JP2001345455A - Optical semiconductor element carrier, and its mounting structure - Google Patents

Optical semiconductor element carrier, and its mounting structure

Info

Publication number
JP2001345455A
JP2001345455A JP2000130986A JP2000130986A JP2001345455A JP 2001345455 A JP2001345455 A JP 2001345455A JP 2000130986 A JP2000130986 A JP 2000130986A JP 2000130986 A JP2000130986 A JP 2000130986A JP 2001345455 A JP2001345455 A JP 2001345455A
Authority
JP
Japan
Prior art keywords
semiconductor element
optical semiconductor
plane
element carrier
base
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2000130986A
Other languages
Japanese (ja)
Inventor
Yuji Kishida
裕司 岸田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kyocera Corp
Original Assignee
Kyocera Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kyocera Corp filed Critical Kyocera Corp
Priority to JP2000130986A priority Critical patent/JP2001345455A/en
Priority to US09/843,002 priority patent/US6775440B2/en
Publication of JP2001345455A publication Critical patent/JP2001345455A/en
Pending legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/24Coupling light guides
    • G02B6/42Coupling light guides with opto-electronic elements
    • G02B6/4201Packages, e.g. shape, construction, internal or external details
    • G02B6/4256Details of housings
    • G02B6/4257Details of housings having a supporting carrier or a mounting substrate or a mounting plate
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/24Coupling light guides
    • G02B6/42Coupling light guides with opto-electronic elements
    • G02B6/4201Packages, e.g. shape, construction, internal or external details
    • G02B6/4274Electrical aspects
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/24Coupling light guides
    • G02B6/42Coupling light guides with opto-electronic elements
    • G02B6/4201Packages, e.g. shape, construction, internal or external details
    • G02B6/4219Mechanical fixtures for holding or positioning the elements relative to each other in the couplings; Alignment methods for the elements, e.g. measuring or observing methods especially used therefor
    • G02B6/4236Fixing or mounting methods of the aligned elements
    • G02B6/424Mounting of the optical light guide
    • G02B6/4243Mounting of the optical light guide into a groove
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/4805Shape
    • H01L2224/4809Loop shape
    • H01L2224/48091Arched
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/10Details of semiconductor or other solid state devices to be connected
    • H01L2924/102Material of the semiconductor or solid state bodies
    • H01L2924/1025Semiconducting materials
    • H01L2924/10251Elemental semiconductors, i.e. Group IV
    • H01L2924/10253Silicon [Si]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/30Technical effects
    • H01L2924/301Electrical effects
    • H01L2924/3011Impedance

Abstract

PROBLEM TO BE SOLVED: To provide a small-sized optical semiconductor element carrier and its mounting structure which is suitable to the highly accurate mounting of such an optical semiconductor element as a surface-received light-emitting semiconductor element and is excellent in its productivity and its high-frequency characteristic. SOLUTION: In an optical semiconductor element carrier C comprising an optical semiconductor element 2 mounted on a base 1 made of single-crystal silicon, the base 1 has an optical semiconductor element mounting surface comprising [110] plane or [100] plane, whereon the optical semiconductor element 2 is mounted and has at least two inclined surfaces A2, A3 comprising [111] plane which are positioned on the rear-surface side of the base 1 in the case of the standing of the base 1.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、例えば光ファイバ
通信システムや構内光通信システム(光LAN)に用い
られる光半導体素子キャリア及びその実装構造に関し、
特に光半導体素子として面発光半導体素子または面受光
半導体素子を用いたものに関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an optical semiconductor element carrier used in, for example, an optical fiber communication system or a private optical communication system (optical LAN) and a mounting structure thereof.
In particular, the present invention relates to a device using a surface emitting semiconductor device or a surface light receiving semiconductor device as an optical semiconductor device.

【0002】[0002]

【従来の技術】近年、CATVや公衆通信の分野におい
て、光ファイバ通信の実用化が始まっている。従来、高
速・高信頼性の光半導体モジュールが同軸型あるいはバ
タフライ型と呼ばれるモジュール構造で実現されてお
り、これらは主に幹線系と呼ばれる領域で既に実用化さ
れている。
2. Description of the Related Art In recent years, practical use of optical fiber communication has started in the field of CATV and public communication. Hitherto, high-speed and high-reliability optical semiconductor modules have been realized in a module structure called a coaxial type or a butterfly type, and these have already been put to practical use mainly in a region called a trunk line system.

【0003】これに対し、最近では、Si(シリコン)
単結晶から成るサブ基板(またはSiプラットホームと
も称される)上で、光半導体素子とファイバを機械的精
度のみで高精度に位置決め実装する(パッシブアライメ
ント)技術を用いた光モジュールが盛んに開発されてお
り、小型・低背化,低コスト化等が要求されている。
On the other hand, recently, Si (silicon)
Optical modules using the technology of passively aligning and mounting optical semiconductor elements and fibers on a sub-substrate (or also referred to as a Si platform) made of a single crystal with high mechanical accuracy only have been actively developed. Therefore, a reduction in size, height, and cost is required.

【0004】以下に、従来のフォトダイオードの実装構
造〜について説明する。
Hereinafter, a conventional photodiode mounting structure will be described.

【0005】:図6にフォトダイオードを実装するた
めの基台41を示す。基台41は少なくとも任意の隣合
う2つの面にフォトダイオードのアノード電極用及びカ
ソード電極用の電極パターン411,412が形成され
ており、各々の電極パターンは面の境界で電気的に導通
が確保される。
FIG. 6 shows a base 41 for mounting a photodiode. The base 41 has electrode patterns 411 and 412 for the anode electrode and the cathode electrode of the photodiode formed at least on any two adjacent surfaces, and each of the electrode patterns is electrically connected at the boundary between the surfaces. Is done.

【0006】図7に例えばPIN型のフォトダイオード
20が上記基台41に実装された典型的な例を示す。フ
ォトダイオード20は用途により異なるが、この例では
約500μm角、厚さ約200μm、受光径約200μm
φであり、受光面及びその反対面(裏面)に電極21,
22がそれぞれ形成されている。フォトダイオード20
は受光面を上にして電極パターン411上にAu−Sn
合金半田等により接続固定され、裏面電極22と電気的
に接続されている。また、電極パターン412と受光面
電極21とはボンディングワイヤ31により電気的接続
がとられる。
FIG. 7 shows a typical example in which a PIN type photodiode 20 is mounted on the base 41, for example. Although the photodiode 20 varies depending on the application, in this example, it is about 500 μm square, about 200 μm in thickness, and about 200 μm in light receiving diameter.
φ, the electrode 21 on the light receiving surface and the opposite surface (back surface),
22 are formed respectively. Photodiode 20
Is Au-Sn on the electrode pattern 411 with the light receiving surface facing up.
It is connected and fixed by alloy solder or the like, and is electrically connected to the back electrode 22. Further, the electrode pattern 412 and the light receiving surface electrode 21 are electrically connected by the bonding wire 31.

