JP2001343290A - Vacuum heating device - Google Patents

Vacuum heating device

Info

Publication number
JP2001343290A
JP2001343290A JP2000167365A JP2000167365A JP2001343290A JP 2001343290 A JP2001343290 A JP 2001343290A JP 2000167365 A JP2000167365 A JP 2000167365A JP 2000167365 A JP2000167365 A JP 2000167365A JP 2001343290 A JP2001343290 A JP 2001343290A
Authority
JP
Japan
Prior art keywords
heating
temperature
thermocouple
vacuum
heat
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2000167365A
Other languages
Japanese (ja)
Other versions
JP4607287B2 (en
Inventor
Kenro Yamamoto
賢朗 山元
Futoshi Torikai
太志 鳥飼
Atsushi Nakatsuka
篤 中塚
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ulvac Inc
Original Assignee
Ulvac Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ulvac Inc filed Critical Ulvac Inc
Priority to JP2000167365A priority Critical patent/JP4607287B2/en
Publication of JP2001343290A publication Critical patent/JP2001343290A/en
Application granted granted Critical
Publication of JP4607287B2 publication Critical patent/JP4607287B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Abstract

PROBLEM TO BE SOLVED: To provide a vacuum heating device capable of preventing any operation rate from being deteriorated, and preventing any heating defective from being manufactured by facilitating countermeasures to the omen of the deterioration of a thermo-couple for measuring a high heating temperature in a heating block. SOLUTION: When the measured temperature of a heating block 27 of a first sintering chamber 2 of a vacuum heating device 10 obtained by a thermo- couple 31 reaches the set temperature of heating, and oscillates beyond the fixed temperature range, a process is controlled so that the deterioration signal of the thermo-couple can be issued, and that the heating can be automatically stopped. Also, carbon materials sintered in a temperature 3000 deg.C is used for heat insulating materials 28 of the heating block 27, and the part in the heating block 27 of a high purity aluminum insulating tube 32 of the W.Re system thermo-couple 31 for measuring the heating temperature is covered with a heat insulating material 28' for heat barrier for protecting it from the emitted heat of a bar-shaped heater 22. Also, W.Re system wires 31' and 31" are loosely bounded and fixed to a W supporting tool 35 with a Ta wire 36.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は真空加熱装置に関す
るものであり、更に詳しくは、真空加熱装置内の温度を
計測するための熱電対の劣化に対処し得ると共に、劣化
の抑制が図られた真空加熱装置に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a vacuum heating apparatus, and more particularly to a vacuum heating apparatus capable of coping with deterioration of a thermocouple for measuring a temperature in the vacuum heating apparatus and suppressing the deterioration. The present invention relates to a vacuum heating device.

【0002】[0002]

【従来の技術】焼結金属や焼結セラミックス等は原料粉
末とバインダーとしてのワックスとの混合物を成型品と
した後、これを真空下に先ず1000℃以下の温度で熱
処理して脱ワックスし、続いて、1600〜2000℃
の温度で熱処理して原料粉末を焼結させることによって
製造されており、その温度計測には熱電対が使用されて
いる。周知のように、高温度に加熱する場合には高温時
における熱電対の材料の熱膨張と常温に戻した時の収縮
に基づく熱ストレス、異なる材料が組み合わされている
場合の材料間の熱膨張係数の違いによるストレス、微量
の酸素が共存する場合における酸化等によって、熱電対
の素線が劣化し逐には断線して温度計測が不能になり、
熱処理不良品が製造されるほか、連続的な運転が中断さ
れて稼働率の低下を招く。上記のような粉体の焼結のほ
か、金属やガラス類の溶解加工、金属の焼入・焼鈍、そ
の他に使用される真空加熱装置の温度計測にも熱電対が
多用されており同様な問題がある。このような問題に対
処するために、従来は熱電対の素線が断線した場合にそ
れを知らせる警報機の設置のほか、断線の有無とは無関
係に熱電対の定期的な交換、ないしは焦電体による温度
計測器による計測または熱電対と焦電体との併用が行わ
れている。
2. Description of the Related Art Sintered metals, sintered ceramics, and the like are formed into a molded product by mixing a mixture of raw material powder and wax as a binder, and then heat-treated at a temperature of 1000 ° C. or less under vacuum to dewax. Then, 1600-2000 degreeC
The raw material powder is sintered by heat treatment at a temperature of, and a thermocouple is used for measuring the temperature. As is well known, when heating to a high temperature, the thermal expansion of the material of the thermocouple at high temperature and the thermal stress based on the contraction at the time of returning to normal temperature, and the thermal expansion between materials when different materials are combined Due to stress due to the difference in coefficient, oxidation in the presence of a small amount of oxygen, etc., the thermocouple wire deteriorates and breaks in sequence, making temperature measurement impossible,
In addition to the production of defective heat treatment, continuous operation is interrupted, resulting in a decrease in the operating rate. In addition to powder sintering as described above, thermocouples are often used for melting processing of metals and glasses, quenching and annealing of metals, and temperature measurement of vacuum heating equipment used for other purposes. There is. In order to deal with such problems, in the past, an alarm was set up to notify when the thermocouple wire was broken, and the thermocouple was replaced regularly or pyroelectrically regardless of the wire breakage. Measurement by a body temperature measuring device or combination use of a thermocouple and a pyroelectric body is performed.

【0003】[0003]

【発明が解決しようとする課題】上述した対策のうち、
断線を知らせる警報機の設置は、発生した断線に対する
事後処理のためのものである。また熱電対の定期的な交
換は未だ寿命に達しない熱電対を交換するという不経済
さを内包している。更には、焦電体による温度計測は焦
電体が被処理物からの放射熱を受けて計測するものであ
るから、断熱材で囲われた加熱処理室の内部温度を直接
には計測することはできず、一般的には加熱装置の外壁
温度の計測に使用される。本発明は上述の問題に鑑みて
なされ、高温度の計測に使用される熱電対の素線が断線
に至る前の前兆を捉えて対処することが可能であり、真
空加熱装置の稼働率を大きくは低下させることなく、ま
た加熱不良品が製造されることを防ぎ得る真空加熱装置
を提供することを課題とする。
SUMMARY OF THE INVENTION Among the measures described above,
The installation of the alarm to notify the disconnection is for post-processing of the disconnection that has occurred. Also, regular replacement of thermocouples involves the uneconomical cost of replacing thermocouples that have not reached their end of life. Furthermore, since temperature measurement using a pyroelectric body is performed by measuring the pyroelectric body by receiving radiant heat from the object to be processed, it is necessary to directly measure the internal temperature of the heat treatment chamber surrounded by heat insulating material. It cannot be used, and is generally used for measuring the outer wall temperature of a heating device. The present invention has been made in view of the above-described problems, and it is possible to cope with a precursor before a wire of a thermocouple used for measurement of high temperature leads to disconnection, and to increase the operation rate of a vacuum heating device. It is an object of the present invention to provide a vacuum heating device capable of preventing the production of defective heating without lowering the heating.

【0004】[0004]

【課題を解決するための手段】上記の課題は本発明の請
求項1の構成によって解決されるが、その解決手段を説
明すれば、次の如くである。
Means for Solving the Problems The above-mentioned problem is solved by the structure of claim 1 of the present invention. The means for solving the problem is as follows.

