JP2001349272A - Marine wind power generation system - Google Patents

Marine wind power generation system

Info

Publication number
JP2001349272A
JP2001349272A JP2000169911A JP2000169911A JP2001349272A JP 2001349272 A JP2001349272 A JP 2001349272A JP 2000169911 A JP2000169911 A JP 2000169911A JP 2000169911 A JP2000169911 A JP 2000169911A JP 2001349272 A JP2001349272 A JP 2001349272A
Authority
JP
Japan
Prior art keywords
power generation
typhoon
power
generation ship
wind
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2000169911A
Other languages
Japanese (ja)
Inventor
Chuzaburo Ichiyoshi
市吉忠三郎
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Priority to JP2000169911A priority Critical patent/JP2001349272A/en
Publication of JP2001349272A publication Critical patent/JP2001349272A/en
Pending legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F03MACHINES OR ENGINES FOR LIQUIDS; WIND, SPRING, OR WEIGHT MOTORS; PRODUCING MECHANICAL POWER OR A REACTIVE PROPULSIVE THRUST, NOT OTHERWISE PROVIDED FOR
    • F03DWIND MOTORS
    • F03D13/00Assembly, mounting or commissioning of wind motors; Arrangements specially adapted for transporting wind motor components
    • F03D13/20Arrangements for mounting or supporting wind motors; Masts or towers for wind motors
    • F03D13/25Arrangements for mounting or supporting wind motors; Masts or towers for wind motors specially adapted for offshore installation
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05BINDEXING SCHEME RELATING TO WIND, SPRING, WEIGHT, INERTIA OR LIKE MOTORS, TO MACHINES OR ENGINES FOR LIQUIDS COVERED BY SUBCLASSES F03B, F03D AND F03G
    • F05B2240/00Components
    • F05B2240/90Mounting on supporting structures or systems
    • F05B2240/93Mounting on supporting structures or systems on a structure floating on a liquid surface
    • F05B2240/931Mounting on supporting structures or systems on a structure floating on a liquid surface which is a vehicle
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/70Wind energy
    • Y02E10/72Wind turbines with rotation axis in wind direction
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/70Wind energy
    • Y02E10/727Offshore wind turbines

Landscapes

  • Engineering & Computer Science (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Wind Motors (AREA)

Abstract

PROBLEM TO BE SOLVED: To aim at utilizing typhoon energy on an ocean, generate power in a submerged wind power generation ship, and store the power in secondary batteries to be transported into the country and used as power sources for electric vehicles, therefore achieving a reduced fossil fuel for global warming countermeasures. SOLUTION: The power generation ship is of a submerged double-barrel type for reducing the influence of ocean waves and improving rolling stability. During power generation, a hydrofoil is set vertical and operated as a spoiler for preventing the power generation ship from drifting in the strong wind. The attitude of the hull is controlled by controlling the angles of four vertical vanes installed at the front and rear sides of the power generation ship. A super high speed computer system is used to predict the occurrence position and the moving direction of the typhoon. The power generation ship is moved from the nearest station for increasing the probability of meeting the power generation ship with the typhoon.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明が属する技術分野】本発明は、地球温暖化対策の
為、洋上の台風エネルギー利用を目指すもので、風力発
電、二次電池、潜水船、気象予測等の一連の総合技術で
ある。台風の十分なエネルギー密度を利用し、風力発電
で得た電力で二次電池を充電する。電気自動車の駆動用
に使用する。CO2を発生せず、環境に優しく、地球温
暖化対策の決め手となるものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention aims at utilizing typhoon energy on the ocean for countermeasures against global warming, and is a series of comprehensive technologies such as wind power generation, secondary batteries, submersibles, and weather forecasting. Using the sufficient energy density of the typhoon, the secondary battery is charged with the power obtained by wind power generation. Used for driving electric vehicles. It does not generate CO2, is environmentally friendly, and is a decisive factor in global warming countermeasures.

【従来の技術】[Prior art]

【0002】特開平6−159224 風力発電航行
船、特開平7−189884 水面航行風水力発電装置
と風力発電装置等の先願例があるがいずれも、発電船は
水面を航行する方式である。
[0002] There are prior applications such as Japanese Unexamined Patent Publication No. Hei 6-159224 and Japanese Unexamined Patent Publication No. Hei 7-189884, a water surface navigating wind power generation device and a wind power generation device.

