JP2001345274A - Semiconductor-manufacturing device - Google Patents
Semiconductor-manufacturing deviceInfo
- Publication number
- JP2001345274A JP2001345274A JP2000164111A JP2000164111A JP2001345274A JP 2001345274 A JP2001345274 A JP 2001345274A JP 2000164111 A JP2000164111 A JP 2000164111A JP 2000164111 A JP2000164111 A JP 2000164111A JP 2001345274 A JP2001345274 A JP 2001345274A
- Authority
- JP
- Japan
- Prior art keywords
- electromagnetic wave
- wave transmitting
- transmitting window
- temperature
- cooling
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
Landscapes
- Chemical Vapour Deposition (AREA)
Abstract
Description
【0001】[0001]
【発明の属する技術分野】本発明は、プラズマを生成し
て基板の表面に処理を施すことで半導体を製造する半導
体製造装置に関する。BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a semiconductor manufacturing apparatus for manufacturing a semiconductor by generating a plasma and treating a surface of a substrate.
【0002】[0002]
【従来の技術】現在、半導体の製造では、プラズマCV
D(Chemical Vapor Deposition) 装置を用いた成膜が知
られている。プラズマCVD装置は、膜の材料となる材
料ガスを容器内の成膜室の中に導入してプラズマ状態に
し、プラズマ中の活性な励起種によって基板表面の化学
的な反応を促進して成膜を行う装置である。成膜室内を
プラズマ状態にするために、容器には電磁波透過窓が備
えられ、容器の外側に配置されたアンテナに電力を供給
して電磁波透過窓から電磁波を入射させることで成膜室
をプラズマ状態にしている。2. Description of the Related Art At present, in semiconductor manufacturing, plasma CV is used.
Film formation using a D (Chemical Vapor Deposition) apparatus is known. In a plasma CVD apparatus, a material gas serving as a material of a film is introduced into a film forming chamber in a container to form a plasma state, and a chemical reaction on a substrate surface is promoted by active excited species in the plasma to form a film. It is a device for performing. In order to bring the film formation chamber into a plasma state, the container is provided with an electromagnetic wave transmission window, and power is supplied to an antenna disposed outside the container and electromagnetic waves are incident from the electromagnetic wave transmission window so that the film formation chamber is turned into a plasma. In the state.
【0003】[0003]
【発明が解決しようとする課題】従来の半導体製造装置
(プラズマCVD装置)における電磁波透過窓は、電磁
波を通す材料、例えば、高純度アルミナで構成され、温
度差に弱いものとなっている。一方、アンテナに電力を
供給して成膜室内をプラズマ状態にする場合、輻射熱に
よって電磁波透過窓が加熱される。このため、電磁波透
過窓は熱に晒され温度差が生じやすい、といった問題が
あった。The electromagnetic wave transmitting window in a conventional semiconductor manufacturing apparatus (plasma CVD apparatus) is made of a material that transmits electromagnetic waves, for example, high-purity alumina, and is weak against temperature differences. On the other hand, when power is supplied to the antenna to make the film formation chamber in a plasma state, the electromagnetic wave transmission window is heated by radiant heat. For this reason, there has been a problem that the electromagnetic wave transmission window is exposed to heat and a temperature difference easily occurs.
【0004】本発明は上記状況に鑑みてなされたもの
で、電磁波透過窓が熱に晒されても温度差が生じること
がない半導体製造装置を提供することを目的とする。The present invention has been made in view of the above circumstances, and has as its object to provide a semiconductor manufacturing apparatus in which a temperature difference does not occur even when an electromagnetic wave transmitting window is exposed to heat.
【0005】[0005]
【課題を解決するための手段】上記目的を達成するため
の本発明の構成は、電磁波透過窓を備えた容器と、電磁
波透過窓に対向して容器の外側に設けられるアンテナ
と、アンテナに給電することにより電磁波透過窓から電
磁波を容器内に透過させてプラズマを生成して容器内の
基板の表面に処理を施す電源と、アンテナを挟んで電磁
波透過窓に対向して設けられ電磁波透過窓に冷却媒体を
供給する冷却手段とを備えたことを特徴とする。According to the present invention, there is provided a container having an electromagnetic wave transmitting window, an antenna provided outside the container in opposition to the electromagnetic wave transmitting window, and a power supply to the antenna. By transmitting electromagnetic waves from the electromagnetic wave transmitting window into the container to generate plasma and processing the surface of the substrate in the container, a power supply is provided opposite to the electromagnetic wave transmitting window with the antenna interposed therebetween. And a cooling means for supplying a cooling medium.
【0006】そして、冷却手段は、電磁波透過窓に対向
して設けられる冷媒タンクと、冷媒タンクに設けられ電
磁波透過窓側に指向する多数のノズルと、冷媒タンク内
に冷却媒体を圧送する圧送手段とからなることを特徴と
する。また、多数のノズルはアンテナに対向しているこ
とを特徴とする。また、冷却手段は、電磁波透過窓に対
向して設けられる冷却室と、冷却室内でアンテナの電磁
波透過窓と反対側の面を内周部で覆い内周部の径が軸方
向に漸次小さくなり中心に冷却室外に開放する筒部が備
えられたカバー部と、冷却室に設けられる冷媒取り入れ
口とからなることを特徴とする。また、カバー部の内周
には放射螺旋状の溝が形成されていることを特徴とす
る。また、カバー部の筒部には冷媒吸引手段が備えられ
ていることを特徴とする。The cooling means includes a refrigerant tank provided facing the electromagnetic wave transmitting window, a number of nozzles provided in the refrigerant tank directed toward the electromagnetic wave transmitting window, and a pumping means for pumping the cooling medium into the refrigerant tank. It is characterized by consisting of. In addition, a number of nozzles are characterized in that they face the antenna. Further, the cooling means is provided with a cooling chamber provided opposite to the electromagnetic wave transmission window, and the surface of the cooling chamber opposite to the electromagnetic wave transmission window of the antenna is covered with an inner peripheral portion, and the diameter of the inner peripheral portion gradually decreases in the axial direction. It is characterized by comprising a cover portion provided with a cylindrical portion which is opened to the outside of the cooling chamber at the center, and a refrigerant intake provided in the cooling chamber. Further, a radial spiral groove is formed on the inner periphery of the cover portion. Further, the cylinder part of the cover part is provided with a refrigerant suction means.