【0005】請求項1の真空加熱装置は、真空下に被処
理物を所定の温度で加熱処理するための真空加熱装置に
おいて、真空加熱装置の断熱材で囲われた加熱区画の熱
電対による測定温度が所定の加熱温度に到達した後に、
その測定温度が一定の温度範囲より大きく振れる場合に
は、熱電対が劣化しているとの劣化信号が出力されて、
加熱を自動的に停止し、要すれば警報を発する制御機構
が設けられている装置である。このような真空加熱装置
は、熱電対の劣化の前兆を捉えて加熱を自動的に停止す
るので、場合に応じた対策を直ちに取ることができ、真
空加熱装置の停止による稼働率の低下を最小限に抑え得
るほか、加熱不良品の発生量を最小限にとどめ得る。
A vacuum heating apparatus according to claim 1 is a vacuum heating apparatus for heating an object to be processed under a vacuum at a predetermined temperature, wherein the measurement is performed by a thermocouple of a heating section surrounded by a heat insulating material of the vacuum heating apparatus. After the temperature reaches the predetermined heating temperature,
If the measured temperature fluctuates more than a certain temperature range, a deterioration signal indicating that the thermocouple has deteriorated is output,
This device is equipped with a control mechanism that automatically stops heating and issues an alarm if necessary. Since such a vacuum heating device automatically stops heating upon detecting a precursor to the deterioration of the thermocouple, it can immediately take a countermeasure according to the case and minimize a decrease in the operation rate due to the stoppage of the vacuum heating device. In addition, the amount of defective heating can be minimized.

【0006】請求項1に従属する請求項2の真空加熱装
置は、熱電対による測定温度の振れが所定の加熱温度を
基準にして±1%の温度範囲を越える場合に劣化信号が
出力される装置である。このような装置は熱電対の劣化
を初期の段階で捉えるので、劣化の進行が急速である場
合にも、熱電対の素線の断線に伴う大きい損害を回避し
得る。請求項1に従属する請求項3の真空加熱装置は、
加熱の停止の後、熱電対の交換を含む対応に要する時間
に応じて、停止の継続または加熱の再開の選択が可能と
されている装置である。このような真空加熱装置は、対
策が短時間で終了する場合に、被処理物の加熱を再開し
て熱処理を完成することを可能にする。
In the vacuum heating apparatus according to the present invention, a deterioration signal is output when the fluctuation of the measured temperature by the thermocouple exceeds a temperature range of ± 1% with respect to a predetermined heating temperature. Device. Such a device catches the deterioration of the thermocouple at an early stage, so that even if the progress of the deterioration is rapid, it is possible to avoid a large damage caused by the disconnection of the thermocouple wire. The vacuum heating device according to claim 3 which is dependent on claim 1 is:
This device is capable of selecting the continuation of the stop or the restart of the heating according to the time required for the response including the replacement of the thermocouple after the stop of the heating. Such a vacuum heating device makes it possible to resume the heating of the object to be processed and complete the heat treatment when the measures are completed in a short time.

【0007】請求項1に従属する請求項4の真空加熱装
置は、加熱区画の断熱材として3000℃前後の温度で
焼成された炭素材料が使用されている装置である。この
ような真空加熱装置は、最高加熱温度が2100℃であ
る場合にも、断熱材から放出されるものが無いので、熱
電対の材料には何等の悪影響を与えない。請求項1に従
属する請求項5の真空加熱装置は、熱電対のタングステ
ン・レニウム系の素線がアルミナ絶縁管で絶縁されてお
り、アルミナ絶縁管が加熱源からの放射熱を受けないよ
うに、加熱区画の断熱材と間隔をあけて更に断熱材を架
張したアルミナ絶縁管用の空間が設けられている装置で
ある。このような真空加熱装置は、融点が2050℃に
あるアルミナが加熱源からの放射熱を受けて温度上昇し
絶縁性が低下することを防止する。
[0007] The vacuum heating apparatus according to claim 4 according to claim 1 is an apparatus in which a carbon material fired at a temperature of about 3000 ° C is used as a heat insulating material for a heating section. In such a vacuum heating device, even when the maximum heating temperature is 2100 ° C., since there is nothing released from the heat insulating material, there is no adverse effect on the thermocouple material. The vacuum heating apparatus according to claim 5 is dependent on claim 1, wherein the tungsten / rhenium-based wire of the thermocouple is insulated by an alumina insulating tube so that the alumina insulating tube does not receive radiant heat from a heating source. This is an apparatus provided with a space for an alumina insulating pipe in which a heat insulating material is further stretched at a distance from a heat insulating material of a heating section. Such a vacuum heating device prevents the alumina having a melting point of 2050 ° C. from receiving the radiant heat from the heating source and increasing the temperature, thereby preventing the insulating property from being lowered.

【0008】請求項1に従属する請求項6の真空加熱装
置は、熱電対のタングステン・レニウム系の素線が耐熱
性金属による支持具に対して耐熱性金属のワイヤで緩く
結んで固定されている装置である。このような真空加熱
装置は、熱電対の素線と支持具との熱膨張係数が異なる
場合にも熱電対の素線にストレスを与えず、ストレスに
よる劣化を発生させない。請求項1に従属する請求項7
の真空加熱装置は、熱電対のタングステン・レニウム系
の素線がベリリア絶縁管で絶縁されている装置である。
このような真空加熱装置は、ベリリアの融点が2530
℃であることから、アルミナ絶縁管による熱電対と比較
して温度上昇による絶縁性の低下を生じにくい。
[0008] In the vacuum heating apparatus according to claim 6, the tungsten / rhenium-based element wire of the thermocouple is loosely tied to a support made of heat-resistant metal with a heat-resistant metal wire and fixed. Device. Such a vacuum heating device does not apply stress to the wires of the thermocouple even when the thermal expansion coefficient of the wires of the thermocouple and the support are different, and does not cause deterioration due to the stress. Claim 7 dependent on claim 1
Is a device in which a tungsten-rhenium-based element wire of a thermocouple is insulated by a beryllia insulating tube.
Such a vacuum heating apparatus has a melting point of beryllia of 2,530.
Since the temperature is ° C, a decrease in insulation due to a rise in temperature is less likely to occur as compared with a thermocouple using an alumina insulating tube.