【0003】風力エネルギーは風速の三乗に比例する事
から、地球上で風速の最も速い台風の中心付近で発電を
行うことが実用的である。台風の中心付近では風速は6
0mを超える事もあり、波浪も波高値で10m程度が予
想され、水上を航行する事は安全面からも不利である。
よって、発電船本体は比較的に穏やかな水中で運行する
事が必須条件となる。
Since wind energy is proportional to the cube of wind speed, it is practical to generate power near the center of the typhoon, which has the fastest wind speed on the earth. Wind speed is 6 near the center of the typhoon
It may exceed 0 m, and the wave height is expected to be about 10 m, and sailing on water is disadvantageous from the viewpoint of safety.
Therefore, it is an essential condition that the power generation vessel body be operated under relatively calm water.

【0004】高空風力発電装置の考えは、航空機の安全
運行とは両立し難いと思われる。水面を航行する目的で
有れば、帆が最適であり、風力、水力の自然エネルギー
から船舶を望む方向に航行させるに足りるエネルギーは
得られるとは思えない。海水を電気分解し、水素を利用
することも考えられるが、その際に副生する、苛性ソー
ダ、塩素ガス等による環境への影響を考えると、この方
式は推奨できない。
[0004] The idea of a high altitude wind power generator is considered to be incompatible with safe operation of aircraft. Sailing is the best option for navigating the surface of the water, and it seems unlikely that the wind and hydro natural energy will provide enough energy to make the ship sail in the desired direction. It is conceivable to electrolyze seawater and use hydrogen. However, considering the environmental impact of caustic soda, chlorine gas, etc., by-produced at that time, this method is not recommended.

【発明が解決しようとする課題】[Problems to be solved by the invention]

【0005】一般に風力発電は、陸上又は、海岸付近に
固定した設備として設置されており、風まかせとなり、
年間稼働率が低くなる傾向がある。又、水力発電等と比
較してエネルギー密度が低いために、小型で大出力が得
られない。台風のエネルギーを二次電池の電力の形で大
量に得る事である。
[0005] Generally, wind power is installed as a fixed facility on land or near the shore, and it is left to wind.
Annual utilization rates tend to be lower. In addition, since the energy density is lower than that of a hydroelectric power generation or the like, a small and large output cannot be obtained. The purpose is to obtain a large amount of typhoon energy in the form of electric power from secondary batteries.

【課題を解決するための手段】[Means for Solving the Problems]

【0006】電気モーター9駆動の水中発電船1で、水
上に風車群4及び垂直翼兼帆2を備えている。垂直翼兼
帆2は、船体の平面上の方向を制御する為及び通常の航
行では、追い風、横風の時の帆走用である。双胴船で、
両胴体間には、水中翼兼スポイラー3を備え、航行中は
船体のトリミング操作に使用され、発電中は水中翼兼ス
ポイラー3を垂直にして船体が流されない様にスポイラ
ーとして作用する。この様にして台風の目の東半円で発
電をしながら台風の力を利用して台風と共に移動する事
により、稼働率を向上する。
An underwater power generation boat 1 driven by an electric motor 9 is provided with a group of windmills 4 and a vertical wing / sail 2 on the water. The vertical wing / sail 2 is used for controlling the direction of the hull on a plane, and in normal sailing, for sailing in a tailwind or crosswind. On a catamaran,
A hydrofoil and spoiler 3 is provided between the two bodies, and is used for trimming the hull during navigation, and functions as a spoiler so that the hull does not flow while the hydrofoil and spoiler 3 is vertical during power generation. In this way, the occupancy rate is improved by moving along with the typhoon using the power of the typhoon while generating electricity in the eastern half circle of the typhoon eye.

【0007】台風の目の東半円で発電をするので、エネ
ルギー密度は十分あり、比較的に小型の風車4でも高速
回転で大電力を得る事が可能となる。
Since power is generated in the eastern half circle of the typhoon, the energy density is sufficient, and even a relatively small wind turbine 4 can obtain large power at high speed.

【発明の実施の形態】BEST MODE FOR CARRYING OUT THE INVENTION

【0008】台風の風速は、17〜60m/s程度の範
囲で変化するので、風車4の回転速度も、これに見合っ
た速度で運転すると効率が良い。発電機6の発生する交
流周波数も当然変化するが、最終的に、充電の為に整流
し直流にするので構わない。
Since the wind speed of a typhoon varies in the range of about 17 to 60 m / s, it is efficient to operate the windmill 4 at a speed corresponding to this. Although the AC frequency generated by the generator 6 naturally changes, it may be finally rectified to DC for charging.