【0007】図8(a)〜(c)に基台41にフォトダ
イオード2を実装後、基台41がSi基板S上に実装さ
れた例を示す。フォトダイオード2はその受光面をSi
基板Sの主面に対して垂直になるように接続される。こ
れにより、Si基板Sの主面に平行に実装された不図示
の光ファイバとフォトダイオード2とが光接続される。
フォトダイオード2への給電用の配線はフォトダイオー
ド2の実装面と別の面の電極パターンからSi基板Sへ
ワイヤボンディングすることにより行われる。
FIGS. 8A to 8C show examples in which the photodiode 2 is mounted on the base 41 and then the base 41 is mounted on the Si substrate S. The light receiving surface of the photodiode 2 is Si
The connection is made perpendicular to the main surface of the substrate S. Thereby, the optical fiber (not shown) mounted in parallel with the main surface of the Si substrate S and the photodiode 2 are optically connected.
Wiring for supplying power to the photodiode 2 is performed by wire bonding to the Si substrate S from an electrode pattern on a surface different from the mounting surface of the photodiode 2.

【0008】ここで、基台41は一般的にはアルミナ等
のセラミック体上に、フィラー入りペーストを用い、印
刷により各面ごとに電極パターンがパターン形成され
る。
[0008] Here, the base 41 is generally formed of a paste containing filler on a ceramic body such as alumina, and an electrode pattern is formed on each surface by printing.

【0009】:また、Si基板上に上記のような基台
は用いずに、直接Si基板上にフォトダイオードを実装
する方法も提案されている(例えば、特開平8-94887号
公報を参照)。この提案は、Si基板上の光ファイバ実
装溝に光ファイバを実装する際に、光ファイバ出射端に
対向するように斜面を形成し、その斜面上にフォトダイ
オードの実装を行うようにしたものである。ここで、フ
ォトダイオード下面側の電極は前記の斜面に形成された
電極と直接コンタクトさせて行い、フォトダイオード上
面側の電極はワイヤリングにより行う。
A method has also been proposed in which a photodiode is directly mounted on a Si substrate without using the above-described base on the Si substrate (for example, see Japanese Patent Application Laid-Open No. 8-94887). . In this proposal, when mounting an optical fiber in an optical fiber mounting groove on a Si substrate, a slope is formed so as to face an optical fiber emission end, and a photodiode is mounted on the slope. is there. Here, the electrode on the lower surface of the photodiode is brought into direct contact with the electrode formed on the slope, and the electrode on the upper surface of the photodiode is made by wiring.

【0010】:また、フォトダイオードの受光面を下
側にしてSi基板に載置し、受光面下部に形成された光
路用溝の一部に形成された全反射面により90゜光路を
変えることで、光ファイバからの出射光を受光面へ導く
方法も提案されている(例えば、特開平9-54228号公報
を参照)。
[0010] Further, the photodiode is placed on a Si substrate with the light receiving surface of the photodiode facing down, and the 90 ° optical path is changed by a total reflection surface formed in a part of an optical path groove formed under the light receiving surface. A method has been proposed in which light emitted from an optical fiber is guided to a light receiving surface (for example, see Japanese Patent Application Laid-Open No. 9-54228).

【0011】[0011]

【発明が解決しようとする課題】しかしながら、上記実
装構造では、基台への電極パターンの形成において、
2面のパターンの相対的な位置合わせ精度が外形の機械
精度に依存するため、精度が悪いという問題があった。
However, in the above mounting structure, in forming the electrode pattern on the base,
Since the relative positioning accuracy of the two patterns depends on the mechanical accuracy of the outer shape, there is a problem that the accuracy is poor.

【0012】また、2面もしくはそれ以上の面へのパタ
ーン形成では、第1面のパターン形成が終了した後、次
のパターンを形成するとき、基台自身を1つずつハンド
リングし整列させる必要があり、生産性が著しく悪いと
いう問題や、サイズが小さくなるほどその取り扱いが困
難になり、さらに生産性を悪化させる問題があった。
In pattern formation on two or more surfaces, after the pattern formation on the first surface is completed, when forming the next pattern, it is necessary to handle and align the bases one by one. In addition, there is a problem that productivity is extremely poor, and there is a problem that as the size becomes smaller, the handling becomes more difficult, and the productivity further deteriorates.

【0013】また、フォトダイオードの受光部と光ファ
イバとの光学的な位置調整を機械的精度のみで行うと
き、基台の外形精度と基台の外形に対する電極パターン
の位置精度による制限により、受光径(受光部の直径)
が小さい(例えば50μm以下)フォトダイオードでは
十分な光結合の実現が困難であるという問題があった。
すなわち、高速動作が可能な受光径の小さいフォトダイ
オードの実装が困難であった。
When the optical position adjustment between the light receiving portion of the photodiode and the optical fiber is performed only with mechanical accuracy, the light receiving position is limited by the accuracy of the outer shape of the base and the positional accuracy of the electrode pattern with respect to the outer shape of the base. Diameter (diameter of light-receiving part)
However, there is a problem that it is difficult to realize sufficient optical coupling with a photodiode having a small (for example, 50 μm or less).
That is, it is difficult to mount a photodiode having a small light receiving diameter capable of high-speed operation.

【0014】以上、述べた通り、サイズとコストがトレ
ードオフの関係になっているため、従来では、基台の小
型化・高性能化により、コストが非常に高くなる、小型
化・高性能化が難しい、実装精度が悪いといった種々の
問題があった。
As described above, since the size and the cost are in a trade-off relationship, the cost and the size of the base are conventionally extremely high due to the miniaturization and the high performance of the base. However, there are various problems such as difficulty in mounting and poor mounting accuracy.

【0015】また、実装構造では、ワイヤリング面が
同一平面上にないため、工程が著しく煩雑になったり、
フォトダイオードの受光感度や実装位置合わせ精度のト
レランスが、光路に対しほぼ垂直に受光した場合と比較
して小さくなるという問題があった。
Further, in the mounting structure, since the wiring surfaces are not on the same plane, the process becomes extremely complicated,
There is a problem in that the light receiving sensitivity of the photodiode and the tolerance of the mounting position alignment accuracy are smaller than when light is received almost perpendicularly to the optical path.

【0016】さらに、実装構造によっても、特に受光
感度の低下を免れることができない。
Further, depending on the mounting structure, a decrease in the light receiving sensitivity cannot be avoided.