【0007】また、電磁波透過窓の面方向の温度分布を
導出する温度導出手段と、温度導出手段の結果に応じて
電磁波透過窓に面方向の温度差をなくすように圧送手段
の作動を制御する制御手段とを備えたことを特徴とす
る。また、電磁波透過窓の面方向の温度分布を導出する
温度導出手段と、温度導出手段の結果に応じて電磁波透
過窓に面方向の温度差をなくすように冷媒吸引手段の作
動を制御する制御手段とを備えたことを特徴とする。ま
た、制御手段には、温度分布の温度差がしきい値を越え
た場合に圧送手段の作動を開始させる機能が備えられて
いることを特徴とする。また、制御手段には、温度分布
の温度差がしきい値を越えた場合に冷媒吸引手段の作動
を開始させる機能が備えられていることを特徴とする。Further, a temperature deriving means for deriving a temperature distribution in a plane direction of the electromagnetic wave transmitting window, and an operation of the pumping means are controlled according to a result of the temperature deriving means so as to eliminate a temperature difference in the surface direction of the electromagnetic wave transmitting window. Control means. A temperature deriving means for deriving a temperature distribution in a surface direction of the electromagnetic wave transmitting window; and a control means for controlling operation of the refrigerant suction means so as to eliminate a temperature difference in the surface direction in the electromagnetic wave transmitting window according to a result of the temperature deriving means. And characterized in that: Further, the control means is provided with a function of starting the operation of the pressure feeding means when the temperature difference of the temperature distribution exceeds the threshold value. Further, the control means is provided with a function of starting the operation of the refrigerant suction means when the temperature difference of the temperature distribution exceeds the threshold value.
【0008】[0008]
【発明の実施の形態】図1には本発明の第1実施形態例
に係る半導体製造装置としてのプラズマCVD装置の概
略側面、図2には図1中のII-II 線矢視を示してある。1 is a schematic side view of a plasma CVD apparatus as a semiconductor manufacturing apparatus according to a first embodiment of the present invention, and FIG. 2 is a view taken along the line II-II in FIG. is there.
【0009】図1に示すように、基部1には円筒状の容
器2が設けられ、容器2内に成膜室3が形成されてい
る。容器2の上部には円形の天井板4が設けられ、容器
2の中心における成膜室3にはウエハ支持台5が備えら
れている。ウエハ支持台5は半導体の基板6を静電的に
吸着保持する円盤状の載置部7を有し、載置部7は支持
軸8に支持されている。載置部7は、銅等の金属板25
の表面にアルミナ等のセラミックス26が設けられてい
る。載置部7の金属板25にはバイアス電源21及び静
電電源22が接続され、載置部7に低周波を発生させる
と共に静電気力を発生させる。ウエハ支持台5は全体が
昇降自在もしくは支持軸8が伸縮自在とすることで、上
下方向の高さが最適な高さに調整できるようになってい
る。As shown in FIG. 1, a cylindrical container 2 is provided on a base 1, and a film forming chamber 3 is formed in the container 2. A circular ceiling plate 4 is provided on the upper part of the container 2, and a wafer support 5 is provided in the film forming chamber 3 at the center of the container 2. The wafer support 5 has a disk-shaped mounting portion 7 for electrostatically holding a semiconductor substrate 6, and the mounting portion 7 is supported by a support shaft 8. The mounting portion 7 is made of a metal plate 25 such as copper.
Is provided with ceramics 26 such as alumina on the surface thereof. A bias power supply 21 and an electrostatic power supply 22 are connected to the metal plate 25 of the mounting section 7 to generate a low frequency and an electrostatic force on the mounting section 7. The entire height of the wafer support table 5 can be raised and lowered or the support shaft 8 can be expanded and contracted, so that the height in the vertical direction can be adjusted to an optimum height.
【0010】容器2の外周には電磁石9が配置され、容
器2は環状の電磁石9により包囲されている。電磁石9
は円環状の鉄心10と鉄心10に巻かれるコイル11と
により構成され、コイル11には三相インバータ電源1
2が接続されて電磁石9に電圧が印加される。電磁石9
に電圧が印加されることにより、載置部7に載置される
基板6の表面に略平行に、かつ、容器2の中心軸回りに
回転する磁場を生成するようになっている。An electromagnet 9 is arranged on the outer periphery of the container 2, and the container 2 is surrounded by an annular electromagnet 9. Electromagnet 9
Is composed of an annular iron core 10 and a coil 11 wound around the iron core 10, and the coil 11 has a three-phase inverter power supply 1
2 is connected, and a voltage is applied to the electromagnet 9. Electromagnet 9
Is applied, a magnetic field is generated that rotates substantially parallel to the surface of the substrate 6 placed on the placement unit 7 and rotates around the central axis of the container 2.
【0011】電磁波透過窓としての天井板4の上には、
例えば、円形リング状のアンテナとしての高周波アンテ
ナ13が配置され、高周波アンテナ13には整合器14
を介して高周波電源15が接続されている。高周波アン
テナ13に電力を供給することにより電磁波が容器2の
成膜室3に入射する。容器2内に入射された電磁波は、
成膜室3内のガスを励起またはイオン化してプラズマを
発生すると共に、成膜室3内の磁束に作用して電子磁気
音波を発生し、これがランダウ減衰によりプラズマにエ
ネルギを移行させ、成膜室3内に強いプラズマを発生さ
せる。On the ceiling plate 4 as an electromagnetic wave transmission window,
For example, a high-frequency antenna 13 as a circular ring-shaped antenna is arranged, and a matching device 14
The high frequency power supply 15 is connected via the. By supplying power to the high-frequency antenna 13, an electromagnetic wave enters the film forming chamber 3 of the container 2. The electromagnetic wave incident on the container 2 is
The gas in the film forming chamber 3 is excited or ionized to generate plasma, and also acts on the magnetic flux in the film forming chamber 3 to generate an electro-magnetic sound wave, which transfers energy to the plasma by Landau damping, thereby forming a film. A strong plasma is generated in the chamber 3.
【0012】容器2にはシラン(例えば SiH4)等の材料
ガスを供給するガス供給ノズル16が設けられ、ガス供
給ノズル16から成膜室3内に成膜材料(例えばSi)と
なる材料ガスが供給される。また、容器2にはアルゴン
等の補助ガスを供給する補助ガス供給ノズル17が設け
られ、基部1には容器2の内部を排気するための真空排
気系(図示省略)に接続される排気口18が設けられて
いる。The container 2 is provided with a gas supply nozzle 16 for supplying a material gas such as silane (for example, SiH 4 ). The material gas which becomes a film forming material (for example, Si) from the gas supply nozzle 16 into the film forming chamber 3 is provided. Is supplied. The container 2 is provided with an auxiliary gas supply nozzle 17 for supplying an auxiliary gas such as argon, and the base 1 has an exhaust port 18 connected to a vacuum exhaust system (not shown) for exhausting the inside of the container 2. Is provided.
【0013】上述したプラズマCVD装置では、ウエハ
支持台5の載置部7に基板6が載せられ、静電的に吸着
される。ガス供給ノズル16から所定流量の材料ガスを
成膜室3内に供給すると共に補助ガス供給ノズル17か
ら処置流量の補助ガスを成膜室3内に供給し、成膜室3
内を成膜条件に応じた所定圧力に設定する。その後、高
周波電源15から高周波アンテナ13に電力を供給して
高周波を発生させると共にバイアス電源21から載置部
7に電力を供給して低周波を発生させる。同時に、三相
インバータ電源12から電磁石9に電圧が印加され、成
膜室3内に回転磁場が生成される。In the above-described plasma CVD apparatus, the substrate 6 is mounted on the mounting portion 7 of the wafer support 5 and is electrostatically attracted. A material gas having a predetermined flow rate is supplied from the gas supply nozzle 16 into the film formation chamber 3, and an auxiliary gas having a treatment flow rate is supplied into the film formation chamber 3 from the auxiliary gas supply nozzle 17.
