JP2001343341A - Gas concentration detector, hydrogen refiner and fuel cell system including the same - Google Patents

Gas concentration detector, hydrogen refiner and fuel cell system including the same

Info

Publication number
JP2001343341A
JP2001343341A JP2000167986A JP2000167986A JP2001343341A JP 2001343341 A JP2001343341 A JP 2001343341A JP 2000167986 A JP2000167986 A JP 2000167986A JP 2000167986 A JP2000167986 A JP 2000167986A JP 2001343341 A JP2001343341 A JP 2001343341A
Authority
JP
Japan
Prior art keywords
gas
concentration
temperature
fuel cell
carbon monoxide
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2000167986A
Other languages
Japanese (ja)
Other versions
JP3473757B2 (en
Inventor
Kiyoshi Taguchi
清 田口
Takeshi Tomizawa
猛 富澤
Kunihiro Ukai
邦弘 鵜飼
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP2000167986A priority Critical patent/JP3473757B2/en
Priority to PCT/JP2001/003424 priority patent/WO2001096846A1/en
Priority to US10/297,249 priority patent/US7357015B2/en
Priority to EP01921972A priority patent/EP1308719A4/en
Priority to CNB018107117A priority patent/CN1333246C/en
Priority to KR10-2002-7016492A priority patent/KR100487668B1/en
Publication of JP2001343341A publication Critical patent/JP2001343341A/en
Application granted granted Critical
Publication of JP3473757B2 publication Critical patent/JP3473757B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Landscapes

  • Fuel Cell (AREA)
  • Investigating Or Analyzing Materials Using Thermal Means (AREA)
  • Hydrogen, Water And Hydrids (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a CO concentration detector functioning stably in reformed gas and a hydrogen refiner capable of making a CO cleaning catalyst fulfill its function and rapidly supplying the reformed gas to a fuel cell on starting. SOLUTION: This detector is provided with a temperature detector provided with a gas supplying part for supplying a gas containing hydrogen and carbon monoxide and a reaction chamber equipped with a catalyst layer on the downstream side from the gas supplying part to detect the temperature of the catalyst layer or the gas temperature after passing through the catalyst layer. The concentration of the carbon monoxide is detected by a signal from the temperature detector.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、ガス濃度検知器お
よび水素精製装置に関する。さらに詳しくは、燃料電池
などの燃料に用いられる水素を主成分とし、一酸化炭素
(以下、「CO」と記載する。)を含有する改質ガス中
のCO濃度を検知する装置および水素精製装置に関す
る。
The present invention relates to a gas concentration detector and a hydrogen purifier. More specifically, an apparatus for detecting the concentration of CO in a reformed gas containing hydrogen used as a main component in fuel such as a fuel cell and containing carbon monoxide (hereinafter referred to as “CO”), and a hydrogen purifier About.

【0002】[0002]

【従来の技術】従来から、燃料電池などに用いられる水
素は、メタン、プロパン、ガソリンおよび灯油などの炭
化水素系燃料、メタノールなどのアルコール系燃料また
はジメチルエーテルなどのエーテル系燃料に水蒸気を混
合し、加熱した改質触媒に接触させて発生させている。
通常、炭化水素系燃料は500〜800℃程度、アルコ
ール系やエーテル系燃料は200〜400℃程度の温度
で改質される。改質の際にはCOが発生するが、高温で
改質を行うほど、発生するCOの濃度は上昇する。特に
炭化水素系燃料を用いる場合には、改質ガスのCO濃度
が10体積%前後となる。そこで、CO変成触媒を用い
てCOと水素とを反応させ、数千ppm〜数体積%程度
にCO濃度を低減させている。
2. Description of the Related Art Conventionally, hydrogen used in fuel cells and the like is obtained by mixing steam with hydrocarbon fuels such as methane, propane, gasoline and kerosene, alcohol fuels such as methanol, or ether fuels such as dimethyl ether. It is generated by contact with a heated reforming catalyst.
Normally, hydrocarbon fuel is reformed at a temperature of about 500 to 800 ° C, and alcohol and ether fuels are reformed at a temperature of about 200 to 400 ° C. CO is generated during the reforming, but the higher the temperature is, the higher the concentration of the generated CO becomes. In particular, when a hydrocarbon fuel is used, the CO concentration of the reformed gas is about 10% by volume. Therefore, CO and hydrogen are reacted using a CO shift catalyst to reduce the CO concentration to about several thousand ppm to several volume%.