【0017】そこで本発明は、上記従来の問題に鑑み提
案されたものであり、特に面受発光半導体素子等の光半
導体素子の実装に適し、しかも量産性に優れ、小型で高
周波特性に優れ、高精度に実装が可能な光半導体素子キ
ャリア及びその実装構造を提供することを目的とする。
The present invention has been proposed in view of the above-mentioned conventional problems, and is particularly suitable for mounting an optical semiconductor device such as a surface light emitting / receiving semiconductor device, and is excellent in mass productivity, compact and excellent in high frequency characteristics. It is an object of the present invention to provide an optical semiconductor element carrier that can be mounted with high accuracy and a mounting structure thereof.

【0018】[0018]

【課題を解決するための手段】上記目的を達成するため
に、 本発明の光半導体素子キャリアは、単結晶シリコ
ンから成る基台上に光半導体素子を配設して成り、前記
基台は、{110}面又は{100}面から成り前記光
半導体素子を配設する光半導体素子配設面と、{11
1}面から成り前記基台を立設する際に下面側となる少
なくとも2つの傾斜面とを備えていることを特徴とす
る。ここで、{110}面、{100}面、及び{11
1}面は、それぞれ(110)面、(100)面、(1
11)面に等価な面をいう。
In order to achieve the above object, an optical semiconductor device carrier according to the present invention comprises an optical semiconductor device disposed on a base made of single-crystal silicon, and the base comprises: An optical semiconductor device disposing surface comprising the {110} surface or the {100} surface, on which the optical semiconductor device is disposed;
At least two inclined surfaces which are made of a 1 ° surface and are lower surfaces when the base is erected. Here, {110} plane, {100} plane, and {11} plane
The 1} planes are (110) plane, (100) plane, and (1) plane, respectively.
11) A plane equivalent to a plane.

【0019】また、前記光半導体素子配設面及び前記2
つの傾斜面に、前記光半導体素子に通電する導体パター
ンを形成したことを特徴とする。
Further, the optical semiconductor element mounting surface and the
A conductor pattern for energizing the optical semiconductor element is formed on one of the inclined surfaces.

【0020】また、本発明の実装構造は、凹部を形成し
た基板上に上記光半導体素子キャリアを配設するように
したものであり、前記凹部は前記光半導体素子キャリア
の2つの傾斜面に当接する傾斜面を備えていることを特
徴とする。
Further, in the mounting structure of the present invention, the optical semiconductor element carrier is disposed on a substrate having a concave portion formed thereon, and the concave portion contacts two inclined surfaces of the optical semiconductor element carrier. It is characterized by having an inclined surface that comes into contact with it.

【0021】また、光半導体素子キャリアの光半導体素
子配設面に(110)面を用いたときには、凹部を形成
する基板にはSi単結晶の(100)面を主面として用
い、一方、光半導体素子キャリアに(100)面を用い
たときには、基板にはSi単結晶の(110)面を主面
として用いることにより、光半導体素子配設面を基板に
対し、ほぼ完全に垂直にすることができる。
When the (110) plane is used as the optical semiconductor element mounting surface of the optical semiconductor element carrier, the (100) plane of Si single crystal is used as the main surface for the substrate on which the concave portion is formed, while When the (100) plane is used for the semiconductor element carrier, the (110) plane of Si single crystal is used as the main surface for the substrate, so that the optical semiconductor element arrangement surface is almost completely perpendicular to the substrate. Can be.

【0022】[0022]

【発明の実施の形態】以下、本発明の光半導体素子キャ
リア及びその実装構造の実施形態を図面に基づき詳細に
説明する。
DESCRIPTION OF THE PREFERRED EMBODIMENTS Embodiments of the optical semiconductor element carrier and the mounting structure thereof according to the present invention will be described below in detail with reference to the drawings.

【0023】図1(a)に、例えば(100)面や(1
10)面を主面とするSi単結晶から成る基板S上に、
光導波体である光ファイバ5(V溝6上に搭載)と、こ
れに光結合させる光半導体素子を設けた光半導体素子キ
ャリアCとを配設した光モジュールMの平面図を示し、
図1(b)にそのA−A線断面図を示す。また、図1
(b)のB部拡大図を図4に示す。
FIG. 1A shows, for example, the (100) plane and the (1) plane.
10) On a substrate S made of a Si single crystal having a plane as a main surface,
FIG. 2 is a plan view of an optical module M in which an optical fiber 5 (mounted on a V-groove 6) as an optical waveguide and an optical semiconductor element carrier C provided with an optical semiconductor element to be optically coupled to the optical fiber 5 are shown.
FIG. 1B is a sectional view taken along line AA. FIG.
FIG. 4 is an enlarged view of a portion B of FIG.

【0024】ここで、光半導体素子として、例えばIn
P基板上にInGaAsのPIN構造を積層した裏面入
射型PINフォトダイオード2を用いる。また、基板S
上には、裏面入射型PINフォトダイオード2やプリア
ンプ8を駆動し信号を伝送するための導体パターン(A
u,Cu,又はAl等及びこれらの合金が使用可能)で
あるコプレーナウェーブ型(CPW)電極パターン3,
4を形成する。さらに、光半導体素子キャリアCを搭載
させる領域に凹部7(傾斜面7a,7b;Si単結晶の
{111}面)が基板Sのアルカリ溶液等による異方性
エッチングにより断面台形状に精度良く形成されてい
る。傾斜面7a,7bには電極パターン12,13,1
4の各々一部が形成されている。そして、この凹部7に
おいて、裏面入射型PINフォトダイオード2の後記す
る駆動用導体と凹部7の電極パターンとを接続し、裏面
入射型PINフォトダイオード2の駆動を行えるように
している。
Here, as an optical semiconductor element, for example, In
A back-illuminated PIN photodiode 2 in which an InGaAs PIN structure is stacked on a P substrate is used. Also, the substrate S
On the upper side, a conductor pattern (A) for driving the back-illuminated PIN photodiode 2 and the preamplifier 8 to transmit a signal.
u, Cu, or Al and alloys thereof can be used).
4 is formed. Further, concave portions 7 (inclined surfaces 7a and 7b; {111} planes of Si single crystal) are accurately formed in a trapezoidal cross-section by anisotropic etching using an alkaline solution or the like in substrate S in a region where optical semiconductor element carrier C is to be mounted. Have been. The electrode patterns 12, 13, 1 are provided on the inclined surfaces 7a, 7b.
4 is partially formed. In the recess 7, a driving conductor (described later) of the back illuminated PIN photodiode 2 is connected to the electrode pattern of the recess 7, so that the back illuminated PIN photodiode 2 can be driven.