Is set to a predetermined pressure according to the film forming conditions. Thereafter, power is supplied from the high-frequency power supply 15 to the high-frequency antenna 13 to generate a high frequency, and power is supplied from the bias power supply 21 to the mounting section 7 to generate a low frequency. At the same time, a voltage is applied from the three-phase inverter power supply 12 to the electromagnet 9, and a rotating magnetic field is generated in the film forming chamber 3.
【0014】これにより、成膜室3内の材料ガスが放電
して一部がプラズマ状態となる。プラズマ中の電子、あ
るいはイオンといった荷電粒子は回転磁場の磁力線に巻
き付くように回転し、更に電界にも影響されながら運動
する。従って、高密度、かつ均一な密度のプラズマが成
膜域に留まることになる。このプラズマは、材料ガス中
の他の中性分子に衝突して更に中性分子を電離、あるい
は励起する。こうして生じた活性な粒子は、基板6の表
面に吸着して効率良く化学反応を起こし、堆積してCV
D膜となる。即ち、処理手段としてプラズマにより成膜
を行う機能が構成されている。尚、処理手段として、平
行な磁場を形成してプラズマにより成膜を行う装置を例
に挙げているが、磁場の形成は適宜変更できると共に、
成膜以外でもエッチング等他の処理を行う装置を適用す
ることも可能である。As a result, the material gas in the film forming chamber 3 is discharged, and a part of the material gas becomes a plasma state. Charged particles such as electrons or ions in the plasma rotate so as to wrap around the lines of magnetic force of the rotating magnetic field, and move while being influenced by the electric field. Therefore, high-density and uniform-density plasma remains in the film formation region. This plasma collides with other neutral molecules in the material gas to further ionize or excite the neutral molecules. The active particles thus generated are adsorbed on the surface of the substrate 6 and cause a chemical reaction efficiently, and are deposited to form a CV.
It becomes a D film. That is, a function of forming a film by plasma is configured as a processing unit. In addition, as an example of the processing unit, an apparatus that forms a parallel magnetic field and performs film formation by plasma is used.
It is also possible to apply an apparatus for performing other processing such as etching other than film formation.
【0015】前述したように、高周波アンテナ13に電
力を供給することで電磁波が天井板4を透過して成膜室
3内にプラズマが発生する。このため、天井板4は電磁
波透過窓となっており、例えば、高純度アルミナで構成
され、天井板4は電磁波が透過する際にプラズマからの
熱によって加熱される。As described above, when electric power is supplied to the high-frequency antenna 13, electromagnetic waves pass through the ceiling plate 4 and generate plasma in the film forming chamber 3. For this reason, the ceiling plate 4 serves as an electromagnetic wave transmitting window, and is made of, for example, high-purity alumina. The ceiling plate 4 is heated by heat from plasma when the electromagnetic wave is transmitted.
【0016】天井板4の上方の高周波アンテナ13の上
側の容器2には偏平円筒状の冷媒タンク31が固定さ
れ、冷媒タンク31には高周波アンテナ13に向けて指
向するノズル32が多数設けられている。図2に示すよ
うに、ノズル32は円形リング状の高周波アンテナ13
に対向して中央部を除いてリング状態に設けられてい
る。これは、高周波アンテナ13に対向する部位の天井
板4が加熱されやすく、中心部は加熱されにくいからで
ある。冷媒タンク31には冷却媒体としての空気を供給
する空気管33が接続され、空気管33には圧送手段と
してのブロア34が設けられている。A flat cylindrical refrigerant tank 31 is fixed to the container 2 above the high frequency antenna 13 above the ceiling plate 4, and the refrigerant tank 31 is provided with a number of nozzles 32 directed toward the high frequency antenna 13. I have. As shown in FIG. 2, the nozzle 32 has a circular ring-shaped high-frequency antenna 13.
, And is provided in a ring state except for the central portion. This is because the ceiling plate 4 at the portion facing the high-frequency antenna 13 is easily heated, and the central portion is not easily heated. An air pipe 33 for supplying air as a cooling medium is connected to the refrigerant tank 31, and the air pipe 33 is provided with a blower 34 as a pressure feeding means.
【0017】従って、ブロア34の作動により空気管3
3から冷媒タンク31に空気が圧送され、ノズル32か
ら高周波アンテナ13に向けて(天井板4に向けて)空
気が噴出する。これにより、高周波アンテナ13に対向
する加熱されやすい部位を中心に天井板4が空気により
冷却される(冷却手段)。天井板4を冷却した空気は外
部に排出される。尚、中央部を除いてリング状態にノズ
ル32を冷媒タンク31に設けたが、天井板4の全面に
対向してノズル32を冷媒タンク31に設けることも可
能である。Therefore, the operation of the blower 34 causes the air pipe 3
Air is pressure-fed from 3 to the refrigerant tank 31, and air is jetted from the nozzle 32 toward the high-frequency antenna 13 (toward the ceiling plate 4). As a result, the ceiling plate 4 is cooled by the air around the portion that is likely to be heated facing the high frequency antenna 13 (cooling means). The air that has cooled the ceiling plate 4 is discharged to the outside. Although the nozzle 32 is provided in the refrigerant tank 31 in a ring state except for the central portion, the nozzle 32 may be provided in the refrigerant tank 31 so as to face the entire surface of the ceiling plate 4.
【0018】一方、冷媒タンク31の天井板4との対向
面には温度導出手段としての赤外温度計35が数箇所に
設けられ、赤外温度計35によって天井板4の各部位の
温度(面方向の温度温度分布)が検出される。赤外温度
計35の検出情報は制御手段36に入力され、赤外温度
計35の検出情報に応じて制御手段36からはブロア3
4に作動指令が出力される。具体的には、天井板4の面
方向の温度差がしきい値を越えた場合に、ブロア34に
作動指令が出力され、加熱されやすい部位を中心に天井
板4に空気が噴出され、温度差をなくすように天井板4
が冷却される。このため、電磁波が透過する際に天井板
4がプラズマからの熱によって加熱されてもノズル32
噴出する空気によって冷却され、天井板4には大きな温
度差が生じることがない。On the other hand, infrared thermometers 35 as temperature deriving means are provided at several places on the surface of the refrigerant tank 31 facing the ceiling plate 4, and the temperature of each part of the ceiling plate 4 is measured by the infrared thermometer 35. The temperature distribution in the plane direction is detected. The detection information of the infrared thermometer 35 is input to the control means 36, and the blower 3 is sent from the control means 36 in accordance with the detection information of the infrared thermometer 35.
An operation command is output to 4. Specifically, when the temperature difference in the surface direction of the ceiling plate 4 exceeds the threshold value, an operation command is output to the blower 34, and air is blown out to the ceiling plate 4 around a portion that is likely to be heated, and the temperature is increased. Ceiling board 4 to eliminate the difference
Is cooled. For this reason, even if the ceiling plate 4 is heated by the heat from the plasma when the electromagnetic wave is transmitted, the nozzle 32
It is cooled by the jetted air, so that a large temperature difference does not occur in the ceiling plate 4.