【0009】[0009]

【発明の実施の形態】例えば、焼結品を製造する真空加
熱装置は原料紛体とバインダーとしてのワックスとの粉
体成型品の脱ワックス時の1000℃以下の加熱温度に
対してはニッケル(Ni)・クロム(Cr)系のK種熱
電対が使用され、粉体の焼結時の2000℃までの加熱
温度にはタングステン(W)・レニウム(Re)系の熱
電対が使用される。そして、熱電対の劣化は高温度で使
用されるW・Re系の熱電対に発生し易く、その原因と
しては熱電対の素線への断熱材からの炭素の付着による
絶縁性の低下、および熱電対の高純度アルミナ絶縁管が
溶融温度に近くなることによる絶縁性の低下が考えられ
る。その原因はさておき、熱電対の劣化が進行して断線
に至る前に、真空加熱装置の加熱源を停止して対策を講
じることができれば、比較的短時間で復旧させることが
可能となる筈である。従って、本発明の真空加熱装置
は、断熱材で囲われた加熱区画の熱電対による測定温度
が所定の加熱温度に到達した後に、その測定温度が一定
の温度範囲より大きく振れる場合には、熱電対が劣化し
ているとの劣化信号が出力されて加熱を自動的に停止
し、要すれば警報を発する制御機構が設けられている。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS For example, a vacuum heating apparatus for producing a sintered product uses nickel (Ni) for a heating temperature of 1000 ° C. or less when dewaxing a powder molded product of a raw material powder and a wax as a binder. ). A chromium (Cr) -based thermocouple of type K is used, and a tungsten (W) -rhenium (Re) -based thermocouple is used at a heating temperature up to 2000 ° C. during sintering of the powder. Deterioration of the thermocouple is apt to occur in a W / Re-based thermocouple used at a high temperature, and the cause thereof is a decrease in insulation due to adhesion of carbon from a heat insulating material to a strand of the thermocouple, and It is conceivable that the insulating property of the high-purity alumina insulating tube of the thermocouple decreases due to the temperature approaching the melting temperature. Regardless of the cause, before the deterioration of the thermocouple progresses and leads to disconnection, if the heating source of the vacuum heating device can be stopped and measures can be taken, it should be possible to recover in a relatively short time. is there. Therefore, the vacuum heating device of the present invention is provided with a thermoelectric device in which, when the temperature measured by the thermocouple in the heating section surrounded by the heat insulating material reaches a predetermined heating temperature and the measured temperature fluctuates more than a certain temperature range, A control mechanism is provided for automatically stopping the heating by outputting a deterioration signal indicating that the pair is deteriorated and issuing an alarm if necessary.

【0010】熱電対の劣化の判断基準は一概には規定さ
れ難いが、本発明においては、上記したように、熱電対
による測定温度が所定の加熱温度に到達した後に、その
測定温度が所定の温度範囲より大きく振れる場合を劣化
の基準としており、具体的な測定温度の振れの大きさは
個々の場合に即して設定される。しかし、測定温度の振
れの大きさは所定の加熱温度の上下に±1%の範囲を越
える場合とすることによって劣化を比較的早い段階で的
確に捉えることができる。
Although the criteria for determining the deterioration of a thermocouple are hardly specified, in the present invention, as described above, after the temperature measured by the thermocouple reaches a predetermined heating temperature, the measured temperature is reduced to a predetermined temperature. The case where the fluctuation is larger than the temperature range is used as a reference for the deterioration, and the specific magnitude of the fluctuation of the measured temperature is set according to each case. However, when the magnitude of the fluctuation of the measured temperature exceeds the range of ± 1% above and below the predetermined heating temperature, the deterioration can be accurately detected at a relatively early stage.

【0011】加熱の設定温度に対する測定温度の振れの
大きさは制御機構において両温度を比較させることによ
って数値化される。制御機構としては、シーケンス制御
が可能なものであれば如何なるものであってもよいが、
例えばプログラマブル・ロジック・コントローラ(PL
C)ないしはプログラマブル・コントローラ(PC)が
好適に採用される。すなわち、真空加熱装置の制御に使
用されているPLCないしはPCを利用することが可能
である。勿論、熱電対回りのシーケンス制御プログラム
を別途作成し、そのプログラムで動作する小型コンピュ
ータを別に設けてもよい。
The magnitude of the fluctuation of the measured temperature with respect to the set temperature of the heating is quantified by comparing the two temperatures in the control mechanism. As the control mechanism, any mechanism can be used as long as sequence control is possible.
For example, a programmable logic controller (PL
C) or a programmable controller (PC) is preferably employed. That is, it is possible to use the PLC or PC used for controlling the vacuum heating device. Of course, a sequence control program around the thermocouple may be separately created, and a small computer operated by the program may be separately provided.

【0012】上述したように、熱電対の劣化の原因とし
て熱電対の素線への炭素の付着による絶縁性の低下、お
よび熱電対のアルミナ絶縁管が溶融温度に近くなること
による絶縁性の低下が考えられる。従って、加熱区画を
囲う断熱材に炭素材料を使用する場合には、その炭素材
料は真空加熱装置における加熱温度よりは遥かに高い温
度で熱処理されたものを使用することが望ましい。その
様な炭素材料は最高の加熱温度が2100℃になるよう
な場合にも何等を放出することはなく、熱電対の素線に
悪影響を与えない。また、熱電対のアルミナ絶縁管が溶
融温度に近くに温度上昇することを防ぐために、アルミ
ナ絶縁管の加熱区画へ挿入される部分が温度上昇しない
ように、加熱源からの放射熱を遮断する遮熱用断断熱材
でカバーすることが望ましい。
As described above, the deterioration of the thermocouple is caused by the adhesion of carbon to the strand of the thermocouple, and the deterioration of the insulation is caused by the alumina insulating tube of the thermocouple approaching the melting temperature. Can be considered. Therefore, when a carbon material is used for the heat insulating material surrounding the heating section, it is desirable that the carbon material be heat-treated at a temperature much higher than the heating temperature in the vacuum heating device. Such a carbon material does not emit anything when the maximum heating temperature is 2100 ° C., and does not adversely affect the thermocouple wires. Also, in order to prevent the temperature of the alumina insulating tube of the thermocouple from rising close to the melting temperature, a portion of the alumina insulating tube inserted into the heating section does not raise the temperature, so that radiant heat from the heating source is shut off. It is desirable to cover with thermal insulation.

【0013】また、加熱区画における熱電対の素線部分
は振れが起こらないように、耐熱性金属、例えばタング
ステン(W)、タンタル(Ta)、モリブデン(Mo)
等による支持具に固定することが望まれるが、その場合
には熱膨張率が異なることを考慮して、耐熱性金属のワ
イヤによって緩く結んで固定することが好ましい。その
ほか、融点が2530℃の再結晶ベリリア絶縁管を使用
し、更には耐熱性金属のチューブ、例えばTaチューブ
で保護したW・Re系の熱電対を使用することは好まし
い選択である。
In addition, a heat-resistant metal, for example, tungsten (W), tantalum (Ta), molybdenum (Mo) is used so that the wire portion of the thermocouple in the heating section does not swing.
It is desirable to fix to the support by such means as above, but in that case, it is preferable to fix loosely with a heat-resistant metal wire in consideration of the difference in the coefficient of thermal expansion. In addition, it is a preferable choice to use a recrystallized beryllia insulating tube having a melting point of 2530 ° C. and to use a W.Re-based thermocouple protected by a tube made of a heat-resistant metal, for example, a Ta tube.