【0025】図2(a)に透視した裏面入射型PINフ
ォトダイオード2を示し、図2(b)に光半導体素子キ
ャリア用基台を示す。また、図3に光半導体素子キャリ
アCを示す。
FIG. 2A shows the see-through type PIN photodiode 2 seen through, and FIG. 2B shows the optical semiconductor element carrier base. FIG. 3 shows an optical semiconductor element carrier C.

【0026】基台1は、裏面入射型PINフォトダイオ
ード2が配設され、平面を成す光半導体素子配設面A1
と、光半導体素子配設面A1に対しθを成し、基台1を
立設させる際に下面側となる第1傾斜面A2と,光半導
体素子配設面A1と距離dだけ隔て対向する背面A4
と、この背面A4に対しθを成し、基台1を立設させる
際に下面側となる第2傾斜面A3とから構成され、さら
に、裏面入射型PINフォトダイオード2の駆動用導体
である電極パターン12,13,14が、光半導体素子
配設面A1から第1傾斜面A2に到る領域に形成され、
電極パターン16,17,18が第2傾斜面A3に形成
されている。そして、電極パターン12,13,14は
CPW電極を構成し、特性インピーダンスが例えば50
Ωに整合するように各々の間隔が調整される。
The base 1 is provided with a back-illuminated PIN photodiode 2 and has a plane A1 on which an optical semiconductor element is provided.
Is formed with respect to the optical semiconductor element mounting surface A1, and the first inclined surface A2 which is the lower surface side when the base 1 is erected is opposed to the optical semiconductor element mounting surface A1 by a distance d. Back A4
And a second inclined surface A3 that forms θ with respect to the rear surface A4 and becomes the lower surface side when the base 1 is erected, and is a driving conductor for the back-illuminated PIN photodiode 2. Electrode patterns 12, 13, and 14 are formed in a region from the optical semiconductor element disposition surface A1 to the first inclined surface A2,
The electrode patterns 16, 17, 18 are formed on the second inclined surface A3. The electrode patterns 12, 13, and 14 constitute a CPW electrode, and have a characteristic impedance of, for example, 50.
Each interval is adjusted to match Ω.

【0027】なお、裏面入射型PINフォトダイオード
2にCPW電極を用いない場合には、電極パターン1
2,13,14はCPW電極とする必要はなく、ワイヤ
リングを用いた配線でも構わない。また、基板Sに形成
した凹部7に設けた電極パターンと裏面入射型PINフ
ォトダイオード2の駆動用導体との導通が良好に行える
のであれば、基台1に形成する駆動用導体は必ずしも第
1傾斜面A2及び第2傾斜面A3の全体に形成しなくと
もよい。
When the back illuminated PIN photodiode 2 does not use a CPW electrode, the electrode pattern 1
The wires 2, 13, and 14 do not need to be CPW electrodes, and may be wiring using wiring. If the electrode pattern provided in the concave portion 7 formed in the substrate S and the driving conductor of the back-illuminated PIN photodiode 2 can be conducted well, the driving conductor formed on the base 1 is not necessarily the first. It is not necessary to form the entirety of the inclined surface A2 and the second inclined surface A3.

【0028】ここでθは、基台1にSi単結晶の(11
0)面を用いたときは35.26゜、Si単結晶の(10
0)面を用いたときは54.74゜となる。
Here, θ is (11) of the Si single crystal on the base 1.
35.26 ° when the (0) plane is used, and the (10)
When the 0) plane is used, the angle is 54.74 °.

【0029】図2(a)に示すように、裏面入射型PI
Nフォトダイオード2は、受光部23への光の入射は受
光部23の背面側に形成された、例えばSiNXから成
るARコート(反射防止)膜24から行われるため、裏
面入射型PINフォトダイオード2はARコート膜形成
面を上に基台1に載置され、受光部23の表層に形成さ
れたCPW電極パターン25と、基台1の電極パターン
12,13,14が電気的に接続される。なお、パター
ン15は裏面入射型PINフォトダイオード2を固定す
るために用いる。光ファイバ5から裏面入射型PINフ
ォトダイオード2への光接続は、図4に示すようになさ
れる。これ以外に表面入射型PINフォトダイオード、
アバランシェフォトダイオード等の各種の受光半導体素
子にも使用可能である。
As shown in FIG. 2A, the back illuminated PI
Since the N photodiode 2 receives light from the AR coating (anti-reflection) film 24 made of, for example, SiN X formed on the back side of the light receiving unit 23, light is incident on the light receiving unit 23. 2 is mounted on the base 1 with the AR coating film forming surface facing upward, and the CPW electrode pattern 25 formed on the surface layer of the light receiving section 23 and the electrode patterns 12, 13, and 14 of the base 1 are electrically connected. You. The pattern 15 is used for fixing the back-illuminated PIN photodiode 2. The optical connection from the optical fiber 5 to the back illuminated PIN photodiode 2 is made as shown in FIG. In addition, front-illuminated PIN photodiode,
It can also be used for various light receiving semiconductor elements such as avalanche photodiodes.

【0030】基台1の光半導体素子配設面としては、S
i単結晶の(110)面が優れる。これは光半導体素子
配設面に対して{111}面がシャープになり、設置性
が良好となるからであるが、Si単結晶の(100)面
を用いてもよい。Siは誘電正接が大きいため1000
Ω・cm程度以上の高抵抗のものを使用することが望まし
い。また、Siの誘電率11.8は従来の一般的な材料であ
るアルミナの9と比較して大きいが、本発明ではサイズ
を著しく小さくできるため、従来構造の寄生容量値の約
0.3pFを大幅に下回る0.02pF程度にまで抑制できる。さ
らに、Si上にSiO2膜を〜100μm程度積層し、
その上に電極層を形成することにより、誘電正接による
伝送損失の低減や寄生容量を低減することもできる。
The surface of the base 1 on which the optical semiconductor elements are provided is S
The (110) plane of the i single crystal is excellent. This is because the {111} plane becomes sharper with respect to the surface on which the optical semiconductor element is provided, and the installation property is improved. However, a (100) plane of Si single crystal may be used. Since Si has a large dielectric loss tangent, it is 1000
It is desirable to use one having a high resistance of about Ω · cm or more. Although the dielectric constant of Si is 11.8, which is larger than that of alumina, which is a conventional general material, since the size can be significantly reduced in the present invention, the parasitic capacitance of the conventional structure is about 11.8.
It can be suppressed to about 0.02 pF, which is much lower than 0.3 pF. Furthermore, a SiO2 film is laminated on Si to about 100 μm,
By forming an electrode layer thereon, transmission loss due to dielectric loss tangent and parasitic capacitance can be reduced.

【0031】次に、上記光半導体素子キャリアの製造方
法の一例について図5に基づいて説明する。
Next, an example of a method for manufacturing the optical semiconductor element carrier will be described with reference to FIG.