【0003】さらに、車載用や家庭用として用いられる
固体高分子電解質型燃料電池のように、100℃以下の
低温で作動する燃料電池の場合には、電極に用いられて
いるPt触媒が改質ガスに含まれているCOによって被
毒されるおそれがあるため、改質ガスを燃料電池に供給
する前にそのCO濃度を100ppm以下、好ましくは
10ppm以下に除去しておく必要がある。そのため、
触媒を充填したCO浄化部を水素精製装置に設け、CO
をメタン化または微量の空気を加えて選択的に酸化する
ことによって、COを除去している。COをCO浄化触
媒で選択酸化によって除去する場合には、Pt、Ru、
RhまたはPdなどの貴金属触媒が主として用いられ
る。充分にCOを除去するためには、COに対して1〜
3倍程度の酸素を必要とする。ここで、燃料電池システ
ムの発電量を変えるため供給する水素量が変化した場合
や、長期間装置を運転させて触媒活性が多少低下した場
合には、改質ガス中のCO濃度が変化する。そのため、
酸素量を最適値に制御するためには、CO濃度を検知す
る必要がある。
Further, in the case of a fuel cell operating at a low temperature of 100 ° C. or less, such as a solid polymer electrolyte fuel cell used for vehicles or for home use, the Pt catalyst used for the electrode is reformed. Since there is a possibility of being poisoned by CO contained in the gas, it is necessary to remove the CO concentration to 100 ppm or less, preferably 10 ppm or less before supplying the reformed gas to the fuel cell. for that reason,
A CO purification section filled with a catalyst is provided in the hydrogen purification device,
Is removed by methanation or selective oxidation with the addition of traces of air to remove CO. When CO is removed by selective oxidation using a CO purification catalyst, Pt, Ru,
A noble metal catalyst such as Rh or Pd is mainly used. In order to sufficiently remove CO, 1 to 1
About three times as much oxygen is required. Here, the CO concentration in the reformed gas changes when the amount of hydrogen supplied to change the power generation amount of the fuel cell system changes, or when the catalyst activity is slightly reduced by operating the apparatus for a long time. for that reason,
In order to control the oxygen amount to the optimum value, it is necessary to detect the CO concentration.

【0004】[0004]

【発明が解決しようとする課題】しかし、一般的に行わ
れるような、COによる赤外波長の光線の吸収からCO
濃度を検知したり、CO吸着による抵抗値の変化からC
O濃度を検知する手法は、改質ガス中で安定に機能しな
かったり、高コストであるため、現在のところ適用が困
難である。このため、CO浄化触媒に供給する酸素量を
常に最適に保つすることは困難であった。また、燃料電
池システムの起動時において、水素精製器でCOが充分
に除去された後でも、燃料電池に改質ガスが供給可能で
あることの判断が困難であった。
However, as is generally done, the absorption of light of infrared wavelengths by CO
The concentration is detected, and from the change in resistance due to CO adsorption, C
The technique of detecting the O concentration does not function stably in the reformed gas or is expensive, and thus is difficult to apply at present. For this reason, it has been difficult to keep the amount of oxygen supplied to the CO purification catalyst always optimal. Further, at the time of starting the fuel cell system, it is difficult to determine that the reformed gas can be supplied to the fuel cell even after the CO is sufficiently removed by the hydrogen purifier.

【0005】以上のように、従来の技術においては、改
質ガス中で有効な安価で信頼性のあるCO濃度検知手段
が無かったため、CO浄化触媒の機能が充分に発揮でき
なかったり、起動時における燃料電池への改質ガス供給
を開始するために長い待機運転が必要であった。したが
って、本発明は、改質ガス中のCO濃度を安価にかつ信
頼性をもって検知することのできる手段、およびCO浄
化触媒の機能が充分に発揮され得る水素精製装置を提供
することを目的とする。
As described above, in the prior art, since there was no inexpensive and reliable means for detecting the concentration of CO effective in the reformed gas, the function of the CO purification catalyst could not be fully exhibited, , A long standby operation was required to start supplying the reformed gas to the fuel cell. Therefore, an object of the present invention is to provide a means capable of inexpensively and reliably detecting the CO concentration in a reformed gas and a hydrogen purifying apparatus capable of sufficiently exerting the function of a CO purification catalyst. .

【0006】[0006]

【課題を解決するための手段】上述の目的を達成すべ
く、本発明は、少なくとも水素および一酸化炭素を含む
ガスを供給するガス供給部と、前記ガス供給部の下流側
に設けられた触媒層を具備する反応室と、前記触媒層温
度および/または前記触媒層通過後のガス温度を検知す
る温度検知器とを具備し、前記温度検知器の信号によっ
て前記触媒層通過後のガスの一酸化炭素濃度を検知する
ことを特徴とするガス濃度検知器を提供する。このガス
濃度検知器においては、前記反応室の温度が一定に制御
されているのが有効である。また、前記触媒層の上流側
に第一温度検知器が設けられ、前記触媒層の下流側に第
二温度検知器が設けられているのが有効である。さら
に、前記触媒層が、少なくともPt、Ru、Rh、Pd
またはNiを活性成分とするのが有効である。
In order to achieve the above object, the present invention provides a gas supply unit for supplying a gas containing at least hydrogen and carbon monoxide, and a catalyst provided downstream of the gas supply unit. A reaction chamber having a catalyst layer and a temperature detector for detecting the temperature of the catalyst layer and / or the temperature of the gas after passing through the catalyst layer. Provided is a gas concentration detector for detecting a carbon oxide concentration. In this gas concentration detector, it is effective that the temperature of the reaction chamber is controlled to be constant. It is effective that a first temperature detector is provided on the upstream side of the catalyst layer and a second temperature detector is provided on the downstream side of the catalyst layer. Further, the catalyst layer may include at least Pt, Ru, Rh, Pd
Alternatively, it is effective to use Ni as an active component.

