JP2001342841A - Exhaust turbine type supercharger for automobile - Google Patents

Exhaust turbine type supercharger for automobile

Info

Publication number
JP2001342841A
JP2001342841A JP2000164749A JP2000164749A JP2001342841A JP 2001342841 A JP2001342841 A JP 2001342841A JP 2000164749 A JP2000164749 A JP 2000164749A JP 2000164749 A JP2000164749 A JP 2000164749A JP 2001342841 A JP2001342841 A JP 2001342841A
Authority
JP
Japan
Prior art keywords
nozzle vane
flow rate
exhaust gas
rate time
angle
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2000164749A
Other languages
Japanese (ja)
Inventor
Yukimitsu Nagaoka
幸満 永岡
Yoshiaki Hirai
良明 平井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Hitachi Automotive Systems Engineering Co Ltd
Original Assignee
Hitachi Ltd
Hitachi Car Engineering Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd, Hitachi Car Engineering Co Ltd filed Critical Hitachi Ltd
Priority to JP2000164749A priority Critical patent/JP2001342841A/en
Publication of JP2001342841A publication Critical patent/JP2001342841A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/12Improving ICE efficiencies

Abstract

PROBLEM TO BE SOLVED: To reduce a fluid separation generating part occurring in a nozzle vane during high flow rate time and to improve exhaust turbine efficiency, by forming the nozzle vane in a circular arc shape, because angle of the nozzle vane can be set arbitrary with respect to a flow-in angle of exhaust gas, but the inlet angle of the nozzle vane is generally set according to an exhaust flow-in angle during low flow rate time so as to increase added pressure during low flow rate time of the exhaust gas, and at this set angle fluid can flow along the nozzle vane during the low flow rate time of the exhaust gas, but fluid separation occurs in an outlet part of the nozzle vane to decrease the turbine efficiency during the high flow rate time of the exhaust gas. SOLUTION: The nozzle vane is formed in a circular arc shape to reduce the fluid separation during high flow rate time of the exhaust gas.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、自動車用排気ター
ビン式過給機におけるノズルベーンの形状に関するもの
である。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a shape of a nozzle vane in an exhaust turbine type turbocharger for an automobile.

【0002】[0002]

【従来の技術】従来の排気タービン式過給機におけるノ
ズルベーンの形状としては、特開2000−8869号
公報において、直線形状のノズルベーン形状が報告され
ている。
2. Description of the Related Art As a shape of a nozzle vane in a conventional exhaust turbine type supercharger, a linear nozzle vane shape is reported in Japanese Patent Application Laid-Open No. 2000-8869.

【0003】[0003]

【発明が解決しようとする課題】ノズルベーンに流入す
る排気の流入角度をθ1とすると、エンジン回転数の変
化によって排気流量が変化しても、θ1はほぼ一定であ
る。これに対し、タービンロータの周囲に配置した複数
のノズルベーンは、任意の角度に回転する事が可能であ
り、ノズルベーンの入口角度をθ2とすると、θ2と前
記流入角度θ1との間にはずれが発生する。
Assuming that the inflow angle of the exhaust gas flowing into the nozzle vane is θ1, θ1 is substantially constant even if the exhaust gas flow rate changes due to a change in the engine speed. On the other hand, the plurality of nozzle vanes arranged around the turbine rotor can rotate at an arbitrary angle, and when the inlet angle of the nozzle vane is θ2, a deviation occurs between θ2 and the inflow angle θ1. I do.

【0004】エンジン低回転での排気小流量時には、ノ
ズルベーンを閉じた状態で使用する頻度が高く、排気流
体の流速も小さい。この状態では、排気流体はノズルベ
ーン背側に沿って流れる事が可能である。しかし、エン
ジン高回転での排気大流量時には、ノズルベーンを開い
た状態で使用する頻度が高く、排気流体の流速も大き
い。このため、流入角度θ1と入口角度θ2がずれ、ノ
ズルベーン背側の出口付近に大きな剥離が発生した結
果、タービン効率が低下するという課題がある。
[0004] At a low exhaust gas flow rate at low engine speed, the exhaust gas is frequently used with the nozzle vanes closed, and the flow velocity of the exhaust fluid is small. In this state, the exhaust fluid can flow along the back side of the nozzle vane. However, when the exhaust gas flows at a high engine speed, the nozzle vane is frequently used with the nozzle vane opened, and the flow velocity of the exhaust fluid is high. For this reason, the inflow angle θ1 and the inlet angle θ2 deviate, and large separation occurs near the outlet on the back side of the nozzle vane. As a result, there is a problem that turbine efficiency is reduced.