【0014】[0014]

【実施の形態例】次に、燒結製品を製造するための連続
式の真空加熱装置を実施の形態例とし、図面を参照して
具体的に説明する。図1は金属またはセラミックスの粉
体成型品からバインダ−としてのワックスを除くための
脱ワックス室と粉体を燒結させるための第1燒結室、第
2燒結室等が連接された連続式の真空加熱装置10を示
す概略的な縦断面図である。下部の搬送室5の左端には
被処理物Hの搬入口6、右端には搬出口9が設けられて
いる。上部には脱ワックス室1、第1燒結室2、第2燒
結室3(内部の詳細は何れも省略)が設けられおり、そ
れぞれの断熱材28で囲われた加熱区画17、27、3
7において、下方から挿入される被処理物Hが加熱処理
される。搬送室5は脱ワックス室1と第1燒結室2との
中間位置、および第2燒結室3の下流側位置において開
閉扉7、8によって気密に仕切られて搬送室51 、搬送
室52 、および冷却室4に画成されている。また、脱ワ
ックス室1、第1燒結室2、第2燒結室3、および搬送
室51 、搬送室52 、冷却室4はそれぞれ真空排気系に
接続されており、かつ脱ワックス室1、冷却室4にはア
ルゴンガス(Ar)と窒素ガス(N2 )の導入配管が接
続され、第1燒結室2、第2燒結室3にはアルゴンガス
の導入配管が接続されている。
Next, a continuous vacuum heating apparatus for producing a sintered product will be described in detail with reference to the drawings. FIG. 1 shows a continuous vacuum in which a dewaxing chamber for removing wax as a binder from a metal or ceramic powder molded product and a first sintering chamber and a second sintering chamber for sintering powder are connected. FIG. 2 is a schematic longitudinal sectional view showing the heating device 10. A transfer port 6 for the workpiece H is provided at the left end of the lower transfer chamber 5, and a transfer port 9 is provided at the right end. The upper part is provided with a dewaxing chamber 1, a first sintering chamber 2, and a second sintering chamber 3 (internal details are omitted), and heating compartments 17, 27, 3 surrounded by respective heat insulating materials 28 are provided.
In 7, the workpiece H inserted from below is subjected to a heat treatment. Transfer chamber 5 is an intermediate position, and the transfer chamber 5 1 is partitioned into airtight by the opening and closing doors 7 and 8 at the downstream side position of the second sintering chamber 3 of the dewaxing chamber 1 and the first sintered chamber 2, the transfer chamber 5 2 , And the cooling chamber 4. Further, dewaxing chamber 1, the first sintered chamber 2, the second sintering chamber 3, and the transfer chamber 5 1, the transfer chamber 5 2, respectively the cooling chamber 4 is connected to a vacuum exhaust system, and dewaxing chamber 1, Introducing pipes for argon gas (Ar) and nitrogen gas (N 2 ) are connected to the cooling chamber 4, and argon gas introducing pipes are connected to the first sintering chamber 2 and the second sintering chamber 3.

【0015】そして、搬送室5内にはチェインベルト5
1 、522 、523 、524 が連続して設けられてお
り、搬入口6から搬入される被処理物Hを搬送して搬出
口9から外部へ送り出す。更には、脱ワックス室1、第
1燒結室2、第2燒結室3の下方にはチェインベルト5
1 、522 、523 上に停止した被処理物Hを上方の
加熱区画17、27、37内へ持ち上げて挿入するため
のエアシリンダ511、512 、513 が設けられてい
る。そして、被処理物Hは脱ワックス室1においては1
-1Pa程度の真空下に500〜800℃の温度に加熱
され、第1燒結室2、第2燒結室3では10-3〜10-4
Pa程度の真空下に1400〜2000℃の温度に加熱
される。そして、この一連のプロセスは図示せずともプ
ログラマブル・ロジック・コントローラ(PLC)ない
しはプログラマブル・コントローラ(PC)によってシ
−ケンス制御されている。
In the transfer chamber 5, a chain belt 5 is provided.
21 1 , 52 2 , 52 3 , and 52 4 are provided in succession, and convey the workpiece H carried in from the carry-in port 6 to the outside through the carry-out port 9. Further, a chain belt 5 is provided below the dewaxing chamber 1, the first sintering chamber 2, and the second sintering chamber 3.
Air cylinders 51 1 , 51 2 , and 51 3 are provided to lift and insert the workpieces H stopped on 2 1 , 52 2 , and 52 3 into the upper heating sections 17, 27, and 37. The object to be processed H is 1 in the dewaxing chamber 1.
The first sintering chamber 2 and the second sintering chamber 3 are heated to a temperature of 500 to 800 ° C. under a vacuum of about 0 −1 Pa, and 10 −3 to 10 −4.
It is heated to a temperature of 1400 to 2000 ° C. under a vacuum of about Pa. This series of processes is sequence-controlled by a programmable logic controller (PLC) or a programmable controller (PC), not shown.

【0016】脱ワックス室1、第1燒結室2、第2燒結
室3はほぼ同様に構成されているので、以下、第1燒結
室2について説明する。図2は第1燒結室2の断熱材2
8で囲われた加熱区画27の上部を示す拡大断面図であ
る。断熱材28には3000℃の温度で焼成された炭素
材料が使用されている。加熱区画27の断熱材28によ
る側壁の内面側には加熱用の棒状ヒータ22が近接して
設置されており、下方から挿入される被処理物Hを加熱
する。上記のような炭素材料の断熱材28を使用してい
ることにより、加熱区画27内が短時間ではあるが最高
2100℃の温度になることはあっても、断熱材28か
らは何等の放出されるものはなく、被処理物Hへは勿
論、温度計測用の熱電対31にも悪影響を与えることは
ない。
Since the dewaxing chamber 1, the first sintering chamber 2, and the second sintering chamber 3 have substantially the same configuration, the first sintering chamber 2 will be described below. FIG. 2 shows the heat insulating material 2 of the first sintering chamber 2.
It is an expanded sectional view which shows the upper part of the heating section 27 enclosed by 8. As the heat insulating material 28, a carbon material fired at a temperature of 3000 ° C. is used. A heating rod-shaped heater 22 is installed close to the inner surface of the side wall formed by the heat insulating material 28 in the heating section 27, and heats the workpiece H inserted from below. By using the heat insulating material 28 made of the carbon material as described above, even though the inside of the heating section 27 may reach a maximum temperature of 2100 ° C. for a short time, any heat is released from the heat insulating material 28. There is no object, and there is no adverse effect on the thermocouple 31 for temperature measurement as well as on the workpiece H.

【0017】加熱区画27内には内部の加熱温度を計測
するための熱電対31が上方から天井側の断熱材28を
貫通して取り付けられ加熱区画27内へ挿入されてい
る。熱電対31は5%Re・W/26%Re・Wの素線
31’、31”からなるものが使用されており、断熱材
28および取付け金具34と接触する部分等は高純度ア
ルミナ絶縁管32で絶縁されいる。また、取付け金具3
4には耐熱性金属のWからなる細長いU字形状の支持具
35(図2は支持具35を側面から見ているので棒状に
示されている)が素線31’、31”の下端より低い位
置まで延びて取り付けられており、素線31’、31”
の振動を防ぐために、素線31’、31”の下端はTa
ワイヤ36で緩く結んで固定されている。また、この緩
い固定とすることによって、熱電対31の素線31’、
31”とW製支持具35との間における熱膨張係数の違
いによるストレスの発生が予防されている。なお、脱ワ
ックス室1における加熱温度の計測にはK種熱電対が使
用されている。
In the heating section 27, a thermocouple 31 for measuring the internal heating temperature is attached from above through the heat insulating material 28 on the ceiling side, and is inserted into the heating section 27. The thermocouple 31 is made of a wire 31 ', 31 "of 5% Re.W / 26% Re.W, and a portion which is in contact with the heat insulating material 28 and the mounting bracket 34 is a high-purity alumina insulating tube. 32. The mounting bracket 3
In FIG. 4, an elongated U-shaped support 35 made of heat-resistant metal W (shown in a bar shape in FIG. 2 because the support 35 is viewed from the side) is provided from the lower ends of the wires 31 ′ and 31 ″. It extends to a lower position and is attached to the strands 31 ', 31 "
In order to prevent the vibration of
The wire 36 is loosely tied and fixed. In addition, by this loose fixing, the wires 31 ′ of the thermocouple 31,
The occurrence of stress due to the difference in the coefficient of thermal expansion between the 31 "and the W support 35 is prevented. A K-type thermocouple is used for measuring the heating temperature in the dewaxing chamber 1.