【0007】また、本発明は、浄化用酸素含有ガス供給
部を備えた一酸化炭素浄化部の上流側もしくは下流側に
ガス温度検知器が設置されており、前記ガス温度検知器
の信号によって前記浄化部通過後のガスの一酸化炭素濃
度を検知し、前記一酸化炭素濃度に対応して前記浄化用
酸素含有ガス流量を制御することを特徴とする水素精製
装置を提供する。この水素精製装置においては、前記一
酸化炭素濃度に対応して、さらに前記一酸化炭素浄化部
温度の制御を行うのが有効である。さらに、本発明は、
水素精製装置および燃料電池を具備する燃料電池システ
ムであって、ガス温度検知器が水素精製装置と燃料電池
の中間に設置されており、前記ガス温度検知器の信号に
よって燃料電池に導入されるガスの一酸化炭素濃度を検
知し、前記一酸化炭素濃度に応じて前記浄化部と燃料電
池を連結するガス流路が切り替わって、前記ガスを燃料
電池に導入させないことを特徴とする燃料電池システム
をも提供する。
Further, according to the present invention, a gas temperature detector is provided upstream or downstream of a carbon monoxide purifying unit provided with a purifying oxygen-containing gas supply unit, and the gas temperature detector receives the signal from the gas temperature detector. Provided is a hydrogen purifying apparatus characterized by detecting a concentration of carbon monoxide of a gas after passing through a purifying unit, and controlling a flow rate of the purifying oxygen-containing gas in accordance with the concentration of carbon monoxide. In this hydrogen purifier, it is effective to further control the temperature of the carbon monoxide purifying section in accordance with the carbon monoxide concentration. Further, the present invention provides
A fuel cell system comprising a hydrogen purifier and a fuel cell, wherein a gas temperature detector is provided between the hydrogen purifier and the fuel cell, and a gas introduced into the fuel cell by a signal of the gas temperature detector. A gas flow path connecting the purifying unit and the fuel cell is switched according to the carbon monoxide concentration, so that the gas is not introduced into the fuel cell. Also provide.

【0008】[0008]

【発明の実施の形態】以下、本発明の実施の形態につい
て、図面を参照して説明する。図1は本発明の実施の形
態に係るガス濃度検知器の構成を示す概略図である。図
1において、改質ガス入口1から供給された改質ガス
は、反応室2へ送られ、触媒層3で反応した後、改質ガ
ス出口7より排出される。触媒層の上流温度と下流温度
は、第一熱電対5と第二熱電対6でそれぞれ測定され、
信号処理装置8にこの信号が送られて処理された後、C
O濃度として出力される。また、反応室2の温度はヒー
ター4によって一定温度に保持されている。ここでは、
天然ガスを水蒸気改質した場合に得られる改質ガス(C
O濃度が10〜1000ppm、二酸化炭素濃度が約2
0%、残りが水素)の場合について述べる。ただし、他
の組成であってもCOに対して過剰の水素が存在する条
件であれば、本発明のガス濃度検知器を用いることによ
る効果に本質的な違いが生じることはない。
Embodiments of the present invention will be described below with reference to the drawings. FIG. 1 is a schematic diagram showing a configuration of a gas concentration detector according to an embodiment of the present invention. In FIG. 1, a reformed gas supplied from a reformed gas inlet 1 is sent to a reaction chamber 2, reacted in a catalyst layer 3, and then discharged from a reformed gas outlet 7. The upstream temperature and the downstream temperature of the catalyst layer are measured by the first thermocouple 5 and the second thermocouple 6, respectively,
After this signal is sent to the signal processing device 8 and processed, C
Output as O concentration. The temperature of the reaction chamber 2 is maintained at a constant temperature by the heater 4. here,
Reformed gas obtained when steam reforming natural gas (C
O concentration is 10 to 1000 ppm, carbon dioxide concentration is about 2
0%, the balance being hydrogen). However, there is no substantial difference in the effect obtained by using the gas concentration detector of the present invention, even if other compositions are used, as long as there is an excess of hydrogen with respect to CO.

【0009】つぎに、本発明におけるガス濃度検知器の
動作原理について説明する。触媒層3では改質ガス中の
一酸化炭素と水素が反応し、メタンと水蒸気が生成す
る。このときの反応熱はCO、1モル当たり約200k
Jであり、CO濃度に対応して触媒上での発熱量が変化
する。そして、この発熱による温度変化を検知すること
によってCO濃度を測定する。図2に、第一熱電対5と
第二熱電対6によって検知された温度差と改質ガス中の
CO濃度の関係を示す。実線で示したようにCO濃度と
温度差が一定の関係式で表すことができる領域では、検
量線を作ることによって、CO濃度を検知することがで
きる。CO濃度が著しく高い場合には、COの転換率が
低下するため、CO濃度に対する温度差の変化は小さく
なりCO濃度の検知が困難となる。この場合、反応室2
の温度を高くすればCO転換率を上昇させることがで
き、検知限界濃度を高くすることができる。
Next, the operation principle of the gas concentration detector according to the present invention will be described. In the catalyst layer 3, carbon monoxide and hydrogen in the reformed gas react with each other to generate methane and steam. The reaction heat at this time is about 200 k per mole of CO.
J, and the calorific value on the catalyst changes according to the CO concentration. Then, the CO concentration is measured by detecting a temperature change due to the heat generation. FIG. 2 shows the relationship between the temperature difference detected by the first thermocouple 5 and the second thermocouple 6 and the CO concentration in the reformed gas. As shown by the solid line, in a region where the CO concentration and the temperature difference can be expressed by a certain relational expression, the CO concentration can be detected by forming a calibration curve. When the CO concentration is extremely high, the conversion ratio of CO decreases, so that the change in the temperature difference with respect to the CO concentration becomes small, and it becomes difficult to detect the CO concentration. In this case, the reaction chamber 2
By increasing the temperature of, the CO conversion can be increased and the detection limit concentration can be increased.