【0019】尚、温度差によりブロア34を作動させる
ようにしたが、天井板4の絶対温度等の情報によりブロ
ア34を作動させて空気を噴出させるようにしてもよ
い。また、常時ブロア34を作動させて空気を天井板4
に噴出させたまま成膜を行うようにしてもよい。また、
温度検出手段としては、時間と温度分布の関係とを予め
記憶しておき、時間の経過に応じて温度分布を推定する
手段とすることも可能である。また、熱電対等の検出手
段を設けることも可能である。Although the blower 34 is operated based on the temperature difference, the blower 34 may be operated based on information such as the absolute temperature of the ceiling plate 4 to eject air. Also, the blower 34 is always operated to allow air to flow through the ceiling plate 4.
Alternatively, the film may be formed while being ejected. Also,
As the temperature detecting means, a relation between time and the temperature distribution may be stored in advance, and the temperature distribution may be estimated as time elapses. Further, it is also possible to provide a detecting means such as a thermocouple.
【0020】上述した半導体製造装置では、ブロア34
の作動により空気管33から冷媒タンク31に空気が圧
送され、ノズル32から高周波アンテナ13に向けて
(天井板4に向けて)空気が噴出するので、高周波アン
テナ13に対向する加熱されやすい部位を中心に天井板
4が空気により冷却され、面方向の温度分布が略一定に
なるように冷却される。従って、天井板4が高温に晒さ
れることがなくなり、温度差により天井板4の破損等が
生じることがない。In the above-described semiconductor manufacturing apparatus, the blower 34
The air is pressure-fed from the air pipe 33 to the refrigerant tank 31 by the operation of, and air is ejected from the nozzle 32 toward the high-frequency antenna 13 (toward the ceiling plate 4). At the center, the ceiling plate 4 is cooled by air so that the temperature distribution in the plane direction is substantially constant. Therefore, the ceiling plate 4 is not exposed to high temperatures, and the temperature difference does not cause the ceiling plate 4 to be damaged.
【0021】図3、図4に基づいて本発明の第2実施形
態例を説明する。図3には本発明の第2実施形態例に係
る半導体製造装置としてのプラズマCVD装置の概略側
面、図4には図3中のIV-IV 線矢視を示してある。尚、
図1、図2に示した第1実施形態例と同一部材には同一
符号を付して重複する説明は省略してある。A second embodiment of the present invention will be described with reference to FIGS. FIG. 3 is a schematic side view of a plasma CVD apparatus as a semiconductor manufacturing apparatus according to a second embodiment of the present invention, and FIG. 4 is a view taken along line IV-IV in FIG. still,
The same members as those of the first embodiment shown in FIGS. 1 and 2 are denoted by the same reference numerals, and duplicate description is omitted.
【0022】天井板4の上方の高周波アンテナ13の上
側の容器2には円筒状の冷却室41が形成され、冷却室
41によって天井板4及び高周波アンテナ13が覆われ
ている。冷却室41内には漏斗型のテフロン(登録商
標)製のカバー42が設けられている。カバー42は、
漏斗を逆にした状態で配設されている。カバー42は、
冷却室41内で高周波アンテナ13の天井板4と反対側
の面を内周部43で覆い、内周部43の径が軸方向に上
方に向かって漸次小さくなり、カバー42は冷却室41
の上部に固定されている。そして、カバー42の中心部
には冷却室41の外部に開放する筒部44が取り付けら
れている。つまり、カバー42と筒部44によりカバー
部材が構成されている。A cylindrical cooling chamber 41 is formed in the container 2 above the high frequency antenna 13 above the ceiling plate 4, and the ceiling plate 4 and the high frequency antenna 13 are covered by the cooling chamber 41. Inside the cooling chamber 41, a funnel-shaped cover 42 made of Teflon (registered trademark) is provided. The cover 42
It is arranged with the funnel upside down. The cover 42
The surface of the high-frequency antenna 13 on the side opposite to the ceiling plate 4 is covered with an inner peripheral portion 43 in the cooling chamber 41, and the diameter of the inner peripheral portion 43 gradually decreases upward in the axial direction.
Is fixed at the top. At the center of the cover 42, a tubular portion 44 that is open to the outside of the cooling chamber 41 is attached. That is, the cover member is constituted by the cover 42 and the cylindrical portion 44.
【0023】冷却室41の外周側における上壁には、外
部に開放する冷媒取り入れ口としての空気穴45が複数
箇所に形成されている。また、図2に示すように、カバ
ー42の内周部43には放射螺旋状の溝46が形成され
ている。更に、筒部44の上部には冷媒吸引手段として
の電動ファン47が設けられ、電動ファン47の作動に
より内周部43内の空気が筒部44に吸引されて外部に
排気される。尚、溝46は単に放射状に形成することも
可能であり、また、設けなくてもよい。In the upper wall on the outer peripheral side of the cooling chamber 41, air holes 45 are formed at a plurality of locations as refrigerant inlets which open to the outside. As shown in FIG. 2, a radial spiral groove 46 is formed in the inner peripheral portion 43 of the cover 42. Further, an electric fan 47 as a refrigerant suction means is provided at an upper portion of the tube portion 44, and the air in the inner peripheral portion 43 is sucked by the tube portion 44 and exhausted to the outside by the operation of the electric fan 47. Note that the groove 46 can be simply formed radially, and need not be provided.
【0024】従って、電動ファン47の作動によりカバ
ー42の内周部43内の空気を筒部44に吸引すること
により、空気穴45から外部の空気が冷却室41に導入
されてカバー42の外側から内周部43内に空気が送ら
れる。そして、円形リング状の高周波アンテナ13に対
向する加熱されやすい外方側の部位から天井板4が空気
により冷却される(冷却手段)。内周部43内に送られ
た空気は、放射螺旋状の溝46に沿って旋回状態で流れ
て天井板4の内方側を冷却して内側に移動し、筒部44
に吸引されて電動ファン47により外部に排気される。
つまり、天井板4は温度分布が略均一になるように外周
側から内周側に順に冷却される。Accordingly, by operating the electric fan 47 to suck the air in the inner peripheral portion 43 of the cover 42 into the cylindrical portion 44, external air is introduced into the cooling chamber 41 from the air hole 45 and the outside of the cover 42 is Air is sent into the inner peripheral portion 43 from the inside. Then, the ceiling plate 4 is cooled by air from a portion on the outer side that is likely to be heated and faces the high frequency antenna 13 having a circular ring shape (cooling means). The air sent into the inner peripheral portion 43 flows in a swirling state along the radial spiral groove 46, cools the inner side of the ceiling plate 4, moves inward, and moves into the cylindrical portion 44.
And is exhausted to the outside by the electric fan 47.
That is, the ceiling plate 4 is cooled in order from the outer peripheral side to the inner peripheral side so that the temperature distribution becomes substantially uniform.