【0018】更には図2に示すように、加熱区画27の
断熱材28による天井の内面側には間隔をあけて遮熱用
断熱材28’が架張されており、高純度アルミナ絶縁管
の加熱区画27内へ挿入されている部分を棒状ヒータ2
2の放射熱から遮断するための保護空間23が設けられ
ている。加熱区画27内は真空であるから空気、その他
のガスの対流はなく、棒状ヒータ22からの放射熱を防
ぐだけで、高純度アルミナ絶縁管32の温度上昇は十分
に抑制される。
Further, as shown in FIG. 2, a heat insulating material 28 'is stretched on the inner surface side of the ceiling by the heat insulating material 28 of the heating section 27 at an interval, and a high-purity alumina insulating tube is provided. The portion inserted into the heating section 27 is a bar-shaped heater 2
2, a protection space 23 for shielding from radiant heat is provided. Since the inside of the heating section 27 is vacuum, there is no convection of air and other gases, and the temperature rise of the high-purity alumina insulating tube 32 is sufficiently suppressed only by preventing the radiant heat from the rod-shaped heater 22.

【0019】上記のように構成される加熱区画27を備
えた第1燒結室2を含む図1の真空加熱装置1が稼動さ
れる場合には、脱ワックス室1、第1燒結室2、第2燒
結室3における加熱温度、加熱時間、真空度の運転パラ
メータのほかチェインベルト521 、522 、523
よる間欠的な搬送のタイミングを含めてすべての操作は
PLCによりシーケンス制御されるが、加熱温度につい
ては、脱ワックス室1、第1燒結室2、第2燒結室3に
対する加熱プログラムに従った設定温度はPLCのメモ
リー部におけるそれぞれの格納アドレス、例えばD25
3、D293、D333に格納され、各熱電対による計
測温度はそれぞれの格納アドレス、例えばD1500、
D1501、D1502に格納される。そして両方の温
度を比較して、その差を例えば加熱区画27の棒状ヒー
タ22による加熱にフィードバックして温度制御が行わ
れている。
When the vacuum heating apparatus 1 of FIG. 1 including the first sintering chamber 2 having the heating section 27 configured as described above is operated, the dewaxing chamber 1, the first sintering chamber 2, the first the heating temperature in 2 sintering chamber 3, the heating time, although other chain belt 52 1, 52 2, 52 3 all operations, including the timing of the intermittent transport by the operating parameters of the vacuum is a sequence controlled by a PLC, Regarding the heating temperature, the set temperature according to the heating program for the dewaxing chamber 1, the first sintering chamber 2, and the second sintering chamber 3 is the respective storage address in the memory section of the PLC, for example, D25.
3, D293, and D333, and the temperature measured by each thermocouple is stored at a respective storage address, for example, D1500,
These are stored in D1501 and D1502. Then, the two temperatures are compared, and the difference is fed back to, for example, heating by the bar-shaped heater 22 of the heating section 27 to perform temperature control.

【0020】図3は第1燒結室2の加熱区画27内の温
度についてのPLCによる温度制御をイメージ的に示し
た図である。横軸は時間、縦軸は加熱温度であり、加熱
の設定温度(SV)は一点鎖線、熱電対31による計測
温度(PV)は実線で示されている。図3において、計
測温度が設定温度に到達した時点t1 から所定の保持時
間を経過した時点t2 までの間を一定の温度に設定して
加熱される。そして本発明の真空加熱装置10のPLC
は時点t1から時点t2 までの間において加熱の設定温
度に対する熱電対の計測温度の振れを監視し、設定温度
を基準にして上下に一定の温度範囲Rを越えて振れる場
合には、熱電対31が劣化していると判定して、劣化信
号を出力し、加熱を自動的に停止すると共に劣化警報を
発するようになっている。すなわち、加熱を停止して、
熱電対の素線が操業の途中で断線して温度制御が不能と
なり加熱不良の被処理物Hが生産されることを未然に防
いでいる。また、光、音、その他によって発せられる熱
電対31の劣化の警報を受けることによって直ちに熱電
対31の交換の準備に入ることができ、操業の中断時間
を最短に抑えることを可能にしている。
FIG. 3 is a view schematically showing temperature control by the PLC for the temperature in the heating section 27 of the first sintering chamber 2. The horizontal axis represents time, and the vertical axis represents heating temperature. The set temperature (SV) for heating is indicated by a dashed line, and the temperature measured by the thermocouple 31 (PV) is indicated by a solid line. 3, are heated by setting the period from the time t 1 that the measured temperature reaches the set temperature until time t 2 has elapsed a predetermined holding time at a constant temperature. And PLC of the vacuum heating device 10 of the present invention
When monitoring the deflection of the measured temperature of the thermocouple, swinging beyond a certain temperature range R vertically with respect to the set temperature for a set temperature of the heating during the period from time t 1 until time t 2, the thermoelectric It is determined that the pair 31 is deteriorated, a deterioration signal is output, heating is automatically stopped, and a deterioration alarm is issued. That is, stop heating,
The wire of the thermocouple breaks during the operation, making it impossible to control the temperature and preventing the workpiece H with poor heating from being produced. Further, by receiving a warning of deterioration of the thermocouple 31 emitted by light, sound, or the like, preparation for replacement of the thermocouple 31 can be immediately started, and the interruption time of operation can be minimized.

【0021】また本発明の真空加熱装置の制御プログラ
ムは、加熱源が自動的に停止された後、熱電対31の交
換を含めての対応が比較的短時間内に完了する場合に
は、マニュアル操作によってPLCによる自動運転への
復帰が可能となるように設定されている。すなわち、被
処理物Hに対する加熱の中断を短時間とすることがで
き、当該被処理物Hの加熱の中断までの熱履歴を考慮し
た加熱を再開してすることによって得られる当該被処理
物Hと、正規に加熱処理された被処理物H0 との間に実
質的な差異が認められない場合、例えば中断時間を10
分間以内として加熱を再開し得る場合には、その加熱に
よって当該被処理物Hを容易に救済し得るからである。
Further, the control program for the vacuum heating apparatus according to the present invention is designed such that if the response including the replacement of the thermocouple 31 is completed within a relatively short time after the heating source is automatically stopped, the manual The operation is set so that the operation can be returned to the automatic operation by the PLC. That is, the interruption of the heating of the object H can be shortened, and the object H obtained by restarting the heating in consideration of the heat history up to the interruption of the heating of the object H can be obtained. when, if not observed substantial difference between the object to be processed H 0 that is heat treated to the normal, for example, the interruption time 10
This is because if the heating can be resumed within minutes, the object H can be easily relieved by the heating.