【0010】しかし、高温になると二酸化炭素もメタン
化されるため、二酸化炭素のメタン化による発熱が影響
しない温度で使用する必要がある。このため触媒種にも
よるが、反応室2の温度は約250℃以下とすることが
好ましい。逆にCO濃度が低い場合には、触媒上での発
熱量が小さくなるため、温度差の変化が小さくなりCO
濃度の検知が困難になる。この場合、反応室2の外部へ
の放熱を遮断したり、改質ガスの流速を上げて触媒上で
の発熱量を上昇させることによって、より低濃度のCO
を検知することができる。
However, since carbon dioxide is methanated at a high temperature, it must be used at a temperature which does not affect the heat generated by methanation of carbon dioxide. For this reason, the temperature of the reaction chamber 2 is preferably set to about 250 ° C. or lower, although it depends on the type of catalyst. Conversely, when the CO concentration is low, the calorific value on the catalyst is small, so that the change in the temperature difference is small and the CO
It becomes difficult to detect the density. In this case, by lowering the heat release to the outside of the reaction chamber 2 or increasing the flow rate of the reformed gas to increase the calorific value on the catalyst, a lower concentration of CO can be obtained.
Can be detected.

【0011】また、触媒層3に用いられる触媒活性成分
としては、COのメタン化に対して選択的に活性を示す
もの、すなわち改質ガス中の二酸化炭素とCOのうち、
COの水素化反応のみに活性を示すか、またはCOの水
素化反応に対して高選択に活性を示すものが用いられ
る。このような触媒成分としては、Pt、Ru、Rh、
PdおよびNiなどの金属が例示できる。特に、触媒活
性成分として、少なくともRu、RhまたはNiを含有
することが好ましい。
The catalytically active component used in the catalyst layer 3 is one that selectively shows activity against CO methanation, ie, carbon dioxide and CO in the reformed gas.
Those which show activity only for the hydrogenation reaction of CO or those which show high activity for the hydrogenation reaction of CO are used. Such catalyst components include Pt, Ru, Rh,
Metals such as Pd and Ni can be exemplified. In particular, it is preferable to contain at least Ru, Rh or Ni as the catalytically active component.

【0012】また、触媒層3に用いられる触媒の担持体
としては、特に限定はなく、活性成分を高分散状態で担
持できるものであればよい。このようなものとしては、
アルミナ、シリカ、シリカアルミナ、マグネシア、チタ
ニア、ゼオライトなどが例示できる。触媒層3に用いら
れる基材には、触媒と反応室中のガスとの接触面積を充
分に確保できるものが用いられる。このようなものとし
ては、ハニカム形状または連通孔を有する発泡体形状の
基材などが好ましく、ペレット形状でもよい。また、触
媒層の温度は、COが充分に反応可能な80℃以上が好
ましく、上限は二酸化炭素の反応が起こりにくい250
℃以下が好ましい。ただし、動作温度において副反応も
含めた条件で検量線を作るため、作動温度は用途に応じ
て決定することができる。
The catalyst carrier used for the catalyst layer 3 is not particularly limited as long as it can support the active component in a highly dispersed state. As such,
Alumina, silica, silica alumina, magnesia, titania, zeolite and the like can be exemplified. As the base material used for the catalyst layer 3, a base material that can sufficiently secure the contact area between the catalyst and the gas in the reaction chamber is used. As such a material, a honeycomb-shaped or foam-shaped substrate having communicating holes is preferable, and a pellet-shaped substrate may be used. Further, the temperature of the catalyst layer is preferably 80 ° C. or higher at which CO can sufficiently react, and the upper limit is 250 ° C., at which reaction of carbon dioxide hardly occurs.
C. or less is preferred. However, since the calibration curve is created at the operating temperature under the conditions including the side reaction, the operating temperature can be determined according to the application.