【0025】一方、カバー42の内周部43には温度導
出手段としての赤外温度計48が数箇所に設けられ、赤
外温度計48によって天井板4の各部位の温度(面方向
の温度温度分布)が検出される。赤外温度計48の検出
情報は制御手段49に入力され、赤外温度計48の検出
情報に応じて制御手段49からは電動ファン47に作動
指令が出力される。具体的には、天井板4の面方向の温
度差がしきい値を越えた場合に、電動ファン47に作動
指令が出力され、加熱されやすい外方側の部位から空気
が供給され、温度差をなくすように天井板4が冷却され
る。このため、電磁波が透過する際に天井板4が輻射熱
によって加熱されても、内周部43内の空気を筒部44
に吸引することで供給される空気により冷却され、天井
板4は高温に晒されることがない。On the other hand, infrared thermometers 48 as temperature deriving means are provided on the inner peripheral portion 43 of the cover 42 at several places, and the temperature of each part of the ceiling plate 4 (temperature in the surface direction) is measured by the infrared thermometers 48. Temperature distribution) is detected. The detection information of the infrared thermometer 48 is input to the control means 49, and an operation command is output from the control means 49 to the electric fan 47 according to the detection information of the infrared thermometer 48. Specifically, when the temperature difference in the surface direction of the ceiling plate 4 exceeds the threshold value, an operation command is output to the electric fan 47, and air is supplied from an outside portion that is easily heated, and the temperature difference is increased. Ceiling plate 4 is cooled so as to eliminate. Therefore, even if the ceiling plate 4 is heated by the radiant heat when the electromagnetic wave is transmitted, the air in the inner peripheral portion 43 is removed by the cylindrical portion 44.
The ceiling plate 4 is not exposed to high temperature because it is cooled by the air supplied by suction.
【0026】尚、温度差により電動ファン47を作動さ
せるようにしたが、天井板4の絶対温度等の情報により
電動ファン47を作動させて空気を噴出させるようにし
てもよい。また、常時電動ファン47を作動させて内周
部43内の空気を筒部44に吸引して空気を天井板4に
供給した状態で成膜を行うようにしてもよい。また、温
度検出手段としては、第1実施形態例と同様に、時間と
温度分布の関係とを予め記憶しておき、時間の経過に応
じて温度分布を推定する手段とすることも可能である。
また、熱電対等の検出手段を設けることも可能である。Although the electric fan 47 is operated based on the temperature difference, the electric fan 47 may be operated based on information such as the absolute temperature of the ceiling plate 4 to blow air. Alternatively, the film formation may be performed in a state where the electric fan 47 is always operated to suck the air in the inner peripheral portion 43 into the cylindrical portion 44 and supply the air to the ceiling plate 4. Further, as in the first embodiment, it is possible to store the relationship between time and temperature distribution in advance and to estimate the temperature distribution as time elapses, as in the first embodiment. .
Further, it is also possible to provide a detecting means such as a thermocouple.
【0027】上述した半導体製造装置では、電動ファン
47の作動によりカバー42の内周部43内の空気が筒
部44に吸引され、空気穴45から外部の空気が冷却室
41に導入されて高周波アンテナ13に対向する加熱さ
れやすい外方側の部位から内周部43内に送られ、放射
螺旋状の溝46に沿って旋回状態で天井板4の内方側を
冷却して内側に移動し筒部44に吸引されて排気され
る。このため、動力の小さな電動ファン47の作動によ
り、面方向の温度分布が略一定になるように天井板4が
効率よく冷却される。従って、温度差により天井板4の
破損等が生じることがない。In the above-described semiconductor manufacturing apparatus, the air in the inner peripheral portion 43 of the cover 42 is sucked into the cylindrical portion 44 by the operation of the electric fan 47, and the external air is introduced into the cooling chamber 41 through the air hole 45 and the high frequency It is sent into the inner peripheral portion 43 from a portion on the outer side that is likely to be heated and faces the antenna 13, and cools the inner side of the ceiling plate 4 in a swirling state along the radial spiral groove 46 to move inward. It is sucked and exhausted by the cylindrical portion 44. For this reason, the ceiling plate 4 is efficiently cooled by the operation of the electric fan 47 having a small power so that the temperature distribution in the surface direction becomes substantially constant. Accordingly, the ceiling plate 4 is not damaged due to the temperature difference.
【0028】図5に基づいて本発明の第3実施形態例を
説明する。図5には本発明の第3実施形態例に係る半導
体製造装置としてのプラズマCVD装置の概略側面を示
してある。尚、図1乃至図4に示した第1実施形態例及
び第2実施形態例と同一部材には同一符号を付して重複
する説明は省略してある。A third embodiment of the present invention will be described with reference to FIG. FIG. 5 shows a schematic side view of a plasma CVD apparatus as a semiconductor manufacturing apparatus according to a third embodiment of the present invention. The same members as those of the first embodiment and the second embodiment shown in FIGS. 1 to 4 are denoted by the same reference numerals, and duplicate description is omitted.
【0029】天井板4の上方の高周波アンテナ13の上
側の容器2には、図3で示したものと同じ、円筒状の冷
却室41が形成され、冷却室41内には漏斗型のテフロ
ン製のカバー42が設けられている。カバー42の中心
部には冷却室41の外部に開放する筒部51が取り付け
られている。筒部51は、図3で示した筒部44に対
し、長く構成されている。つまり、カバー42と筒部5
1によりカバー部材が構成されている。また、冷却室4
1の外周側における上壁には、外部に開放する冷媒取り
入れ口としての空気穴45が複数箇所に形成され、カバ
ー42の内周部43には放射螺旋状の溝46が形成され
ている。A cylindrical cooling chamber 41 similar to that shown in FIG. 3 is formed in the container 2 above the high-frequency antenna 13 above the ceiling plate 4, and a funnel-shaped Teflon made in the cooling chamber 41. Cover 42 is provided. At the center of the cover 42, a tubular portion 51 that is open to the outside of the cooling chamber 41 is attached. The tubular portion 51 is longer than the tubular portion 44 shown in FIG. That is, the cover 42 and the cylindrical portion 5
1 forms a cover member. In addition, cooling room 4
An air hole 45 is formed at a plurality of locations on the upper wall on the outer peripheral side of the cover 1 as a refrigerant intake opening to the outside, and a radial spiral groove 46 is formed on an inner peripheral portion 43 of the cover 42.
【0030】従って、空気穴45から外部の空気が冷却
室41に導入されてカバー42の外側から内周部43内
に空気が流れ、円形リング状の高周波アンテナ13に対
向する加熱されやすい外方側の部位から天井板4が空気
により冷却される(冷却手段)。内周部43内に送られ
た空気は、放射螺旋状の溝46に沿って天井板4の内方
側を冷却して内側に移動し筒部51から外部に排気され
る。つまり、天井板4は温度分布が略均一になるように
外周側から内周側に順に冷却される。Therefore, outside air is introduced into the cooling chamber 41 from the air hole 45 and flows into the inner peripheral portion 43 from the outside of the cover 42, and the outside air which is easily heated and faces the high frequency antenna 13 having a circular ring shape. The ceiling plate 4 is cooled by air from the side part (cooling means). The air sent into the inner peripheral portion 43 cools the inner side of the ceiling plate 4 along the radial spiral groove 46, moves inward, and is exhausted from the cylindrical portion 51 to the outside. That is, the ceiling plate 4 is cooled in order from the outer peripheral side to the inner peripheral side so that the temperature distribution becomes substantially uniform.