【0032】図5にウェハー工程を終了し、ダイシング
工程前である光半導体素子キャリア形成領域Tの概略を
示す。
FIG. 5 schematically shows the optical semiconductor element carrier formation region T after the wafer process and before the dicing process.

【0033】まず、(110)面を主面とするSi単結
晶のウェハ30の表裏面に熱酸化膜を形成し、フォトリ
ソグラフィーにより熱酸化膜の一部を所望の形状に抜く
ことにより、ウエハ30の表裏面に同様のパターンを形
成する。その後、KOH水溶液等のアルカリ性溶液に浸
漬し、ウエハ30に異方性エッチングを施す。これによ
り、(110)面に対し35.26゜を成す{111}面の
傾斜面A2,A3を正確に形成することができる。
First, a thermal oxide film is formed on the front and back surfaces of a Si single crystal wafer 30 having a (110) plane as a main surface, and a part of the thermal oxide film is cut into a desired shape by photolithography. A similar pattern is formed on the front and back surfaces of No. 30. Thereafter, the wafer 30 is immersed in an alkaline solution such as an aqueous KOH solution, and the wafer 30 is subjected to anisotropic etching. Thereby, inclined surfaces A2 and A3 of the {111} plane, which forms 35.26 ° with respect to the (110) plane, can be accurately formed.

【0034】これら一連の工程は、(100)面を主面
とするウェハを用いた場合にも同様に行うことができ、
この場合は(100)面に対し54.74゜を成す{11
1}面の傾斜面A2,A3を正確に形成することができ
る。
These series of steps can be performed similarly when a wafer having a (100) plane as a main surface is used.
In this case, 54.74 ° is formed with respect to the (100) plane.
1 ° inclined surfaces A2 and A3 can be accurately formed.

【0035】図3に示す光半導体素子キャリアCを用
い、基板Sに裏面入射型PINフォトダイオード2を実
装する際、基板Sに対する裏面入射型PINフォトダイ
オード2の実装高さは上部エッジ19を基準にすると、
ほぼ接合材厚みと厚みd、すなわちウェハ30の厚み精
度のみで決まり、良好に制御できる。V溝幅及び深さの
精度、及び表裏面の位置合わせ精度は、裏面入射型PI
Nフォトダイオード2の実装高さ精度に対し重要ではな
く、簡便な工程を用いることができ、工程管理も容易で
ある。
When the back illuminated PIN photodiode 2 is mounted on the substrate S using the optical semiconductor element carrier C shown in FIG. 3, the mounting height of the back illuminated PIN photodiode 2 with respect to the substrate S is based on the upper edge 19. Then
It is determined only by the thickness and the thickness d of the bonding material, that is, only by the thickness accuracy of the wafer 30, and can be controlled well. The accuracy of the V-groove width and depth and the positioning accuracy of the front and back surfaces are determined by the back-illuminated PI
It is not important to the mounting height accuracy of the N photodiode 2, a simple process can be used, and the process management is easy.

【0036】次に、フォトリソグラフィーにより、電極
パターン12〜18と不図示のダイシング用マーカパタ
ーンを形成する。このとき、光半導体素子配設面上の電
極パターン12〜15は、後記する光半導体素子実装時
の画像認識用マーカとしても用いるため、V溝エッジと
ダイシング用マーカパターンに対してアラメントされ
る。溝部を有する基板表面に均一にフォトレジストを塗
布するためにはスプレー塗布方式、露光にはネガ型フォ
トレジストを各々好適に用いることができる。
Next, electrode patterns 12 to 18 and a not-shown dicing marker pattern are formed by photolithography. At this time, the electrode patterns 12 to 15 on the optical semiconductor element disposition surface are also aligned with the V-groove edge and the dicing marker pattern because they are also used as image recognition markers at the time of mounting the optical semiconductor element described later. A spray coating method can be suitably used for uniformly coating the photoresist on the substrate surface having the groove, and a negative photoresist can be suitably used for the exposure.

【0037】最後に不要な部分をダイシング用マーカパ
ターンに沿ってダイシングすることにより、複数の光半
導体素子キャリアを完成することができる。
Finally, by dicing unnecessary portions along the dicing marker pattern, a plurality of optical semiconductor element carriers can be completed.

【0038】この方法によれば、従来の印刷を用いたプ
ロセスよりもパターンの直線性、位置精度が著しく良好
であるとともに小型化が可能である。また、一回のプロ
セスでウェハ上に多数形成可能であり、従来の複数平面
への電極パターンの印刷工程にみられる複数品の整列処
理等の煩雑さがなくなることから、量産性が大幅に向上
する。
According to this method, the linearity and positional accuracy of the pattern are significantly better than those of a process using conventional printing, and the size can be reduced. In addition, a large number of products can be formed on a wafer in a single process, eliminating the complexity of the process of aligning multiple products in the conventional process of printing electrode patterns on multiple planes, greatly improving mass productivity. I do.

【0039】次に、裏面入射型PINフォトダイオード
2の実装例について述べる。
Next, an example of mounting the back illuminated PIN photodiode 2 will be described.

【0040】まず、裏面入射型PINフォトダイオード
2は、光半導体素子キャリアCの電極パターン12,1
3,14,15上にフリップチップ実装装置を用いて位
置決め及び加熱固定される。この位置決めは、裏面入射
型PINフォトダイオード2の受光部パターンと、電極
パターン12,13,14,15とを画像認識し、双方
の位置関係を設計位置に調整することにより行う。上述
した通り、実装時のマーカとなる電極パターンは、直線
性や位置精度が良好であるため好適に位置決めがなされ
る。この固定材としてはAuSi系,AuSn系,Pb
Sn系,In系半田等を用いることができる。
First, the back illuminated PIN photodiode 2 is connected to the electrode patterns 12, 1 of the optical semiconductor element carrier C.
It is positioned and heated and fixed on 3, 14, 15 using a flip chip mounting device. This positioning is performed by recognizing an image of the light receiving portion pattern of the back illuminated PIN photodiode 2 and the electrode patterns 12, 13, 14, and 15 and adjusting the positional relationship between them to the design position. As described above, the electrode pattern serving as a marker at the time of mounting is preferably positioned because it has good linearity and positional accuracy. As the fixing material, AuSi-based, AuSn-based, Pb
Sn-based, In-based solder, or the like can be used.