【0022】なお、熱電対31の劣化と計測温度の振れ
の大きさとの関係は、操業条件、その他によって異なり
一概には規定され難いが、加熱の設定温度を基準にして
上下に±1%の温度範囲を越える場合は劣化であるとす
ることによって、熱電対31の劣化を比較的早期に捉え
ることができ、劣化の急な進行による熱電対の素線の断
線に伴う大きい損害を回避し得る。なお、図3は、上述
したように、PLC内における温度制御および熱電対の
劣化をイメージ的に示すものであるが、これを陰極線管
(CRT)や液晶表示パネル(LCD)の画面に表示し
て熱電対の劣化の状況を視認し得るようにしてもよいこ
とは言うまでもない。
The relationship between the deterioration of the thermocouple 31 and the magnitude of the fluctuation of the measured temperature differs depending on the operating conditions and the like and is hard to be specified. However, the relationship is ± 1% above and below the set temperature for heating. If the temperature exceeds the temperature range, it is determined that the thermocouple is deteriorated, so that the deterioration of the thermocouple 31 can be detected relatively early, and large damage caused by disconnection of the thermocouple wire due to rapid progress of deterioration can be avoided. . FIG. 3 schematically shows the temperature control and the deterioration of the thermocouple in the PLC as described above, which are displayed on the screen of a cathode ray tube (CRT) or a liquid crystal display panel (LCD). Needless to say, the state of deterioration of the thermocouple may be visually recognized.

【0023】本発明の実施の形態例による真空加熱装置
10は以上のように構成され作用するが、勿論、本発明
はこれに限られることなく、本発明の技術的思想に基づ
いて種々の変形が可能である。
The vacuum heating apparatus 10 according to the embodiment of the present invention is constructed and operates as described above. However, the present invention is not limited to this, and various modifications are possible based on the technical idea of the present invention. Is possible.

【0024】例えば実施の形態例においてはW・Re系
熱電対の絶縁に高純度アルミナに絶縁管32を使用した
が、これに代えて、溶融温度が2530℃の再結晶ベリ
リアによる絶縁管43による熱電対41を採用してもよ
い。図4は再結晶ベリリア絶縁管41を示す図であり、
熱電対41の素線はアルミナ絶縁管42に続いて先端側
がベリリア絶縁管43で絶縁されている。そして、ベリ
リア絶縁管43部分で炭素材による保持取付け具44に
固定されおり、この保持具44によって加熱区画27の
断熱材28に取り付けて挿入される。なお、保持具44
よりも先端側には保護のためにTaチューブ45が被せ
られている。
For example, in the embodiment, the insulating tube 32 is made of high-purity alumina for insulating the W / Re thermocouple, but instead of the insulating tube 43 made of recrystallized beryllia having a melting temperature of 2530 ° C. A thermocouple 41 may be employed. FIG. 4 is a diagram showing a recrystallized beryllia insulating tube 41.
The element wire of the thermocouple 41 is insulated by a beryllia insulating tube 43 on the tip side following the alumina insulating tube 42. Then, the beryllia insulating tube 43 is fixed to a holding fixture 44 made of a carbon material, and is attached to the heat insulating material 28 of the heating section 27 and inserted by the holding fixture 44. The holder 44
A Ta tube 45 is placed on the tip side for protection.

【0025】また、実施の形態例においては、加熱区画
を囲う断熱材として炭素材からなるのを示したが、金属
板を重ねた熱反射板からなる断熱材であってもよい。ま
た実施の形態例においては、加熱源として抵抗加熱によ
る棒状ヒータ22を使用する真空加熱装置1を例示した
が、これ以外の加熱源によるものであってもよく、例え
ば加熱源として電子ビームやレーザを採用したものであ
ってもよい。また、実施の形態例においては、脱ワック
ス室1、第1焼結室2、第2焼結室3からなる連続式の
真空加熱装置10を例示したが、加熱室が単一のバッチ
式真空加熱装置であってもよい。
In the embodiment, the heat insulating material surrounding the heating section is made of a carbon material. However, the heat insulating material may be made of a heat reflecting plate in which metal plates are stacked. Further, in the embodiment, the vacuum heating device 1 using the rod-shaped heater 22 by resistance heating as a heating source is illustrated, but other heating sources may be used. For example, an electron beam or a laser may be used as a heating source. May be adopted. Further, in the embodiment, the continuous vacuum heating device 10 including the dewaxing chamber 1, the first sintering chamber 2, and the second sintering chamber 3 has been described, but the heating chamber is a single batch type vacuum heating apparatus. It may be a heating device.

【0026】[0026]

【発明の効果】本発明は以上に説明したような形態で実
施され、次ぎに記載するような効果を奏する。
The present invention is embodied in the form described above, and has the following effects.

【0027】請求項1の真空加熱装置によれば、加熱区
画内の加熱の設定温度に対する熱電対による測定温度の
振れが一定の温度範囲を越える場合には、熱電対が劣化
しているとの劣化信号を出力して加熱を自動的に停止
し、要すれば警報を発するので、短時間内で熱電対の交
換を含む対策を講ずることができ、操業の途中に熱電対
の素線が断線して温度制御が不能になり加熱不良の製品
が生産され、かつ復旧に時間を要する場合と比較して、
加熱不良品を殆ど発生せず、真空加熱装置は稼動率が向
上される。請求項2の真空加熱装置によれば、熱電対の
劣化を熱電対による計測温度の振れが加熱の設定温度を
基準に±1%の温度範囲を越える場合としているので、
比較的早期に熱電対の劣化を捉らえることができ、劣化
の急速な進行による熱電対の断線に伴う大きい損害を回
避し得る。
According to the first aspect of the present invention, when the fluctuation of the measured temperature by the thermocouple with respect to the set temperature of the heating in the heating section exceeds a certain temperature range, the thermocouple is degraded. Heating is automatically stopped by outputting a deterioration signal and an alarm is issued if necessary, so that measures such as replacing the thermocouple can be taken within a short time, and the thermocouple wire breaks during operation. As compared to the case where temperature control becomes impossible and products with poor heating are produced and it takes time to recover,
Almost no defective heating occurs, and the operation rate of the vacuum heating device is improved. According to the vacuum heating device of the second aspect, the deterioration of the thermocouple is determined when the fluctuation of the temperature measured by the thermocouple exceeds the temperature range of ± 1% based on the set temperature of heating.
Deterioration of the thermocouple can be detected relatively early, and large damage caused by disconnection of the thermocouple due to rapid progress of deterioration can be avoided.

【0028】請求項3の真空加熱装置によれば、加熱の
自動的な停止の後、熱電対の交換を含む対応に要する時
間に応じて、それまでの加熱経過を含む加熱の再開の選
択が可能とされているので、加熱が中断された非処理物
が簡易に救済される。請求項4の真空加熱装置によれ
ば、加熱区画の断熱材に温度3000℃で焼成された炭
素材料が使用されているので、2000℃を越えて温度
上昇されても何等の放出されるものはなく熱電対に悪影
響を与えない。
According to the vacuum heating apparatus of the third aspect, after the automatic stop of the heating, the selection of the restart of the heating including the progress of the heating up to that time can be made in accordance with the time required for the response including the exchange of the thermocouple. Since it is possible, the non-processed material whose heating has been interrupted can be easily rescued. According to the vacuum heating device of the fourth aspect, since the carbon material fired at 3000 ° C. is used for the heat insulating material of the heating section, what is released even if the temperature is increased over 2000 ° C. And does not adversely affect thermocouples.

