figure, since the film forming property is also affected by the water content of the polymer, when the water content is 0.5% or less, a good film forming property can be obtained, and the water content is 0.5%. When the value exceeded, the surface was slightly roughened or the surface was swollen.

【0018】[0018]

【表2】 [Table 2]

【0019】〔キャパシタ特性〕電気二重層キャパシタ
の作製方法について述べる。電極は、活性炭繊維を布状
に編んだ活性炭繊維布を面積7cm2となるように切断
しれこのとき、活性炭繊維布は厚み0.4mm、見かけ
体積あたりの活性炭重量は、210〜230mg/cm
3のものを使用した。活性炭繊維電極は、フェノール樹
脂系をバインダーとしたカーボン導電性接着剤をドクタ
ーブレード法、又はスクリーンメッシュなどでAl箔集
電体に塗布し、その上に活性炭繊維布をのせてから15
0℃−2時間で導電性接着剤を硬化させて作製した。
[Capacitor Characteristics] A method for manufacturing an electric double layer capacitor will be described. The electrode is formed by cutting an activated carbon fiber cloth obtained by knitting activated carbon fibers into a cloth so as to have an area of 7 cm 2. At this time, the activated carbon fiber cloth has a thickness of 0.4 mm, and the activated carbon weight per apparent volume is 210 to 230 mg / cm.
Three of them were used. The activated carbon fiber electrode is coated with a carbon conductive adhesive using a phenolic resin binder on the Al foil current collector by a doctor blade method, a screen mesh, or the like.
It was prepared by curing the conductive adhesive at 0 ° C. for 2 hours.

【0020】このようにして作製した活性炭繊維電極
は、真空加熱乾燥を行なって、活性炭繊維市中に含まれ
る水分を除去した。キャパシタの組立ては、電極2枚を
対向させる形で置き、電極間にゲル電解質を挟み込んで
作製した。キャパシタの充放電は、定電流でキャパシタ
の端子電圧を1から2Vの条件で充放電を繰り返した。
セルの静電容量と内部抵抗を算出した。製膜出来たゲル
電解質の全てのキャパシタ特性、すなわち静電容量と内
部抵抗は5%以内のばらつきに収まり、実用上問題のな
いことを確認した。
The activated carbon fiber electrode thus produced was dried by heating under vacuum to remove water contained in the activated carbon fiber. The capacitor was assembled by placing two electrodes facing each other and sandwiching a gel electrolyte between the electrodes. The charge and discharge of the capacitor were repeated at a constant current and a terminal voltage of the capacitor of 1 to 2 V.
The cell capacitance and internal resistance were calculated. All the capacitor characteristics of the formed gel electrolyte, that is, the capacitance and the internal resistance were within a variation of 5% or less, and it was confirmed that there was no practical problem.

【0021】[0021]

【発明の効果】以上、実施例に基づいて具体的に説明し
たように、本発明によれば、以下の効果を奏する。 (1)ゲル電解質の製膜性影響するポリマーの分子量、
分子量分布の範囲を明確にした。即ち、数平均分子量を
1.32×105以上とし、重量平均分子量(Mw)/
数平均分子量(Mn)の数値を3.15以下としたの
で、実用上使用できるゲル強度を確保することができ、
また、耐熱性を向上させることができた。 (2)製膜性は、ポリマーの水分にも影響を受けるの
で、その水分の制御範囲を特定した。即ち、ポリマーの
水分量を0.5%以下とすることにより、製膜性を向上
させることができた。
As described above, according to the present invention, the following effects can be obtained as described in detail with reference to the embodiments. (1) The molecular weight of the polymer that affects the film forming property of the gel electrolyte,
The range of the molecular weight distribution was clarified. That is, the number average molecular weight is set to 1.32 × 10 5 or more, and the weight average molecular weight (Mw) /
Since the numerical value of the number average molecular weight (Mn) was set to 3.15 or less, a gel strength that can be practically used can be secured,
Further, heat resistance was able to be improved. (2) Since the film forming property is also affected by the water content of the polymer, the control range of the water content was specified. That is, the film-forming property was able to be improved by controlling the water content of the polymer to 0.5% or less.

───────────────────────────────────────────────────── フロントページの続き (72)発明者 坂本 敦 東京都品川区大崎二丁目1番17号 株式会 社明電舎内 (72)発明者 河上 和彦 東京都品川区大崎二丁目1番17号 株式会 社明電舎内 (72)発明者 田村 逹利 東京都品川区大崎二丁目1番17号 株式会 社明電舎内 Fターム(参考) 4F070 AA34 AB22 AC35 AC45 AE06 AE28 FA04 FA06 4J002 BG101 EN136 EU026 FD116 GH00 GQ02 HA00  ──────────────────────────────────────────────────続 き Continued on the front page (72) Inventor Atsushi Sakamoto 2-1-1-17 Osaki, Shinagawa-ku, Tokyo Inside the Meidensha Corporation (72) Inventor Kazuhiko Kawakami 2-1-1-17 Osaki, Shinagawa-ku, Tokyo Stock Company Inside the company Meidensha (72) Inventor Tatsutoshi Tamura 2-1-1-17 Osaki, Shinagawa-ku, Tokyo F-term inside the company Meidensha 4F070 AA34 AB22 AC35 AC45 AE06 AE28 FA04 FA06 4J002 BG101 EN136 EU026 FD116 GH00 GQ02 HA00