【0013】また、触媒上での発熱を精度良く検知する
ためには、反応室2の温度が外部環境に影響されないこ
とが好ましく、充分な断熱を行い、一定温度となるよう
に温度を調節するのが好ましい。ここでは、温度調節の
ためにヒーターを用いたが、冷却ファンによる冷却方式
でも、オイルのような熱媒体を用いても構わない。ま
た、CO濃度をあまり精度良く検知する必要のない用途
であれば、温度調節の必要はない。また、図1において
は触媒層の温度を検知するために熱電対を用いたが、温
度を検知できるものであれば、サーミスタなどの他の検
知手段を用いても構わない。さらに、ここでは触媒層の
上流側と下流側の温度を検知したが、供給する改質ガス
温度が一定となるような場合には触媒層の下流側だけを
測定しても精度良くCO濃度を測ることができる。
Further, in order to accurately detect heat generation on the catalyst, it is preferable that the temperature of the reaction chamber 2 is not affected by the external environment, sufficient heat insulation is performed, and the temperature is adjusted to a constant temperature. Is preferred. Here, a heater is used for temperature control, but a cooling method using a cooling fan or a heat medium such as oil may be used. If the application does not need to detect the CO concentration with high accuracy, there is no need to adjust the temperature. Further, in FIG. 1, a thermocouple is used to detect the temperature of the catalyst layer, but other detecting means such as a thermistor may be used as long as the temperature can be detected. Further, here, the temperatures on the upstream side and the downstream side of the catalyst layer were detected. However, when the temperature of the reformed gas to be supplied is constant, the CO concentration can be accurately measured by measuring only the downstream side of the catalyst layer. Can be measured.

【0014】上述のようなガス温度検知器を利用したガ
ス濃度検知器は、水素精製装置および燃料電池システム
にも応用することができる。例えば、上述した改質反応
室だけでなく、変成部および浄化部においても同様の構
成を採ることによって、変性部から浄化部に流れていく
ガスや浄化部から流れ出るガスの一酸化炭素濃度を検出
することができる。例えば、ガス温度検知器をCO浄化
触媒の上流側に設置し、ガス温度検知器の信号によって
検知したCO濃度に対して、適量の空気を供給するよう
に制御を行うことによって、無駄な水素消費が抑制され
るとともに、空気が不足することによる浄化触媒下流側
のCO濃度上昇も回避できる。したがって、燃料電池シ
ステムに用いた場合に、その効率向上と安定動作が確保
できる。また、ガス温度検知器をCO浄化触媒の下流側
に設置した場合も浄化触媒下流側でのCO濃度が上昇し
ないように空気量を制御することによって、上流側に設
置した場合と同様の効果が得られる。
The gas concentration detector using the gas temperature detector as described above can be applied to a hydrogen purifier and a fuel cell system. For example, by adopting a similar configuration not only in the above-described reforming reaction chamber but also in the metamorphic section and the purifying section, the concentration of carbon monoxide flowing into the purifying section from the denaturing section and the gas flowing out from the purifying section can be detected. can do. For example, by installing a gas temperature detector upstream of the CO purification catalyst and controlling the CO concentration detected by the signal of the gas temperature detector to supply an appropriate amount of air, wasteful hydrogen consumption is achieved. , And an increase in the CO concentration downstream of the purification catalyst due to a shortage of air can be avoided. Therefore, when used in a fuel cell system, its efficiency can be improved and stable operation can be ensured. Also, when the gas temperature detector is installed on the downstream side of the CO purification catalyst, by controlling the amount of air so that the CO concentration on the downstream side of the purification catalyst does not increase, the same effect as when the gas temperature detector is installed on the upstream side is obtained. can get.

【0015】さらに、上記ガス濃度検知器を水素精製装
置および燃料電池を含む燃料電池システムに応用した場
合は、ガス温度検知器を水素精製器と燃料電池の中間に
設置し、ガス温度検知器の信号によって検知したCO濃
度が高い場合には改質ガスが燃料電池に導入されないよ
うにガス流路を閉じたり、または燃料電池外に排出する
ようにガス流路を切り替えることによって、燃料電池が
COで被毒されることを防止することができる。
Further, when the above gas concentration detector is applied to a fuel cell system including a hydrogen purifier and a fuel cell, the gas temperature detector is installed between the hydrogen purifier and the fuel cell, and When the CO concentration detected by the signal is high, the gas flow path is closed by closing the gas flow path so that the reformed gas is not introduced into the fuel cell, or by switching the gas flow path so that the reformed gas is discharged out of the fuel cell. To prevent poisoning.

【0016】さらに、起動時には水素精製器でCOが充
分に除去されたことを検知できるため、浄化触媒が確実
にCOを除去することができる定常運転時の温度になる
まで待機運転させる等の必要がなく、速やかに発電をお
こなうことができる。また、ここで用いた触媒はCO浄
化触媒の機能をガス濃度検知器として応用したものであ
るため、CO浄化触媒の一部の温度を検知することによ
っても、CO濃度を検知することができる。CO濃度の
変化に起因する以外の温度変化が大きい場合には、充分
な精度でCO濃度を検知することができないため、改質
ガス流量と温度の変動が少ない条件が好ましい。
Further, at the time of start-up, since it is possible to detect that the CO has been sufficiently removed by the hydrogen purifier, it is necessary to perform a standby operation until the temperature of the purification catalyst reaches a steady-state operation at which the CO can be reliably removed. Power can be generated quickly. Further, since the catalyst used here uses the function of the CO purification catalyst as a gas concentration detector, the CO concentration can also be detected by detecting the temperature of a part of the CO purification catalyst. If the temperature change other than the change due to the change in the CO concentration is large, the CO concentration cannot be detected with sufficient accuracy, and thus it is preferable that the change in the flow rate of the reformed gas and the temperature is small.