【0029】請求項5の真空加熱装置によれば、加熱区
画内となるアルミナ絶縁管が加熱源の放射熱から遮蔽さ
れているので、アルミナ絶縁管の温度上昇による絶縁性
の低下が防がれる。請求項6の真空加熱装置によれば、
熱電対のW・Re系の素線が耐熱性金属ワイヤで耐熱性
金属支持具に緩く結んで固定されているので、振動が防
がれると共に熱膨張係数の異なる材料間における熱膨張
時のストレスが防がれる。請求項7の真空加熱装置によ
れば、W・Re系の素線がベリリア絶縁管で絶縁されて
いるので温度上昇による絶縁低下を起こしにくい。
According to the fifth aspect of the present invention, since the alumina insulating tube in the heating section is shielded from the radiant heat of the heating source, it is possible to prevent a decrease in insulation due to a rise in the temperature of the alumina insulating tube. . According to the vacuum heating device of claim 6,
Since the W / Re-based wires of the thermocouple are loosely tied and fixed to the heat-resistant metal support with the heat-resistant metal wire, vibration is prevented and stress during thermal expansion between materials having different thermal expansion coefficients is prevented. Is prevented. According to the vacuum heating device of the present invention, since the W / Re-based wire is insulated by the beryllia insulating tube, the insulation is hardly reduced due to the temperature rise.

【図面の簡単な説明】[Brief description of the drawings]

【図1】実施の形態例による真空加熱装置の全体を示す
縦断面図である。
FIG. 1 is a longitudinal sectional view showing an entire vacuum heating device according to an embodiment.

【図2】同第1焼結室の加熱区画の上部の断面図であ
る。
FIG. 2 is a sectional view of an upper portion of a heating section of the first sintering chamber.

【図3】同加熱区画の温度制御に基づく加熱の設定温度
と熱電対による計測温度とを示す図である。
FIG. 3 is a diagram showing a set temperature of heating based on temperature control of the heating section and a temperature measured by a thermocouple.

【図4】ベリリア絶縁管で絶縁されたW・Re系熱電対
を示す図である。
FIG. 4 is a diagram showing a W / Re-based thermocouple insulated by a beryllia insulating tube.

【符号の説明】[Explanation of symbols]

1 脱ワックス室 2 第1焼結室 3 第2焼結室 10 真空加熱装置 22 加熱用棒状ヒータ 23 保護空間 27 加熱区画 28 断熱材 28’ 遮熱用断熱材 31 熱電対 32 アルミナ絶縁管 35 支持具 36 タンタル・ワイヤ DESCRIPTION OF SYMBOLS 1 Dewaxing chamber 2 1st sintering chamber 3 2nd sintering chamber 10 Vacuum heating device 22 Heating rod-shaped heater 23 Protective space 27 Heating section 28 Heat insulating material 28 'Heat insulating heat insulating material 31 Thermocouple 32 Alumina insulating tube 35 Support Tool 36 Tantalum wire

───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.7 識別記号 FI テーマコート゛(参考) G01K 1/14 G01K 1/14 L // F27B 17/00 F27B 17/00 C (72)発明者 中塚 篤 神奈川県茅ヶ崎市萩園2500番地 日本真空 技術株式会社内 Fターム(参考) 2F056 CL01 KA03 KA12 4K018 DA32 DA35 4K051 AA07 BE00 4K056 AA11 BA04 BB06 CA01 CA10 FA13 FA27 ──────────────────────────────────────────────────の Continued on the front page (51) Int.Cl. 7 Identification symbol FI Theme coat ゛ (Reference) G01K 1/14 G01K 1/14 L // F27B 17/00 F27B 17/00 C (72) Inventor Atsushi Nakatsuka 2500 Hagizono, Chigasaki-shi, Kanagawa Japan F-term (reference) 2F056 CL01 KA03 KA12 4K018 DA32 DA35 4K051 AA07 BE00 4K056 AA11 BA04 BB06 CA01 CA10 FA13 FA27

Claims (7)

【特許請求の範囲】[Claims] 【請求項1】 真空下に被処理物を所定の加熱温度で熱
処理するための真空加熱装置において、 前記真空加熱装置の断熱材によって囲われた加熱区画の
熱電対による測定温度が前記所定の加熱温度に到達した
後に、その測定温度が一定の温度範囲より大きく振れる
場合には、前記熱電対が劣化しているとの劣化信号が出
力されて、加熱を自動的に停止し、要すれば警報を発す
る制御機構が設けられていることを特徴とする真空加熱
装置。
1. A vacuum heating apparatus for heat-treating an object to be processed under a vacuum at a predetermined heating temperature, wherein the temperature measured by a thermocouple in a heating section surrounded by a heat insulating material of the vacuum heating apparatus is the predetermined heating temperature. If the measured temperature fluctuates beyond a certain temperature range after reaching the temperature, a deterioration signal indicating that the thermocouple is deteriorated is output, heating is automatically stopped, and an alarm is issued if necessary. A vacuum heating device provided with a control mechanism for emitting the pressure.
【請求項2】 前記熱電対による測定温度の振れが前記
所定の加熱温度を基準にして±1%の温度範囲を越える
場合に前記劣化信号が出力される請求項1に記載の真空
加熱装置。
2. The vacuum heating apparatus according to claim 1, wherein the deterioration signal is output when the fluctuation of the temperature measured by the thermocouple exceeds a temperature range of ± 1% with respect to the predetermined heating temperature.
【請求項3】 前記加熱の停止の後、前記熱電対の交換
を含む対応に要する時間に応じて、停止の継続または加
熱の再開の選択が可能とされている請求1または請求項
2までの何れかに記載の真空加熱装置。
3. The method according to claim 1, wherein, after the stop of the heating, continuation of the stop or restart of the heating can be selected according to a time required for a response including replacement of the thermocouple. The vacuum heating device according to any one of the above.
【請求項4】 前記加熱区画の断熱材として3000℃
前後の温度で焼成された炭素材料が使用されている請求
項1から請求項3までの何れかに記載の真空加熱装置。
4. As a heat insulating material for the heating section, 3000 ° C.
The vacuum heating device according to any one of claims 1 to 3, wherein a carbon material fired at a temperature before and after is used.
【請求項5】 前記熱電対のタングステン・レニウム系
の素線がアルミナ絶縁管で絶縁されており、前記アルミ
ナ絶縁管が加熱源からの放射熱を受けないように、前記
加熱区画の前記断熱材と間隔をあけて遮熱用断熱材を架
張した前記アルミナ絶縁管用の保護空間が設けられてい
る請求項1から請求項4までの何れかに記載の真空加熱
装置。
5. The heat insulating material of the heating section so that a tungsten / rhenium-based wire of the thermocouple is insulated by an alumina insulating tube, and the alumina insulating tube does not receive radiant heat from a heating source. The vacuum heating device according to any one of claims 1 to 4, further comprising a protection space for the alumina insulating tube, which is provided with a heat insulating material at a distance from the heat insulating material.
【請求項6】 前記熱電対のタングステン・レニウム系
の素線が耐熱性金属による支持具に対して耐熱性金属の
ワイヤで緩く結んで固定されている請求項1から請求項
5までの何れかに記載の真空加熱装置。
6. The thermocouple according to claim 1, wherein the tungsten / rhenium-based wire of the thermocouple is loosely tied to a support made of a heat-resistant metal with a heat-resistant metal wire. The vacuum heating device according to item 1.
【請求項7】 前記熱電対のタングステン・レニウム系
の素線がベリリア絶縁管で絶縁されている請求項1から
請求項4までの何れかに記載の真空加熱装置。
7. The vacuum heating apparatus according to claim 1, wherein the tungsten / rhenium-based strand of the thermocouple is insulated by a beryllia insulating tube.
JP2000167365A 2000-06-05 2000-06-05 Vacuum heating device Expired - Lifetime JP4607287B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2000167365A JP4607287B2 (en) 2000-06-05 2000-06-05 Vacuum heating device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2000167365A JP4607287B2 (en) 2000-06-05 2000-06-05 Vacuum heating device