【0031】上述した半導体製造装置では、空気穴45
から外部の空気が冷却室41に導入されて高周波アンテ
ナ13に対向する加熱されやすい外方側の部位から内周
部43内に送られ、放射螺旋状の溝46に沿って天井板
4の内方側を冷却して内側に移動し筒部51から外部に
排気される。このため、自然の空気の流れにより、天井
板4が面方向の温度分布が略一定になるように冷却され
る。従って、特別な動力を用いることなく天井板4が高
温に晒されることがなくなり、温度差により天井板4の
破損等が生じることがない。In the above-described semiconductor manufacturing apparatus, the air hole 45
From outside, the outside air is introduced into the cooling chamber 41 and is sent to the inner peripheral portion 43 from the easily heated outer side facing the high-frequency antenna 13, and the inside of the ceiling plate 4 is formed along the radiation spiral groove 46. The other side is cooled, moves inward, and is exhausted from the cylindrical portion 51 to the outside. For this reason, the ceiling plate 4 is cooled by the natural flow of air so that the temperature distribution in the surface direction becomes substantially constant. Therefore, the ceiling plate 4 is not exposed to a high temperature without using any special power, and the temperature difference does not cause the ceiling plate 4 to be damaged.
【0032】[0032]
【発明の効果】本発明の半導体製造装置は、電磁波透過
窓を備えた容器と、電磁波透過窓に対向して容器の外側
に設けられるアンテナと、アンテナに給電することによ
り電磁波透過窓から電磁波を容器内に透過させてプラズ
マを生成して容器内の基板の表面に処理を施す電源と、
アンテナを挟んで電磁波透過窓に対向して設けられ電磁
波透過窓に冷却媒体を供給する冷却手段とを備えたの
で、冷却手段により電磁波透過窓に冷却媒体を供給する
ことでアンテナに対向する電磁波透過窓が冷却され、電
磁波を透過させる際に電磁波透過窓が熱に晒されること
がなくなり、温度差による電磁波透過窓の破損等を防止
することができる。According to the present invention, there is provided a semiconductor manufacturing apparatus comprising: a container having an electromagnetic wave transmitting window; an antenna provided outside the container in opposition to the electromagnetic wave transmitting window; and an electromagnetic wave transmitted from the electromagnetic wave transmitting window by feeding power to the antenna. A power supply for transmitting plasma into the container to generate plasma and processing the surface of the substrate in the container;
A cooling means is provided opposite to the electromagnetic wave transmitting window with the antenna interposed therebetween and supplies a cooling medium to the electromagnetic wave transmitting window. When the window is cooled and the electromagnetic wave is transmitted therethrough, the electromagnetic wave transmitting window is not exposed to heat, and damage to the electromagnetic wave transmitting window due to a temperature difference can be prevented.
【0033】また、冷却手段は、電磁波透過窓に対向し
て設けられる冷媒タンクと、冷媒タンクに設けられ電磁
波透過窓側に指向する多数のノズルと、冷媒タンク内に
冷媒を圧送する圧送手段とからなるので、圧送手段の作
動により多数のノズルから電磁波透過窓に冷却媒体を噴
射することができ、電磁波透過窓の冷却を確実に行うこ
とができる。また、多数のノズルはアンテナに対向して
いるので、加熱されやすい部位を中心に冷却媒体を供給
して電磁波透過窓を冷却することができ、面方向の温度
分布を均一にすることができる。The cooling means includes a refrigerant tank provided facing the electromagnetic wave transmitting window, a number of nozzles provided in the refrigerant tank directed toward the electromagnetic wave transmitting window, and a pumping means for pumping the refrigerant into the refrigerant tank. Therefore, the cooling medium can be injected from a large number of nozzles into the electromagnetic wave transmitting window by the operation of the pumping means, and the electromagnetic wave transmitting window can be reliably cooled. Further, since a number of nozzles are opposed to the antenna, the electromagnetic wave transmission window can be cooled by supplying a cooling medium around a portion that is easily heated, and the temperature distribution in the plane direction can be made uniform.
【0034】また、冷却手段は、電磁波透過窓に対向し
て設けられる冷却室と、冷却室内でアンテナの電磁波透
過窓と反対側の面を内周部で覆い内周部の径が軸方向に
漸次小さくなり中心に冷却室外に開放する筒部が備えら
れたカバー部と、冷却室に設けられる冷媒取り入れ口と
からなるので、外側から内側に順に冷却媒体を流して電
磁波透過窓を冷却することができ、リング状のアンテナ
を用いた場合でも容易に面方向の温度分布を均一にする
ことができる。The cooling means includes a cooling chamber provided opposite the electromagnetic wave transmitting window, and a surface of the cooling chamber opposite to the electromagnetic wave transmitting window of the antenna covered with an inner peripheral portion, and the diameter of the inner peripheral portion is set in the axial direction. Since it is made up of a cover part provided with a cylindrical part that gradually becomes smaller and opens to the outside of the cooling chamber at the center, and a refrigerant intake port provided in the cooling chamber, it is necessary to cool the electromagnetic wave transmission window by flowing a cooling medium in order from the outside to the inside. Thus, even when a ring-shaped antenna is used, the temperature distribution in the plane direction can be easily made uniform.
【0035】また、カバー部の内周には放射螺旋状の溝
が形成されているので、冷却媒体の流れを旋回状態にす
ることができ、効率よく冷却を行うことができる。ま
た、カバー部の筒部には冷媒吸引手段が備えられている
ので、少ない動力で冷却媒体の流れを確実にすることが
できる。Further, since a radial spiral groove is formed on the inner periphery of the cover portion, the flow of the cooling medium can be swirled, and cooling can be performed efficiently. Further, since the cylinder portion of the cover portion is provided with the refrigerant suction means, the flow of the cooling medium can be ensured with little power.
【0036】また、電磁波透過窓の面方向の温度分布を
導出する温度導出手段と、温度導出手段の結果に応じて
電磁波透過窓に面方向の温度差をなくすように圧送手段
の作動を制御する制御手段とを備えたので、電磁波透過
窓の温度状態に応じて冷却することが可能になる。ま
た、電磁波透過窓の面方向の温度分布を導出する温度導
出手段と、温度導出手段の結果に応じて電磁波透過窓に
面方向の温度差をなくすように冷媒吸引手段の作動を制
御する制御手段とを備えたので、電磁波透過窓の温度状
態に応じて冷却することが可能になる。Further, the temperature deriving means for deriving the temperature distribution in the plane direction of the electromagnetic wave transmitting window and the operation of the pressure feeding means are controlled in accordance with the result of the temperature deriving means so as to eliminate the temperature difference in the surface direction in the electromagnetic wave transmitting window. Since the control means is provided, cooling can be performed according to the temperature state of the electromagnetic wave transmission window. A temperature deriving means for deriving a temperature distribution in a surface direction of the electromagnetic wave transmitting window; and a control means for controlling operation of the refrigerant suction means so as to eliminate a temperature difference in the surface direction in the electromagnetic wave transmitting window according to a result of the temperature deriving means. Therefore, cooling can be performed according to the temperature state of the electromagnetic wave transmission window.