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】 ポリマー、有機溶剤及び電解質塩で構成
されるゲル電解質であって、前記ポリマーとしてポリア
クリロニトリルを用いると共に前記有機溶剤としてプロ
ピレンカーボネート、エチレンカーボネート又はγブチ
ロラクトン等を用い、更に、キャパシタとして作用させ
るための塩を加熱混合し製膜した高分子ゲル電解質を製
作する際の分子量と分子量分布を特定したものであっ
て、分子量に関し、数平均分子量を1.32×105
上とし、かつ、数平均分子量に対する重量平均分子量の
比を3.15以下とし、更に、ポリアクリロニトリルの
水分量を0.5%以下としたことを特徴とするゲル電解
質。
1. A gel electrolyte comprising a polymer, an organic solvent and an electrolyte salt, wherein polyacrylonitrile is used as the polymer and propylene carbonate, ethylene carbonate or γ-butyrolactone is used as the organic solvent, and further, as a capacitor. The molecular weight and the molecular weight distribution at the time of producing a polymer gel electrolyte formed by heating and mixing a salt for acting to form a film are specified. Regarding the molecular weight, the number average molecular weight is 1.32 × 10 5 or more, and A gel electrolyte, wherein the ratio of the weight average molecular weight to the number average molecular weight is 3.15 or less, and the water content of polyacrylonitrile is 0.5% or less.
【請求項2】 前記電解質塩としてテトラエチルアンモ
ニウム、トリエチルメチルアンモニウム塩又はN−エチ
ル−Nメチルピロリジウムを使用したことを特徴とする
請求項1記載のゲル電解質。
2. The gel electrolyte according to claim 1, wherein tetraethylammonium, triethylmethylammonium salt or N-ethyl-N-methylpyrrolidium is used as the electrolyte salt.
【請求項3】 前記高分子ゲル電解質は、電気二重層キ
ャパシターへ適用されることを特徴とする請求項1又は
2記載のゲル電解質。
3. The gel electrolyte according to claim 1, wherein the polymer gel electrolyte is applied to an electric double layer capacitor.
JP2000167110A 2000-06-05 2000-06-05 Gel electrolyte Pending JP2001351832A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2000167110A JP2001351832A (en) 2000-06-05 2000-06-05 Gel electrolyte

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2000167110A JP2001351832A (en) 2000-06-05 2000-06-05 Gel electrolyte

Publications (1)

Publication Number Publication Date
JP2001351832A true JP2001351832A (en) 2001-12-21

Family

ID=18670314

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000167110A Pending JP2001351832A (en) 2000-06-05 2000-06-05 Gel electrolyte

Country Status (1)

Country Link
JP (1) JP2001351832A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7630116B2 (en) 2004-01-21 2009-12-08 Dainippon Ink And Chemicals, Inc. Ion conductor and electrochemical display device utilizing the same

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7630116B2 (en) 2004-01-21 2009-12-08 Dainippon Ink And Chemicals, Inc. Ion conductor and electrochemical display device utilizing the same

Similar Documents

Publication Publication Date Title
KR101296183B1 (en) Electric double layer capacitor
Kasprzak et al. Electrodes and hydrogel electrolytes based on cellulose: fabrication and characterization as EDLC components
US6335857B1 (en) Electric double layer capacitor and electrode therefor
KR101046098B1 (en) Polarizable Electrodes for Capacitors and Electrical Double Layer Capacitors Comprising the Same
NO309217B1 (en) Dobbeltlagskondensator
KR20140046466A (en) Steam activated non-lignocellulosic based carbons for ultracapacitors
KR101486429B1 (en) Composite for supercapacitor electrode with low initial resistance, manufacturing method of supercapacitor electrode using the composite and supercapacitor using the supercapacitor electrode manufactured by the method
RU2427052C1 (en) Electrode material for electric capacitor, its manufacturing method, and electric supercapacitor
KR101038869B1 (en) Electrode for capacitor and electric double layer capacitor comprising the same
Sampath et al. Hydrogel membrane electrolyte for electrochemical capacitors
KR101635763B1 (en) Composite for ultracapacitor electrode, manufacturing method of ultracapacitor electrode using the composite, and ultracapacitor manufactured by the method
KR101331966B1 (en) Electrochemical capacitor
JP4911294B2 (en) Slurry for electrode of electric double layer capacitor enclosing non-aqueous electrolyte and electric double layer capacitor using the slurry
KR20190053346A (en) Supercapacitor having excellent stability for high voltage and method for manufacturing the same
JP4668377B2 (en) Electric double layer capacitor
KR101860755B1 (en) Composite for ultracapacitor electrode, manufacturing method of ultracapacitor electrode using the composite, and ultracapacitor manufactured by the method
JP2001351832A (en) Gel electrolyte
JP4997279B2 (en) Hybrid super capacitor
KR102188237B1 (en) Composite for supercapacitor electrode, manufacturing method of supercapacitor electrode using the composite, and supercapacitor manufactured by the method
KR102188242B1 (en) Composite for supercapacitor electrode, manufacturing method of supercapacitor electrode using the composite, and supercapacitor manufactured by the method
KR102239685B1 (en) Electro-conductive adhesive using activated carbon, electrode current collector, electrode for supercapacitor and the supercapacitor having improved high temperature performance
KR20180110335A (en) Composite for ultracapacitor electrode, manufacturing method of ultracapacitor electrode using the composite, and ultracapacitor manufactured by the method
JP5195117B2 (en) Electrode for electric double layer capacitor and electric double layer capacitor
KR100750996B1 (en) Electric double layer capacitor, polarizable electrode for electric double layer capacitor and method for manufacturing the same
CN113690065B (en) Electric double layer capacitor of active carbon/graphene composite electrode and preparation method thereof

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060308

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20081009

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20081111

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20090428