【0041】次に、図4に示すように、光半導体素子キ
ャリアCを基板Sに実装する。裏面入射型PINフォト
ダイオード2が実装された光半導体素子キャリアCをコ
レットに真空吸着し、基板Sに形成された凹部7に装填
する。その後、コレットの吸引を解き、基板Sに対し垂
直に押圧加重し加熱固定する。光半導体素子キャリアC
の光半導体素子配設面に(110)面を用いたときに
は、基板SにはSi単結晶の(100)面を主面として
用い、一方、光半導体素子キャリアCに(100)面を
用いたときには、基板SにはSi単結晶の(110)面
を主面として用いることにより、光半導体素子配設面A
1を基板Sに対し、ほぼ完全に垂直にすることができ、
傾斜面A2,A3は凹部7の傾斜面7a、7bに隙間な
く良好に当接し接合できる。また、裏面入射型PINフ
ォトダイオード2は厚みd、接合材厚み、上部エッジ1
9から光半導体素子実装位置の距離で決まる所定の高
さ、ダイシングエッジ26から光半導体素子実装位置で
決まる所定の横方向位置に良好な精度で実装される。
Next, as shown in FIG. 4, the optical semiconductor element carrier C is mounted on the substrate S. The optical semiconductor element carrier C, on which the back-illuminated PIN photodiode 2 is mounted, is vacuum-sucked to a collet, and is loaded into the concave portion 7 formed on the substrate S. Then, the suction of the collet is released, and the collet is pressed and weighted vertically against the substrate S and is fixed by heating. Optical semiconductor element carrier C
When the (110) plane was used as the optical semiconductor element mounting surface, the (100) plane of Si single crystal was used as the main surface for the substrate S, while the (100) plane was used for the optical semiconductor element carrier C. In some cases, the (S) single crystal (110) plane is used as the main surface for the substrate S, so that the optical semiconductor element mounting surface A
1 can be made almost completely perpendicular to the substrate S,
The inclined surfaces A2 and A3 can be brought into good contact with the inclined surfaces 7a and 7b of the concave portion 7 without gaps and can be joined. The back-illuminated PIN photodiode 2 has a thickness d, a thickness of a bonding material, an upper edge 1.
The semiconductor device is mounted at a predetermined height determined by the distance from the optical semiconductor element mounting position 9 to the optical semiconductor element mounting position, and at a predetermined horizontal position determined by the dicing edge 26 from the optical semiconductor element mounting position.

【0042】最後に、光ファイバ5を基板S上に位置決
めされたV溝6上に実装し、裏面入射型PINフォトダ
イオード2と光接続される。光ファイバ5の中心軸(コ
ア軸)に対し垂直平面内での裏面入射型PINフォトダ
イオード2の相対位置精度は、光半導体素子キャリアC
の外形精度と光半導体素子キャリアCへの光半導体素子
の実装精度に依存し、各々良好に制御が可能なため良好
な光接続精度が得られる。
Finally, the optical fiber 5 is mounted on the V groove 6 positioned on the substrate S, and is optically connected to the back illuminated PIN photodiode 2. The relative positional accuracy of the back-illuminated PIN photodiode 2 in a plane perpendicular to the central axis (core axis) of the optical fiber 5 is determined by the optical semiconductor element carrier C.
And the mounting accuracy of the optical semiconductor element on the optical semiconductor element carrier C, and good controllability can be obtained.

【0043】[0043]

【実施例】次に、さらにより具体的な実施例について説
明する。
EXAMPLES Next, more specific examples will be described.

【0044】まず、基台に、Si単結晶の(110)面
を光半導体素子配設面とする抵抗率1000Ω・cmのもの
を用いた。基台の外形は、図2(b)に示すように、幅
0.8mm,奥行き0.8mm,厚み0.6mmに設計した。
First, a substrate having a resistivity of 1000 Ω · cm having the (110) plane of the Si single crystal as the surface on which the optical semiconductor element is provided was used as a base. The outer shape of the base is, as shown in FIG.
The design is 0.8mm, depth 0.8mm, thickness 0.6mm.

【0045】裏面入射型PINフォトダイオードはサイ
ズ0.6mm角、受光径35μm、裏面入射部に130μm
径のARコート部を有し、CPW電極構成のものを用い
た。
The back illuminated PIN photodiode has a size of 0.6 mm square, a light receiving diameter of 35 μm, and 130 μm on the back illuminated portion.
An AR coating part having a diameter and a CPW electrode configuration was used.

【0046】電極パターン13の幅は100μm、電極
パターン13と電極パターン12、14との間隔は各々
37μmにした。また、電極層はトータル膜厚約0.5
μmのCrとAuの積層膜を用い、フォトダイオード実
装部にはさらにトータル膜厚2μmのAuSn半田を積層し
た。
The width of the electrode pattern 13 was 100 μm, and the distance between the electrode pattern 13 and the electrode patterns 12 and 14 was 37 μm. The electrode layer has a total thickness of about 0.5.
An AuSn solder having a total film thickness of 2 μm was further laminated on the photodiode mounting portion using a μm laminated film of Cr and Au.

【0047】光半導体素子キャリアの作製方法は、図5
に示すような配置でV溝パターンをKOH水溶液のウェッ
トエッチングにより深さ約141μmに形成した後、電
極パターンをドライエッチングによりパターン形成する
ことにより、約10cm径のSi単結晶ウェハ((11
0)面を主面)に、約6000個の光半導体素子キャリ
ア形成領域を形成した。
The method for manufacturing the optical semiconductor element carrier is shown in FIG.
After a V-groove pattern is formed to a depth of about 141 μm by wet etching of a KOH aqueous solution in an arrangement as shown in FIG. 1, an electrode pattern is formed by dry etching to form a Si single crystal wafer having a diameter of about 10 cm ((11
About 6000 optical semiconductor element carrier formation regions were formed on the (0) surface as the main surface).

【0048】次に、Siウェハ上の光半導体素子キャリ
ア領域の一つずつに、裏面入射型PINフォトダイオー
ドをチップ実装する工程を個数分だけ複数回繰り返し、
複数個のフォトダイオードが実装された基板を形成し
た。これにより、光半導体素子キャリアへの光半導体素
子実装の生産性が著しく向上した。
Next, the process of mounting the back-illuminated PIN photodiode chip in each of the optical semiconductor element carrier regions on the Si wafer is repeated a plurality of times by the number of times.
A substrate on which a plurality of photodiodes were mounted was formed. As a result, the productivity of mounting the optical semiconductor element on the optical semiconductor element carrier has been significantly improved.

【0049】その後、フォトダイオードが実装された基
板をダイシング用マーカから切断し、複数のフォトダイ
オード実装済みの光半導体素子キャリアを取り出した。
そして、光入射面が地に対し垂直になるように素子を9
0゜回転させることのできるマウンターを用いて整列さ
せ、基板Sに実装した。
Thereafter, the substrate on which the photodiode was mounted was cut from the dicing marker, and a plurality of optical semiconductor element carriers on which the photodiode was mounted were taken out.
Then, the element is set so that the light incident surface is perpendicular to the ground.
It was aligned using a mounter that can be rotated by 0 ° and mounted on a substrate S.