【0037】また、制御手段には、温度分布の温度差が
しきい値を越えた場合に圧送手段の作動を開始させる機
能が備えられているので、必要時にのみ圧送手段を作動
させてむだなく電磁波透過窓の冷却が行える。また、制
御手段には、温度分布の温度差がしきい値を越えた場合
に冷媒吸引手段の作動を開始させる機能が備えられてい
るので、必要時にのみ冷媒吸引手段を作動させてむだな
く電磁波透過窓の冷却が行える。Further, the control means is provided with a function for starting the operation of the pumping means when the temperature difference of the temperature distribution exceeds the threshold value, so that the pumping means must be operated only when necessary. The electromagnetic wave transmission window can be cooled. Further, the control means has a function to start the operation of the refrigerant suction means when the temperature difference of the temperature distribution exceeds the threshold value. The transmission window can be cooled.
【図1】本発明の第1実施形態例に係る半導体製造装置
としてのプラズマCVD装置の概略側面図。FIG. 1 is a schematic side view of a plasma CVD apparatus as a semiconductor manufacturing apparatus according to a first embodiment of the present invention.
【図2】図1中のII-II 線矢視図。FIG. 2 is a view taken along line II-II in FIG.
【図3】本発明の第2実施形態例に係る半導体製造装置
としてのプラズマCVD装置の概略側面図。FIG. 3 is a schematic side view of a plasma CVD apparatus as a semiconductor manufacturing apparatus according to a second embodiment of the present invention.
【図4】図3中のIV-IV 線矢視図。FIG. 4 is a view taken along line IV-IV in FIG. 3;
【図5】本発明の第3実施形態例に係る半導体製造装置
としてのプラズマCVD装置の概略側面図。FIG. 5 is a schematic side view of a plasma CVD apparatus as a semiconductor manufacturing apparatus according to a third embodiment of the present invention.
1 基部 2 容器 3 成膜室 4 天井板 5 ウエハ支持台 6 基板 7 載置部 8 支持軸 9 電磁石 10 鉄心 11 コイル 12 三相インバータ電源 13 高周波アンテナ 14 整合器 15 高周波電源 16 ガス供給ノズル 17 補助ガス供給ノズル 18 排気系 21 バイアス電源 22 静電電源 25 金属板 26 セラミックス 31 冷媒タンク 32 ノズル 33 空気管 34 ブロア 35,48 赤外温度計 36,49 制御手段 41 冷却室 42 カバー 43 内周部 44,51 筒部 45 空気穴 46 溝 47 電動ファン DESCRIPTION OF SYMBOLS 1 Base 2 Container 3 Film-forming chamber 4 Ceiling plate 5 Wafer support 6 Substrate 7 Placement part 8 Support shaft 9 Electromagnet 10 Iron core 11 Coil 12 Three-phase inverter power supply 13 High frequency antenna 14 Matching device 15 High frequency power supply 16 Gas supply nozzle 17 Auxiliary Gas supply nozzle 18 Exhaust system 21 Bias power supply 22 Electrostatic power supply 25 Metal plate 26 Ceramics 31 Refrigerant tank 32 Nozzle 33 Air tube 34 Blower 35, 48 Infrared thermometer 36, 49 Control means 41 Cooling chamber 42 Cover 43 Inner peripheral part 44 , 51 cylinder part 45 air hole 46 groove 47 electric fan
───────────────────────────────────────────────────── フロントページの続き (72)発明者 大谷 幸広 兵庫県高砂市荒井町新浜二丁目1番1号 三菱重工業株式会社高砂研究所内 (72)発明者 上田 憲照 兵庫県神戸市兵庫区和田崎町一丁目1番1 号 三菱重工業株式会社神戸造船所内 (72)発明者 吉田 和人 兵庫県神戸市兵庫区和田崎町一丁目1番1 号 三菱重工業株式会社神戸造船所内 Fターム(参考) 4K030 FA01 JA10 KA26 KA37 KA39 KA41 5F045 AA08 BB20 DP03 DQ10 EH02 EH11 EH16 EJ04 EJ10 ──────────────────────────────────────────────────続 き Continuing on the front page (72) Inventor Yukihiro Otani 2-1-1, Shinhama, Arai-machi, Takasago-shi, Hyogo Prefecture Inside the Takasago Research Laboratory, Mitsubishi Heavy Industries, Ltd. (72) Inventor: Noriaki Ueda 1-1-1 1-1 Mitsubishi Heavy Industries, Ltd. Kobe Shipyard (72) Inventor Kazuto Yoshida 1-1-1, Wadasaki-cho, Hyogo-ku, Kobe-shi, Hyogo F-term (reference) 4K030 FA01 JA10 KA26 KA37 KA39 KA41 5F045 AA08 BB20 DP03 DQ10 EH02 EH11 EH16 EJ04 EJ10
Claims (10)
過窓に対向して容器の外側に設けられるアンテナと、ア
ンテナに給電することにより電磁波透過窓から電磁波を
容器内に透過させてプラズマを生成して容器内の基板の
表面に処理を施す電源と、アンテナを挟んで電磁波透過
窓に対向して設けられ電磁波透過窓に冷却媒体を供給す
る冷却手段とを備えたことを特徴とする半導体製造装
置。1. A container having an electromagnetic wave transmitting window, an antenna provided outside the container facing the electromagnetic wave transmitting window, and an electromagnetic wave transmitted through the electromagnetic wave transmitting window into the container by feeding power to the antenna to generate plasma. A semiconductor, comprising: a power supply for generating and processing a surface of a substrate in a container; and cooling means provided to face an electromagnetic wave transmitting window with an antenna interposed therebetween and supplying a cooling medium to the electromagnetic wave transmitting window. manufacturing device.
透過窓に対向して設けられる冷媒タンクと、冷媒タンク
に設けられ電磁波透過窓側に指向する多数のノズルと、
冷媒タンク内に冷却媒体を圧送する圧送手段とからなる
ことを特徴とする半導体製造装置。2. The cooling device according to claim 1, wherein the cooling means includes: a refrigerant tank provided to face the electromagnetic wave transmitting window; a plurality of nozzles provided in the refrigerant tank and directed to the electromagnetic wave transmitting window side;
A semiconductor manufacturing apparatus comprising: a pumping means for pumping a cooling medium into a refrigerant tank.
テナに対向していることを特徴とする半導体製造装置。3. The semiconductor manufacturing apparatus according to claim 2, wherein a number of nozzles face the antenna.