【0009】風車4は海水混じりの烈風に晒されるの
で、長期の安定運転の為に、極力、単純な構造で材質も
対海水性に優れたものが望ましい。従って、翼の可変ピ
ッチ制御等はしない。むしろ、その時の風速で最大の電
力を得られる速度になる様に負荷を制御すべきである。
Since the windmill 4 is exposed to strong winds mixed with seawater, it is desirable that the windmill 4 has as simple a structure as possible and is excellent in material against seawater for long-term stable operation. Therefore, variable pitch control of the wing is not performed. Rather, the load should be controlled so that the maximum power can be obtained at the wind speed at that time.

【0010】図4に示す様に、風車4は水上に出すが、
発電機6は水中発電船本体1内に設置し、この間を歯車
箱5又はフレキシブル継ぎ手と軸、水密シール部等で連
結する。これにより、発電船1の重心が低くなり、発電
船1の安定性が良くなる又、発電機6の信頼性が向上す
る。
As shown in FIG. 4, the windmill 4 is put out on the water,
The generator 6 is installed in the body 1 of the underwater power generation boat, and the space between the generator 6 and the gear box 5 or the flexible joint is connected by a shaft, a watertight seal or the like. As a result, the center of gravity of the power generation boat 1 is lowered, the stability of the power generation boat 1 is improved, and the reliability of the generator 6 is improved.

【実施例】【Example】

【0011】図1に示す様に、水中の発電船本体と、水
上の風車の間は、波浪や水飛沫があるので可成の高さが
必要であり、発電船本体はローリング安定性の点から、
双胴船とする。双胴船とする事により、左右の船体にバ
ラスト・タンクを設け、船体の姿勢制御にも都合が良
い。
As shown in FIG. 1, between the underwater power generation vessel main body and the windmill above the water, waves and water droplets are required, so that a high height is required. From
Catamaran. By using a catamaran, ballast tanks are provided on the left and right hulls, which is convenient for attitude control of the hull.

【0012】発電船本体の前後に装備した4枚の垂直翼
兼帆2の風向きに対する角度を変化して、発電船本体の
左右平行移動、左右回転等水平面内の姿勢を制御する。
水中翼兼スポイラー3は、発電船本体の前後に2枚装備
しており、通常の電動モーター駆動で航行時には角度を
変化し、発電船本体の浮上、沈降、前後の傾き、ピッチ
ングを制御する。又、強風の中で発電中は、水中翼兼ス
ポイラー3を垂直にし、強風で発電船本体が流される事
を防ぐスポイラーの作用をする。
The angles of the four vertical wings / sails 2 provided before and after the main body of the power generation ship with respect to the wind direction are controlled to control the attitude of the power generation body in the horizontal plane, such as horizontal translation, horizontal rotation, and the like.
Two hydrofoil / spoilers 3 are provided before and after the main body of the power generation boat, and the angle is changed during navigation by driving a normal electric motor to control floating, sinking, front-back inclination, and pitching of the power generation body. During power generation in a strong wind, the hydrofoil and spoiler 3 is made vertical to act as a spoiler for preventing the power generation boat main body from being washed away by the strong wind.

【0013】広い外洋の中で発生する台風と、発電船が
出会う確率を高める事が、発電船の稼働率向上に極めて
重要である。超高速コンピュータシステムにより、台風
の発生位置、移動方向等を予測し、最寄りの基地より移
動する事により、台風と発電船の出会う確率を高める。
[0013] It is extremely important to improve the operating rate of a power generating boat to increase the probability that the power generating boat encounters a typhoon generated in a wide open sea. An ultra-high-speed computer system predicts the typhoon occurrence position, moving direction, etc., and moves from the nearest base, thereby increasing the probability that the typhoon will meet the power generation ship.

【0014】発電しながら、台風の移動と共に移動し、
二次電池を充電する。日本近海まで移動したら、二次電
池を積載したトラックを港に陸揚げする。放電した二次
電池を積み込み、帆走又は電動モーター駆動で基地へ移
動し、待機する。この移動の際には、図3の様に風向き
によっては垂直翼兼帆2を操作し水上を帆走する。これ
を繰り返す。
While generating electricity, it moves with the movement of the typhoon,
Charge the secondary battery. After moving to the waters near Japan, unload the truck loaded with secondary batteries to the port. Load the discharged secondary battery, move to the base by sailing or electric motor drive, and wait. In this movement, the vertical wing / sail 2 is operated depending on the wind direction as shown in FIG. 3 to sail on the water. Repeat this.