【0017】[0017]

【実施例】以下に、本発明に係るガス濃度検知器につい
て、実施例を用いてより具体的に説明する。ただし、本
発明はこれらのみに限定されるものではない。 《実施例1》直径1mm、長さ1mmのアルミナペレッ
トに、5重量%のRuを担持したものを、図1に示すガ
ス濃度検知器の反応室2の中に充填した。二酸化炭素を
20体積%、残りが水素である改質ガスを毎分0.1リ
ットルの流量で改質ガス入口より供給し、第一熱電対の
温度が150℃となるようにヒーター4で温度調節を行
った。改質ガス中のCO濃度が5ppm、20ppm、
100ppm、500ppm、900ppm、1200
ppm、2000ppmとなるようにCOを混合した改
質ガスを供給し、第一熱電対と第二熱電対の温度を測定
した。CO濃度(ppm)および上流と下流の温度差
(℃)の結果を表1に示す。
DESCRIPTION OF THE PREFERRED EMBODIMENTS Hereinafter, a gas concentration detector according to the present invention will be described more specifically with reference to embodiments. However, the present invention is not limited only to these. Example 1 An alumina pellet having a diameter of 1 mm and a length of 1 mm and carrying 5% by weight of Ru was charged into the reaction chamber 2 of the gas concentration detector shown in FIG. A reformed gas containing 20% by volume of carbon dioxide and the remainder being hydrogen is supplied from the reformed gas inlet at a flow rate of 0.1 liter per minute, and the temperature of the first thermocouple is set to 150 ° C. by the heater 4. Adjustments were made. CO concentration in the reformed gas is 5ppm, 20ppm,
100 ppm, 500 ppm, 900 ppm, 1200
A reformed gas mixed with CO at a concentration of 2000 ppm and 2000 ppm was supplied, and the temperatures of the first thermocouple and the second thermocouple were measured. Table 1 shows the results of the CO concentration (ppm) and the temperature difference between upstream and downstream (° C.).

【0018】[0018]

【表1】 [Table 1]

【0019】《実施例2》実施例1で、改質ガスの流量
を毎分0.3リットルに増加させ、同様にCO濃度を1
ppm、4ppm、20ppm、100ppm、180
ppm、240ppm、400ppmとなるようにCO
を混合して供給し、第一熱電対と第二熱電対の温度を測
定した。結果を表2に示す。
Example 2 In Example 1, the flow rate of the reformed gas was increased to 0.3 liter per minute, and
ppm, 4 ppm, 20 ppm, 100 ppm, 180
ppm, 240 ppm, and 400 ppm of CO
Were supplied as a mixture, and the temperatures of the first thermocouple and the second thermocouple were measured. Table 2 shows the results.

【0020】[0020]

【表2】 [Table 2]

【0021】《実施例3》Ruの代わりにRhを担持し
た他は、実施例1と同様にしてCO濃度を0ppm、5
ppm、20ppm、100ppm、500ppm、9
00ppm、1200ppm、2000ppmとなるよ
うにCOを混合して供給し、第一熱電対と第二熱電対の
温度を測定した。結果を表3に示す。
Example 3 The same procedure as in Example 1 was carried out except that Rh was used instead of Ru to reduce the CO concentration to 0 ppm and 5 ppm.
ppm, 20 ppm, 100 ppm, 500 ppm, 9
CO was mixed and supplied so as to be 00 ppm, 1200 ppm, and 2000 ppm, and the temperatures of the first thermocouple and the second thermocouple were measured. Table 3 shows the results.

【0022】[0022]

【表3】 [Table 3]

【0023】《実施例4》Ruの代わりにNiを担持し
た他は、実施例1と同様にしてCO濃度を0ppm、5
ppm、20ppm、100ppm、500ppm、9
00ppm、1200ppm、2000ppmとなるよ
うにCOを混合して供給し、第一熱電対と第二熱電対の
温度を測定した。結果を表4に示す。
Example 4 A CO concentration of 0 ppm, 5 ppm and 5% was obtained in the same manner as in Example 1 except that Ni was used instead of Ru.
ppm, 20 ppm, 100 ppm, 500 ppm, 9
CO was mixed and supplied so as to be 00 ppm, 1200 ppm, and 2000 ppm, and the temperatures of the first thermocouple and the second thermocouple were measured. Table 4 shows the results.

【0024】[0024]

【表4】 [Table 4]

【0025】[0025]

【発明の効果】以上の実施例のガス濃度検知器の評価結
果をみると明らかなように、本発明によると、触媒の温
度を検知することで改質ガス中のCO濃度を検知するこ
とができる。
As is clear from the evaluation results of the gas concentration detectors of the above embodiments, according to the present invention, it is possible to detect the CO concentration in the reformed gas by detecting the temperature of the catalyst. it can.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明に係るガス濃度検知器の一実施の形態の
構成を示す概略図である。
FIG. 1 is a schematic diagram showing a configuration of an embodiment of a gas concentration detector according to the present invention.