【0050】基板SはSi単結晶の(100)面を主面
とするもので作製したことにより、光ファイバと光半導
体素子キャリアを実装する溝の相対的な位置関係を12
μm以内の精度にすることができた。これにより、良好
な光結合を実現できた。
Since the substrate S was formed with the (100) plane of the Si single crystal as the main surface, the relative positional relationship between the optical fiber and the groove for mounting the optical semiconductor element carrier was 12
Accuracy within μm could be achieved. Thereby, good optical coupling was realized.

【0051】また、基板S上にフォトダイオードのプリ
アンプを実装した。フォトダイオードからプリアンプま
では光半導体素子キャリア及び基板S上に形成されたC
PW電極配線により、特性インピーダンスをプリアンプ
の入力インピーダンスに整合させることができ、さら
に、配線長を約1mmと短くできたことから、10GHz
の信号に対して低損失で配線することができた。
Further, a photodiode preamplifier was mounted on the substrate S. From the photodiode to the preamplifier, the optical semiconductor element carrier and C formed on the substrate S
The characteristic impedance can be matched to the input impedance of the preamplifier by the PW electrode wiring, and the wiring length can be shortened to about 1 mm.
Wiring with low loss for this signal.

【0052】[0052]

【発明の効果】本発明の光半導体素子キャリア及びその
実装構造によれば、以下に示す顕著な効果を奏すること
ができる。
According to the optical semiconductor element carrier and its mounting structure of the present invention, the following remarkable effects can be obtained.

【0053】・基台の正確に形成できる面を光半導体素
子の実装面としたことにより、高精度に光半導体素子を
平板基板に実装可能となり、特に高速動作に適した小径
受発光部を有した素子において良好な光接続をパッシブ
アライメントで作業効率良く行うことができる。
Since the surface on which the base can be formed accurately is used as the mounting surface of the optical semiconductor element, the optical semiconductor element can be mounted on the flat board with high precision, and a small-diameter light emitting / receiving section particularly suitable for high-speed operation is provided. Good optical connection can be performed with good work efficiency by passive alignment in the element thus formed.

【0054】・一枚の平板基板より光半導体素子キャリ
アを大量に生産することが可能であり、量産性が極めて
良好となる。
The optical semiconductor element carrier can be mass-produced from one flat substrate, and the mass productivity is extremely good.

【0055】・上記生産が一括処理で行うことができ、
製造工程途中でのハンドリング等、作業の煩雑さがな
い。
The above-mentioned production can be performed in a batch process;
There is no complicated operation such as handling during the manufacturing process.

【0056】・基板状態もしくは工程終了(ダイシン
グ)後の整列状態で光半導体素子の実装が可能であり、
実装の作業性が良好である。
The optical semiconductor element can be mounted in the substrate state or in the aligned state after the end of the process (dicing),
Good workability of mounting.

【0057】・小型化が容易であり、この小型化により
光半導体素子キャリア全体の容量を低減させることがで
き、高速動作に好適である。
The miniaturization is easy, and the miniaturization can reduce the capacity of the entire optical semiconductor element carrier, which is suitable for high-speed operation.

【0058】・光半導体素子キャリアからのワイヤリン
グの必要がないため、特性インピーダンスの不連続部を
低減する効果があり、高速動作に適している上、実装効
率が良好である。
Since there is no need to wire from the optical semiconductor element carrier, there is an effect of reducing the discontinuity of the characteristic impedance, which is suitable for high-speed operation and has good mounting efficiency.

【0059】そして、以上の効果により、低コスト、小
型、高精度、高周波特性に優れ、さらに量産性が著しく
向上した光半導体素子キャリア及びその実装構造を提供
することが可能になる。
With the above effects, it is possible to provide an optical semiconductor element carrier having a low cost, small size, high precision, excellent high-frequency characteristics, and significantly improved mass productivity, and a mounting structure thereof.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明に係る光半導体素子キャリアの実装構造
(光モジュール)を模式的に説明する図であり、(a)
は平面図、(b)は(a)におけるA−A線断面図であ
る。
FIG. 1 is a diagram schematically illustrating a mounting structure (optical module) of an optical semiconductor element carrier according to the present invention, and (a).
2 is a plan view, and FIG. 2B is a sectional view taken along line AA in FIG.

【図2】本発明に係る光半導体素子キャリアを分解した
様子を模式的に示す斜視図であり、(a)は裏面入射型
PINフォトダイオードを示し、(b)は光半導体素子
キャリア用基台を示す。
FIGS. 2A and 2B are perspective views schematically showing a state where an optical semiconductor element carrier according to the present invention is disassembled, wherein FIG. 2A shows a back-illuminated PIN photodiode, and FIG. Is shown.

【図3】本発明に係る光半導体素子キャリアを模式的に
示す斜視図である。
FIG. 3 is a perspective view schematically showing an optical semiconductor element carrier according to the present invention.

【図4】図1(b)におけるB部拡大図である。FIG. 4 is an enlarged view of a portion B in FIG. 1 (b).

【図5】本発明に係る光半導体素子キャリアの製造方法
を模式的に説明する図であり、(a)はウェハ全体を示
す平面図,(b)はその側面図、(c)は(a)のC部
拡大平面図、(d)はそのD−D線断面図である。
5A and 5B are diagrams schematically illustrating a method for manufacturing an optical semiconductor element carrier according to the present invention, wherein FIG. 5A is a plan view showing the entire wafer, FIG. 5B is a side view thereof, and FIG. () Is an enlarged plan view of a portion C, and (d) is a cross-sectional view taken along the line DD.

【図6】従来の光半導体素子キャリア用基台を模式的に
示す斜視図である。
FIG. 6 is a perspective view schematically showing a conventional optical semiconductor element carrier base.

【図7】従来の光半導体素子キャリアを模式的に示す斜
視図である。
FIG. 7 is a perspective view schematically showing a conventional optical semiconductor element carrier.

【図8】従来の光半導体素子キャリアを基板上に載置し
た一例を模式的に説明する図であり、(a)は正面側一
部断面図、(b)は平面図、(c)は側面側一部断面図
である。
8A and 8B are diagrams schematically illustrating an example in which a conventional optical semiconductor element carrier is mounted on a substrate, wherein FIG. 8A is a partial cross-sectional view on the front side, FIG. 8B is a plan view, and FIG. It is a side surface partly sectional view.