【0015】基地と発電船の間には、衛星回線による通
信回線が必要で、GPSによる位置確認、発電船の状態
監視等を行う。将来は、発電船の遠隔無人制御も行う。
[0015] A communication line by a satellite line is required between the base and the power generation ship, and the position is confirmed by GPS, and the state of the power generation ship is monitored. In the future, remote unmanned control of power generation vessels will also be performed.

【発明の効果】【The invention's effect】

【0016】台風は年平均で約29個発生しており、台
風期間も24〜396時間程度であり、台風と発電船の
出会う確率を30%と仮定した場合400MW発電船1
隻で、年間平均62,644MWhの発生を期待でき
る。台風のエネルギーは巨大であり、発電船の隻数を増
やせば更に多くの水素エネルギーが得られる。
Approximately 29 typhoons are generated annually, and the typhoon period is about 24 to 396 hours. Assuming that the probability that the typhoon meets the power generation vessel is 30%, the 400 MW power generation vessel 1
An average of 62,644 MWh per year can be expected on ships. The energy of a typhoon is huge, and more hydrogen energy can be obtained by increasing the number of power ships.

【0017】二次電池エネルギーは電力と異なり、効率
良く蓄積、貯蔵が可能で、負荷の変動に対応できる。化
石燃料、ガソリン自動車を廃止し、電気自動車を導入す
る事により、地球温暖化、環境汚染等の問題も解決す
る。
Unlike electric power, secondary battery energy can be efficiently accumulated and stored, and can cope with fluctuations in load. The abolition of fossil fuel and gasoline vehicles and the introduction of electric vehicles will also solve problems such as global warming and environmental pollution.

【図面の簡単な説明】[Brief description of the drawings]

【図1】発電船全体の平面及び側面図FIG. 1 is a plan view and a side view of an entire power generation ship.

【図2】発電中の発電船の側面図FIG. 2 is a side view of a power generating ship during power generation.

【図3】航行中の発電船の側面図FIG. 3 is a side view of the power-generating ship during navigation.

【図4】風車と発電機の連結FIG. 4 Connection of windmill and generator

【符号の説明】[Explanation of symbols]

1発電船本体 2垂直翼兼帆 3水中翼兼スポイラー 4風車 5歯車箱 6発電機 7変換器 8二次電池貯蔵部 9電動モーター 10スクリュー 11舵 12連結枠 13水密シール部 1 generator boat body 2 vertical wing and sail 3 hydrofoil and spoiler 4 windmill 5 gear box 6 generator 7 converter 8 secondary battery storage 9 electric motor 10 screw 11 rudder 12 connecting frame 13 watertight seal

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】発電船本体を水中型とし、垂直翼、水中翼
兼スポイラーを備えた双胴型発電船風車本体を水上に、
発電機を水中船内に設置した構成で、風速に応じた発電
機速度の制御電気自動車用二次電池を積載したトラック
群による電力輸送。超高速コンピュータシステムによる
台風の予測を組み合わせた洋上風力発電システム
1. A submersible type power generator main body, and a catamaran type power generator wind turbine main body provided with a vertical wing, a hydrofoil and a spoiler is placed on the water,
The generator is installed in the underwater ship, and the speed of the generator is controlled according to the wind speed. Electric power is transported by trucks loaded with secondary batteries for electric vehicles. Offshore wind power generation system combined with typhoon prediction by ultra-high speed computer system
JP2000169911A 2000-06-07 2000-06-07 Marine wind power generation system Pending JP2001349272A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2000169911A JP2001349272A (en) 2000-06-07 2000-06-07 Marine wind power generation system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2000169911A JP2001349272A (en) 2000-06-07 2000-06-07 Marine wind power generation system

Publications (1)

Publication Number Publication Date
JP2001349272A true JP2001349272A (en) 2001-12-21

Family

ID=18672698

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000169911A Pending JP2001349272A (en) 2000-06-07 2000-06-07 Marine wind power generation system

Country Status (1)