【図2】本発明のガス濃度検知器の特性を示す図であ
る。
FIG. 2 is a diagram showing characteristics of the gas concentration detector of the present invention.

【符号の説明】[Explanation of symbols]

1 改質ガス入口 2 反応室 3 触媒層 4 ヒーター 5 第一熱電対 6 第二熱電対 7 改質ガス出口 8 信号処理装置 Reference Signs List 1 reformed gas inlet 2 reaction chamber 3 catalyst layer 4 heater 5 first thermocouple 6 second thermocouple 7 reformed gas outlet 8 signal processor

フロントページの続き (51)Int.Cl.7 識別記号 FI テーマコート゛(参考) // H01M 8/10 H01M 8/10 (72)発明者 鵜飼 邦弘 大阪府門真市大字門真1006番地 松下電器 産業株式会社内 Fターム(参考) 2G040 AA02 AB12 BA23 BB09 CA02 CA10 CB02 CB04 DA03 DA13 EA02 EB02 EC07 ZA05 4G040 FA04 FB04 FC07 FE01 5H026 AA06 5H027 AA06 BA01 BA17 KK44 MM12Continued on the front page (51) Int.Cl. 7 Identification FI FI Theme Court II (Reference) // H01M 8/10 H01M 8/10 (72) Inventor Kunihiro Ukai 1006 Kadoma Kadoma, Kadoma City, Osaka Matsushita Electric Industrial Co., Ltd. F term (reference) 2G040 AA02 AB12 BA23 BB09 CA02 CA10 CB02 CB04 DA03 DA13 EA02 EB02 EC07 ZA05 4G040 FA04 FB04 FC07 FE01 5H026 AA06 5H027 AA06 BA01 BA17 KK44 MM12

Claims (5)

【特許請求の範囲】[Claims] 【請求項1】 少なくとも水素および一酸化炭素を含む
ガスを供給するガス供給部と、前記ガス供給部の下流側
に設けられた触媒層を具備する反応室と、前記触媒層の
温度および/または前記触媒層通過後のガス温度を検知
する温度検知器とを具備し、前記温度検知器の信号によ
って前記触媒層通過後のガスの一酸化炭素濃度を検知す
ることを特徴とするガス濃度検知器。
1. A gas supply unit for supplying a gas containing at least hydrogen and carbon monoxide; a reaction chamber including a catalyst layer provided downstream of the gas supply unit; and a temperature and / or temperature of the catalyst layer. A temperature detector for detecting a gas temperature after passing through the catalyst layer, and detecting a carbon monoxide concentration of the gas after passing through the catalyst layer by a signal of the temperature detector. .
【請求項2】 前記触媒層の上流側に第一温度検知器が
設けられ、前記触媒層の下流側に第二温度検知器が設け
られていることを特徴とする請求項1記載のガス濃度検
知器。
2. The gas concentration according to claim 1, wherein a first temperature detector is provided on an upstream side of the catalyst layer, and a second temperature detector is provided on a downstream side of the catalyst layer. Detector.
【請求項3】 浄化用酸素含有ガス供給部を備えた一酸
化炭素浄化部の上流側および/または下流側にガス温度
を検知する温度検知器が設置されており、前記ガス温度
検知器の信号によって前記浄化部通過後のガスの一酸化
炭素濃度を検知し、前記一酸化炭素濃度に対応して前記
浄化用酸素含有ガス流量を制御することを特徴とする水
素精製装置。
3. A temperature detector for detecting a gas temperature is provided upstream and / or downstream of the carbon monoxide purifier provided with the purifying oxygen-containing gas supply unit, and a signal from the gas temperature detector is provided. Detecting the concentration of carbon monoxide in the gas after passing through the purifying section, and controlling the flow rate of the purifying oxygen-containing gas in accordance with the concentration of carbon monoxide.
【請求項4】 前記一酸化炭素濃度に対応して、さらに
前記一酸化炭素浄化部温度の制御を行うことを特徴とす
る請求項3記載の水素精製装置。
4. The hydrogen purifier according to claim 3, wherein the temperature of the carbon monoxide purifier is further controlled in accordance with the concentration of carbon monoxide.
【請求項5】 水素精製装置および燃料電池を含む燃料
電池システムであって、ガス温度検知器が水素精製装置
と燃料電池の中間に設置されており、前記ガス温度検知
器の信号によって前記燃料電池に導入されるガスの一酸
化炭素濃度を検知し、前記一酸化炭素濃度に応じて前記
浄化部と燃料電池を連結するガス流路が切り替わって、
前記ガスを燃料電池に導入させないことを特徴とする燃
料電池システム。
5. A fuel cell system including a hydrogen purifier and a fuel cell, wherein a gas temperature detector is installed between the hydrogen purifier and the fuel cell, and the fuel cell is operated by a signal from the gas temperature detector. Detecting the concentration of carbon monoxide gas introduced into, the gas flow path connecting the purifier and the fuel cell is switched according to the carbon monoxide concentration,
A fuel cell system, wherein the gas is not introduced into the fuel cell.
JP2000167986A 2000-06-05 2000-06-05 Gas concentration detector, hydrogen purification device, and fuel cell system including the same Expired - Fee Related JP3473757B2 (en)