【符号の説明】[Explanation of symbols]

1:基台 2:裏面入射型PINフォトダイオード 3:CPW電極パターン1 4:CPW電極パターン2 5:ファイバ 6:V溝 7:凹部 8:プリアンプ 12〜18:電極パターン 20:PINフォトダイオード 21:受光面電極パターン 22:裏面電極パターン 23:受光部 24:ARコート膜 25:CPW電極パターン 30:Si単結晶ウェハ 31:ワイヤボンド 41:基台基体 411:第一の電極パターン 412:第二の電極パターン A1:光半導体素子実装面 A2:第1傾斜面 A3:第2傾斜面 A4:背面 C:光半導体素子キャリア M:光モジュール S:基板 1: base 2: back-illuminated PIN photodiode 3: CPW electrode pattern 1: 4: CPW electrode pattern 2 5: fiber 6: V-groove 7: recess 8: preamplifier 12-18: electrode pattern 20: PIN photodiode 21: Light receiving surface electrode pattern 22: Back surface electrode pattern 23: Light receiving portion 24: AR coating film 25: CPW electrode pattern 30: Si single crystal wafer 31: Wire bond 41: Base substrate 411: First electrode pattern 412: Second Electrode pattern A1: Optical semiconductor element mounting surface A2: First inclined surface A3: Second inclined surface A4: Back surface C: Optical semiconductor element carrier M: Optical module S: Substrate

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】 単結晶シリコンから成る基台上に光半導
体素子を配設して成る光半導体素子キャリアであって、
前記基台は、{110}面又は{100}面から成り前
記光半導体素子を配設する光半導体素子配設面と、{1
11}面から成り前記基台を立設する際に下面側となる
少なくとも2つの傾斜面とを備えていることを特徴とす
る光半導体素子キャリア。
An optical semiconductor element carrier comprising an optical semiconductor element disposed on a base made of single crystal silicon,
The base comprises a {110} plane or a {100} plane, and a surface on which the optical semiconductor element is disposed, on which the optical semiconductor element is disposed;
An optical semiconductor element carrier comprising at least two inclined surfaces each having an 11 ° plane and serving as a lower surface when the base is erected.
【請求項2】 前記光半導体素子配設面及び前記2つの
傾斜面に、前記光半導体素子に通電する導体パターンを
形成したことを特徴とする請求項1に記載の光半導体素
子キャリア。
2. The optical semiconductor element carrier according to claim 1, wherein a conductor pattern for energizing the optical semiconductor element is formed on the optical semiconductor element mounting surface and the two inclined surfaces.
【請求項3】 凹部を形成した基板上に、請求項1乃至
2に記載の光半導体素子キャリアを配設するようにした
光半導体素子キャリアの実装構造であって、前記凹部は
前記光半導体素子キャリアの2つの傾斜面に当接する傾
斜面を備えていることを特徴とする光半導体素子キャリ
アの実装構造。
3. A mounting structure of an optical semiconductor element carrier, wherein the optical semiconductor element carrier according to claim 1 is disposed on a substrate having a concave portion, wherein the concave portion is formed by the optical semiconductor element. An optical semiconductor device carrier mounting structure, comprising: an inclined surface that abuts two inclined surfaces of a carrier.
JP2000130986A 2000-04-28 2000-04-28 Optical semiconductor element carrier, and its mounting structure Pending JP2001345455A (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2000130986A JP2001345455A (en) 2000-04-28 2000-04-28 Optical semiconductor element carrier, and its mounting structure
US09/843,002 US6775440B2 (en) 2000-04-28 2001-04-25 Optical module and carrier for optical module

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2000130986A JP2001345455A (en) 2000-04-28 2000-04-28 Optical semiconductor element carrier, and its mounting structure

Publications (1)

Publication Number Publication Date
JP2001345455A true JP2001345455A (en) 2001-12-14

Family

ID=18639970

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000130986A Pending JP2001345455A (en) 2000-04-28 2000-04-28 Optical semiconductor element carrier, and its mounting structure

Country Status (1)

Country Link
JP (1) JP2001345455A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20040033714A (en) * 2002-10-15 2004-04-28 주식회사일진 tramsmitting module for optical communication
JP2007317589A (en) * 2006-05-29 2007-12-06 Koito Mfg Co Ltd Light-emitting module and vehicular lamp
KR20140024839A (en) * 2010-12-22 2014-03-03 랑셍 홀딩 Circuit for a light emitting component and method of manufacturing the same

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20040033714A (en) * 2002-10-15 2004-04-28 주식회사일진 tramsmitting module for optical communication
JP2007317589A (en) * 2006-05-29 2007-12-06 Koito Mfg Co Ltd Light-emitting module and vehicular lamp
JP4605789B2 (en) * 2006-05-29 2011-01-05 株式会社小糸製作所 Light emitting module and vehicle lamp
KR20140024839A (en) * 2010-12-22 2014-03-03 랑셍 홀딩 Circuit for a light emitting component and method of manufacturing the same
KR101986855B1 (en) * 2010-12-22 2019-06-07 랑셍 홀딩 Circuit for a light emitting component and method of manufacturing the same

Similar Documents

Publication Publication Date Title
JP2644303B2 (en) Fiber optic coupling assembly
JP4624162B2 (en) Opto-electric wiring board
JPH10504663A (en) Substrate system for optical / electronic devices / microwave circuits
US20030098511A1 (en) Flip-chip-bonded optical module package and method of packaging optical module using flip chip bonding
US6862378B2 (en) Silicon-based high speed optical wiring board
JP3405402B2 (en) Parallel transmission type optical module and method of manufacturing the same
US6775440B2 (en) Optical module and carrier for optical module
US7021840B2 (en) Optical receiver and method of manufacturing the same
JP2002031747A (en) Planar optical element mounted body, its manufacturing method, and device using it
JPH04361211A (en) Optoelectronic device
JP2001345455A (en) Optical semiconductor element carrier, and its mounting structure
JP3723698B2 (en) Optical element carrier and its mounting structure
KR20020039934A (en) Optical integrated circuit device having protrusion, fabrication method of the same and module of optical communication transmission and receiving apparatus using the same
JP3966084B2 (en) Optical element
JP3434473B2 (en) Silicon platform for optical module
TW200304557A (en) Ceramic waferboard
JP2002014258A (en) Optical semiconductor element carrier and optical assembly provided with it
JP3777059B2 (en) Optical element carrier and manufacturing method thereof
JP4438038B2 (en) Surface light-receiving element and method for manufacturing the same
JP3379726B2 (en) Optical transmission module and method of manufacturing the same
JP2002170965A (en) Optical semiconductor element carrier, mounting structure of it and optical module
JP2004140030A (en) Optical receiver and its manufacturing process
JP2003043309A (en) Substrate or mounting optical parts, method for manufacturing the substrate, and optical module
JPH08122589A (en) Optical element submount structure
JP2001135833A (en) Optical coupling structure of light-receiving element and manufacturing method of light-receiving element