Publications (2)

Publication Number Publication Date
JP2001343290A true JP2001343290A (en) 2001-12-14
JP4607287B2 JP4607287B2 (en) 2011-01-05

Family

ID=18670531

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000167365A Expired - Lifetime JP4607287B2 (en) 2000-06-05 2000-06-05 Vacuum heating device

Country Status (1)

Country Link
JP (1) JP4607287B2 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010145052A (en) * 2008-12-19 2010-07-01 Denso Corp Vacuum heater and method for determining contact state of object to be heated
CN102767952A (en) * 2012-07-03 2012-11-07 山西太钢不锈钢股份有限公司 Dynamic monitoring method for degradation tendency of refractory material of sintering ignition furnace
KR101204828B1 (en) 2009-10-29 2012-11-26 현대제철 주식회사 Furnace
CN106197755A (en) * 2016-08-22 2016-12-07 郑州磨料磨具磨削研究所有限公司 Mold center's thermometry and hot-press sintering equipment

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6057812B2 (en) 2013-04-02 2017-01-11 株式会社神戸製鋼所 Processing apparatus and workpiece temperature measurement method

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61251918A (en) * 1985-04-30 1986-11-08 Showa Electric Wire & Cable Co Ltd Temperature controller
JPS61259130A (en) * 1985-05-14 1986-11-17 Nakayama:Kk Peak value hold thermometer
JPS63153388A (en) * 1986-08-23 1988-06-25 東レ株式会社 Heat treating furnace
JPH02154903A (en) * 1988-12-06 1990-06-14 Babcock Hitachi Kk Tube wall thermometer detecting end monitor system
JPH02190722A (en) * 1989-01-20 1990-07-26 Tokai Carbon Co Ltd Abnormality detector for temperature measuring equipment
JPH09126660A (en) * 1995-10-31 1997-05-16 Ulvac Japan Ltd Continuous vacuum heat treatment furnace

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61251918A (en) * 1985-04-30 1986-11-08 Showa Electric Wire & Cable Co Ltd Temperature controller
JPS61259130A (en) * 1985-05-14 1986-11-17 Nakayama:Kk Peak value hold thermometer
JPS63153388A (en) * 1986-08-23 1988-06-25 東レ株式会社 Heat treating furnace
JPH02154903A (en) * 1988-12-06 1990-06-14 Babcock Hitachi Kk Tube wall thermometer detecting end monitor system
JPH02190722A (en) * 1989-01-20 1990-07-26 Tokai Carbon Co Ltd Abnormality detector for temperature measuring equipment
JPH09126660A (en) * 1995-10-31 1997-05-16 Ulvac Japan Ltd Continuous vacuum heat treatment furnace

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010145052A (en) * 2008-12-19 2010-07-01 Denso Corp Vacuum heater and method for determining contact state of object to be heated
KR101204828B1 (en) 2009-10-29 2012-11-26 현대제철 주식회사 Furnace
CN102767952A (en) * 2012-07-03 2012-11-07 山西太钢不锈钢股份有限公司 Dynamic monitoring method for degradation tendency of refractory material of sintering ignition furnace
CN102767952B (en) * 2012-07-03 2014-06-04 山西太钢不锈钢股份有限公司 Dynamic monitoring method for degradation tendency of refractory material of sintering ignition furnace
CN106197755A (en) * 2016-08-22 2016-12-07 郑州磨料磨具磨削研究所有限公司 Mold center's thermometry and hot-press sintering equipment

Also Published As

Publication number Publication date
JP4607287B2 (en) 2011-01-05

Similar Documents

Publication Publication Date Title
JP4326570B2 (en) Heater wire life prediction method, heat treatment apparatus, recording medium, heater wire life prediction processing system
JP2824003B2 (en) Substrate temperature measurement device
JP4868091B2 (en) Heat treatment method for long material, method for producing long material, and heat treatment furnace used in those methods
JPWO2020145183A1 (en) Substrate processing equipment, semiconductor equipment manufacturing method and heater unit
JP2001343290A (en) Vacuum heating device
US6780795B2 (en) Heat treatment apparatus for preventing an initial temperature drop when consecutively processing a plurality of objects
JP4420356B2 (en) Heater wire life prediction method, heat treatment apparatus, recording medium, heater wire life prediction processing system
US6511628B2 (en) Method for controlling the firing of ceramics
JP4651226B2 (en) Drawing process for difficult-to-work materials with high melting point
JP2017034159A (en) Heater exchange determination method of semiconductor manufacturing apparatus and semiconductor manufacturing apparatus including heater exchange determination function
JP2002352938A (en) Disconnection predicting method for heater element wire of heat treatment device, and the heat-treating device
JP3014901B2 (en) Heat treatment equipment
JP2010281515A (en) Method of predicting life of refractory and method of estimating remaining thickness of refractory
JP2005139049A (en) Single crystal production apparatus
JP2005315510A (en) Heating furnace, thermometer, and in-furnace temperature control method
JP4783029B2 (en) Heat treatment apparatus and substrate manufacturing method
JP5686467B2 (en) Substrate processing apparatus and semiconductor device manufacturing method
JP2008117810A (en) Heat treatment apparatus, and method of acquiring heating condition in the heat treatment apparatus
JP2014152077A (en) Heating furnace for drawing optical fiber preform
JPS6119907B2 (en)
JP2009120451A (en) Method for producing glass preform, and production apparatus therefor
JPH07243917A (en) Calibrating method for thermocouple
JP2005333032A (en) Forming method of temperature conversion function of processed materials for monitor, calculating method of temperature distribution, and sheet-fed type heat treatment equipment
JP2001345275A (en) Heat treatment device, method for controlling heat treatment device, and method for determining place to be measured in circumference of substrate
JP2010149138A (en) Heat-keeping device for preventing crack in steel material

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070404

RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7423

Effective date: 20071109

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20100430

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100622

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100818

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20101005

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20101007

R150 Certificate of patent or registration of utility model

Ref document number: 4607287

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131015

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term