Priority Applications (6)

Application Number Priority Date Filing Date Title
JP2000167986A JP3473757B2 (en) 2000-06-05 2000-06-05 Gas concentration detector, hydrogen purification device, and fuel cell system including the same
PCT/JP2001/003424 WO2001096846A1 (en) 2000-06-05 2001-04-20 Gas concentration sensor, hydrogen purification unit using this and fuel cell system
US10/297,249 US7357015B2 (en) 2000-06-05 2001-04-20 Gas concentration sensor, hydrogen purification unit using this and fuel cell system
EP01921972A EP1308719A4 (en) 2000-06-05 2001-04-20 Gas concentration sensor, hydrogen purification unit using this and fuel cell system
CNB018107117A CN1333246C (en) 2000-06-05 2001-04-20 Gas concentration sensor, hydrogen purification unit using this and cell system
KR10-2002-7016492A KR100487668B1 (en) 2000-06-05 2001-04-20 Gas concentration sensor, hydrogen purification unit using this and fuel cell system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2000167986A JP3473757B2 (en) 2000-06-05 2000-06-05 Gas concentration detector, hydrogen purification device, and fuel cell system including the same

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP2003280778A Division JP2004006405A (en) 2003-07-28 2003-07-28 Hydrogen purification apparatus

Publications (2)

Publication Number Publication Date
JP2001343341A true JP2001343341A (en) 2001-12-14
JP3473757B2 JP3473757B2 (en) 2003-12-08

Family

ID=18671060

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000167986A Expired - Fee Related JP3473757B2 (en) 2000-06-05 2000-06-05 Gas concentration detector, hydrogen purification device, and fuel cell system including the same

Country Status (1)

Country Link
JP (1) JP3473757B2 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003054911A (en) * 2001-08-08 2003-02-26 Mitsubishi Heavy Ind Ltd Method of removing carbon monoxide
JP2007252991A (en) * 2006-03-20 2007-10-04 Catalysts & Chem Ind Co Ltd Honeycomb catalyst for carbon monoxide methanation, manufacturing method of the catalyst, and methanation method of carbon monoxide using the catalyst
JP2008124005A (en) * 2006-11-10 2008-05-29 Samsung Electronics Co Ltd Fuel cell system and its control method
CN107968213A (en) * 2017-11-29 2018-04-27 同济大学 Hydrogen supply control device

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003054911A (en) * 2001-08-08 2003-02-26 Mitsubishi Heavy Ind Ltd Method of removing carbon monoxide
JP2007252991A (en) * 2006-03-20 2007-10-04 Catalysts & Chem Ind Co Ltd Honeycomb catalyst for carbon monoxide methanation, manufacturing method of the catalyst, and methanation method of carbon monoxide using the catalyst
JP2008124005A (en) * 2006-11-10 2008-05-29 Samsung Electronics Co Ltd Fuel cell system and its control method
CN107968213A (en) * 2017-11-29 2018-04-27 同济大学 Hydrogen supply control device

Also Published As

Publication number Publication date
JP3473757B2 (en) 2003-12-08

Similar Documents

Publication Publication Date Title
JP4105758B2 (en) Fuel cell system
US6797420B2 (en) Power generation device and operation method therefor
US9112201B2 (en) Hydrogen production apparatus, fuel cell system and operation method thereof
JP5947804B2 (en) Sulfur leak detection structure and sulfur leak detection method for use in a fuel cell system
WO2001096846A1 (en) Gas concentration sensor, hydrogen purification unit using this and fuel cell system
JP3473896B2 (en) Hydrogen purification equipment
EP1386882A1 (en) Hydrogen formation apparatus
JP3482367B2 (en) Hydrogen purification equipment
JP2001343341A (en) Gas concentration detector, hydrogen refiner and fuel cell system including the same
JP2007022826A (en) Hydrogen generation unit and fuel cell system
JP3733753B2 (en) Hydrogen purification equipment
JP2004006405A (en) Hydrogen purification apparatus
JP3473758B2 (en) Gas concentration detector and hydrogen purifier
JP4311961B2 (en) Fuel cell system
EP1329417A1 (en) Hydrogen forming device
EP1471033B1 (en) Hydrogen generator and fuel cell system
JP3405454B2 (en) Starting method of hydrogen generator
JP2004292290A (en) Carbon monoxide removing method, operation method of carbon monoxide remover and operation control system of carbon monoxide remover using them
JP2000067897A (en) Fuel cell power generating system
JP2009078938A (en) Desulfurizer and method for operating the same, and fuel cell system
JP4196046B2 (en) Carbon monoxide removal apparatus and carbon monoxide removal method for reducing carbon monoxide in reformed gas
JP2000272902A (en) Hydrogen generation apparatus
TW202324820A (en) Fuel cell system containing catalyst based fuel contamination sensor and method of operating thereof
JP2009143745A (en) Hydrogen generator
JP2003054906A (en) Apparatus and method of purifying hydrogen

Legal Events

Date Code Title Description
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080919

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080919

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090919

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090919

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100919

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110919

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120919

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130919

Year of fee payment: 10

LAPS Cancellation because of no payment of annual fees