透過窓に対向して設けられる冷却室と、冷却室内でアン
テナの電磁波透過窓と反対側の面を内周部で覆い内周部
の径が軸方向に漸次小さくなり中心に冷却室外に開放す
る筒部が備えられたカバー部と、冷却室に設けられる冷
媒取り入れ口とからなることを特徴とする半導体製造装
置。4. The cooling means according to claim 1, wherein the cooling means includes a cooling chamber provided to face the electromagnetic wave transmitting window, and an inner peripheral portion covering the surface of the antenna in the cooling chamber opposite to the electromagnetic wave transmitting window. A semiconductor manufacturing apparatus comprising: a cover portion provided with a cylindrical portion whose diameter gradually decreases in an axial direction and opened to the outside of a cooling chamber at the center; and a refrigerant intake provided in the cooling chamber.
放射螺旋状の溝が形成されていることを特徴とする半導
体製造装置。5. The semiconductor manufacturing apparatus according to claim 4, wherein a radial spiral groove is formed on an inner periphery of the cover.
バー部の筒部には冷媒吸引手段が備えられていることを
特徴とする半導体製造装置。6. The semiconductor manufacturing apparatus according to claim 4, wherein the cylinder of the cover is provided with a refrigerant suction unit.
向の温度分布を導出する温度導出手段と、温度導出手段
の結果に応じて電磁波透過窓に面方向の温度差をなくす
ように圧送手段の作動を制御する制御手段とを備えたこ
とを特徴とする半導体製造装置。7. A temperature deriving means for deriving a temperature distribution in a plane direction of an electromagnetic wave transmitting window according to claim 3, and a pressure feeding means for eliminating a temperature difference in a plane direction in the electromagnetic wave transmitting window according to a result of the temperature deriving means. And a control means for controlling the operation of the semiconductor device.
向の温度分布を導出する温度導出手段と、温度導出手段
の結果に応じて電磁波透過窓に面方向の温度差をなくす
ように冷媒吸引手段の作動を制御する制御手段とを備え
たことを特徴とする半導体製造装置。8. A refrigerant suction device according to claim 6, wherein a temperature deriving means for deriving a temperature distribution in a plane direction of the electromagnetic wave transmitting window, and a refrigerant suction so as to eliminate a temperature difference in the surface direction of the electromagnetic wave transmitting window according to a result of the temperature deriving means. Control means for controlling the operation of the means.
分布の温度差がしきい値を越えた場合に圧送手段の作動
を開始させる機能が備えられていることを特徴とする半
導体製造装置。9. The semiconductor manufacturing apparatus according to claim 7, wherein the control means has a function of starting the operation of the pressure feeding means when the temperature difference of the temperature distribution exceeds a threshold value. .
度分布の温度差がしきい値を越えた場合に冷媒吸引手段
の作動を開始させる機能が備えられていることを特徴と
する半導体製造装置。10. The semiconductor manufacturing method according to claim 8, wherein the control means has a function of starting the operation of the refrigerant suction means when the temperature difference in the temperature distribution exceeds a threshold value. apparatus.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2000164111A JP3576464B2 (en) | 2000-06-01 | 2000-06-01 | Semiconductor manufacturing equipment |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2000164111A JP3576464B2 (en) | 2000-06-01 | 2000-06-01 | Semiconductor manufacturing equipment |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2001345274A true JP2001345274A (en) | 2001-12-14 |
JP3576464B2 JP3576464B2 (en) | 2004-10-13 |
Family
ID=18667774
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2000164111A Expired - Fee Related JP3576464B2 (en) | 2000-06-01 | 2000-06-01 | Semiconductor manufacturing equipment |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP3576464B2 (en) |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN103687268A (en) * | 2012-09-11 | 2014-03-26 | 株式会社岛津制作所 | High-frequency power supply for plasma and ICP optical emission spectrometer using the same |
CN112687583A (en) * | 2020-12-14 | 2021-04-20 | 北京北方华创微电子装备有限公司 | Semiconductor processing equipment |
WO2024070457A1 (en) * | 2022-09-30 | 2024-04-04 | 東京エレクトロン株式会社 | Cooling device, substrate processing device, and cooling method |
Families Citing this family (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN110660707B (en) * | 2018-06-29 | 2022-06-14 | 台湾积体电路制造股份有限公司 | Plasma generation system and temperature adjustment method |
US11424107B2 (en) | 2018-06-29 | 2022-08-23 | Taiwan Semiconductor Manufacturing Co., Ltd. | Temperature-controlled plasma generation system |
-
2000
- 2000-06-01 JP JP2000164111A patent/JP3576464B2/en not_active Expired - Fee Related
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN103687268A (en) * | 2012-09-11 | 2014-03-26 | 株式会社岛津制作所 | High-frequency power supply for plasma and ICP optical emission spectrometer using the same |
CN112687583A (en) * | 2020-12-14 | 2021-04-20 | 北京北方华创微电子装备有限公司 | Semiconductor processing equipment |
WO2024070457A1 (en) * | 2022-09-30 | 2024-04-04 | 東京エレクトロン株式会社 | Cooling device, substrate processing device, and cooling method |
Also Published As
Publication number | Publication date |
---|---|
JP3576464B2 (en) | 2004-10-13 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US6024827A (en) | Plasma processing apparatus | |
JP6154390B2 (en) | Electrostatic chuck | |
US6482331B2 (en) | Method for preventing contamination in a plasma process chamber | |
TW565623B (en) | Temperature control system for process chamber | |
JP4997842B2 (en) | Processing equipment | |
JP5396745B2 (en) | Plasma processing equipment | |
JP5320171B2 (en) | Substrate processing equipment | |
US20080041312A1 (en) | Stage for plasma processing apparatus, and plasma processing apparatus | |
US6592709B1 (en) | Method and apparatus for plasma processing | |
JP3061346B2 (en) | Processing equipment | |
JP2000216140A (en) | Wafer stage and wafer treating apparatus | |
JP2019067846A (en) | Temperature control method | |
JP2016178257A (en) | Plasma processing apparatus | |
JP3576464B2 (en) | Semiconductor manufacturing equipment | |
JP2004014752A (en) | Electrostatic chuck, work piece placement table, and plasma treating apparatus | |
JP2008053489A (en) | Substrate processing apparatus | |
TW202017060A (en) | Vacuum treatment device | |
JP3736060B2 (en) | Plasma processing equipment | |
JP2020010001A (en) | Cleaning method and substrate processing apparatus | |
KR102503252B1 (en) | vacuum processing unit | |
JP3193575B2 (en) | Microwave plasma processing equipment | |
JP3238137B2 (en) | Cleaning method for plasma processing chamber | |
JP3642773B2 (en) | Plasma processing method and plasma processing apparatus | |
JP2002124511A (en) | Method of cleaning plasma process chamber | |
JP5309213B2 (en) | Plasma processing apparatus and device manufacturing method |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20040622 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20040707 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20080716 Year of fee payment: 4 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20080716 Year of fee payment: 4 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20090716 Year of fee payment: 5 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20100716 Year of fee payment: 6 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20110716 Year of fee payment: 7 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20120716 Year of fee payment: 8 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20130716 Year of fee payment: 9 |
|
LAPS | Cancellation because of no payment of annual fees |