Country Link
JP (1) JP2001349272A (en)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009195096A (en) * 2008-02-18 2009-08-27 Shigekichi Asanuma Pendulum power generation ship
JP2011089468A (en) * 2009-10-22 2011-05-06 Mitsubishi Heavy Ind Ltd Wind power generating set
JP2011205728A (en) * 2010-03-24 2011-10-13 Tokyo Electric Power Co Inc:The Recyclable energy transporting and utilizing system
CN103321840A (en) * 2013-06-09 2013-09-25 广东明阳风电产业集团有限公司 Anti-typhoon control method for wind power plant
KR101557415B1 (en) 2015-04-03 2015-10-12 주식회사 티팩토리 portable apparatus for electric charging and discharging
KR101633641B1 (en) * 2015-04-01 2016-06-27 연세대학교 산학협력단 Typhoon Energy Dissipation Device and Operating Method Thereof
JP2017024697A (en) * 2015-07-21 2017-02-02 株式会社大内海洋コンサルタント Power generation sailing vessel, and hydrogen production and supply system
KR101736375B1 (en) 2012-02-15 2017-05-16 주식회사 엘지화학 Electric power transport ship using secondary battery and electric power transport system and method using the same
JP2017197182A (en) * 2011-03-30 2017-11-02 ジュリエット・マリン・システムズ,インコーポレーテッド High speed surface craft and submersible navigation body

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009195096A (en) * 2008-02-18 2009-08-27 Shigekichi Asanuma Pendulum power generation ship
JP2011089468A (en) * 2009-10-22 2011-05-06 Mitsubishi Heavy Ind Ltd Wind power generating set
JP2011205728A (en) * 2010-03-24 2011-10-13 Tokyo Electric Power Co Inc:The Recyclable energy transporting and utilizing system
JP2017197182A (en) * 2011-03-30 2017-11-02 ジュリエット・マリン・システムズ,インコーポレーテッド High speed surface craft and submersible navigation body
KR101736375B1 (en) 2012-02-15 2017-05-16 주식회사 엘지화학 Electric power transport ship using secondary battery and electric power transport system and method using the same
CN103321840A (en) * 2013-06-09 2013-09-25 广东明阳风电产业集团有限公司 Anti-typhoon control method for wind power plant
KR101633641B1 (en) * 2015-04-01 2016-06-27 연세대학교 산학협력단 Typhoon Energy Dissipation Device and Operating Method Thereof
KR101557415B1 (en) 2015-04-03 2015-10-12 주식회사 티팩토리 portable apparatus for electric charging and discharging
JP2017024697A (en) * 2015-07-21 2017-02-02 株式会社大内海洋コンサルタント Power generation sailing vessel, and hydrogen production and supply system

Similar Documents

Publication Publication Date Title
US7228812B2 (en) Sea-based hydrogen-oxygen generation system
US8664795B2 (en) Structure and method for capturing and converting wind energy at sea
US7146918B2 (en) Wind-powered linear motion hydrogen production systems
US8102070B2 (en) Float-type energy-generating system
EP2901008B1 (en) Method and system for wave energy conversion
US20150027125A1 (en) Process for harvesting, storing, and using renewable energy to propel and power boats and ships, and maximize their average speed
US20070138021A1 (en) Maritime hydrogen generation system
CN109733544B (en) Wing rudder linkage long-endurance double-body unmanned boat driven by natural energy
US20110281478A1 (en) Systems, devices and methods for providing energy for ship propulsion
CN110758707B (en) Power generation propulsion stabilization integrated device suitable for ship
WO2017151035A1 (en) Method of oxygenating water and producing hydrogen
JP2014184936A (en) Power generating system and operation method of power generating system
CN110953119A (en) Wave power generation device that can navigate
CN113511307B (en) Ocean renewable energy self-propelled wireless charging platform
JP2001349272A (en) Marine wind power generation system
CN201484652U (en) Ship power system
CN111486050B (en) Deformable power generation sail and unmanned exploration ship carrying same
KR102152417B1 (en) Ship using a solar power generation
US20230304466A1 (en) Systems and methods for harnessing marine hydrokinetic energy
JPH07189884A (en) Wind and hydraulic power generator and wind power generator cruising on water surface
CN215553981U (en) A green three-body unmanned ship for marine pasture
CN212272430U (en) Wave power generation device that can navigate
GB2612329A (en) Improvements in renewable energy
Assenai et al. Energy Sail Ships
JP2023174426A (en) Floating body type offshore wind power generation method