【0005】ゆえに、本発明は、大流量時の流体剥離を
低減する事を、その課題とする。
Accordingly, an object of the present invention is to reduce fluid separation at a large flow rate.

【0006】[0006]

【課題を解決するための手段】ノズルベーン形状を円弧
形状とする事で、大流量時の排気流入角度とノズルベー
ンの入口角度のずれを少なくし、ノズルベーン背側の出
口付近での流体剥離を低減する。
By making the nozzle vane arc-shaped, the deviation between the exhaust inflow angle at the time of a large flow rate and the nozzle vane inlet angle is reduced, and the fluid separation near the outlet behind the nozzle vane is reduced. .

【0007】[0007]

【発明の実施の形態】図1は本発明の実施例であり、1
はノズルベーン円弧形状例の一つである。
FIG. 1 shows an embodiment of the present invention.
Is an example of a nozzle vane arc shape.

【0008】図2は従来の実施例であり、2はノズルベ
ーン直線形状例の一つである。
FIG. 2 shows a conventional embodiment, and 2 is an example of a linear shape of a nozzle vane.

【0009】[0009]

【発明の効果】ノズルベーン形状が直線形状では図3に
示すノズルベーン外縁部1aに沿って流れる流体3に剥
離発生部5が生じるが、円弧翼では図4に示すノズルベ
ーン円弧部1bに沿って流体3が流れる事で、流体剥離
発生部6が減少し、排気タービン4の効率が図5に示す
従来例1から実施例の如く改善される。
When the shape of the nozzle vane is straight, the separation 3 occurs in the fluid 3 flowing along the outer edge 1a of the nozzle vane shown in FIG. 3; Flows, the fluid separation generating portion 6 is reduced, and the efficiency of the exhaust turbine 4 is improved from the first conventional example shown in FIG.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の実施例を示し、1はノズルベーン円弧
形状例である。
FIG. 1 shows an embodiment of the present invention, wherein 1 is an example of a nozzle vane arc shape.

【図2】従来の実施例であり、2はノズルベーン直線形
状例である。
FIG. 2 is a conventional example, and 2 is an example of a nozzle vane linear shape.

【図3】ノズルベーン直線部1aに沿い、排気大流量時
の流線3が流れる事で、ノズルベーンに発生する流体剥
離発生部5が存在する事を示す。
FIG. 3 shows that there is a fluid separation generating section 5 generated in the nozzle vane when a streamline 3 at the time of a large exhaust gas flow flows along the nozzle vane straight section 1a.

【図4】ノズルベーン円弧部1bに沿い、排気大流量時
の流線3が流れる事で、ノズルベーンに発生する流体剥
離発生部6が減少する事を示す。
FIG. 4 shows that the flow line 3 at the time of a large exhaust flow rate flows along the nozzle vane arc portion 1b, thereby reducing the fluid separation generating portion 6 generated in the nozzle vane.

【図5】排気タービンの効率が、従来例1から実施例の
如く改善される事を示す。
FIG. 5 shows that the efficiency of the exhaust turbine is improved from Conventional Example 1 to the embodiment.

【符号の説明】[Explanation of symbols]

1…ノズルベーン円弧形状例、1a…直線形状における
ノズルベーン外縁部、1b…円弧形状におけるノズルベ
ーン外縁部、2…ノズルベーン直線形状例、3…排気大
量時の流線、4…排気タービン、5…流体剥離大発生
部、6…流体剥離小発生部。
DESCRIPTION OF SYMBOLS 1 ... Nozzle vane arc shape example, 1a ... Nozzle vane outer edge part in a linear shape, 1b ... Nozzle vane outer edge part in an arc shape, 2 ... Nozzle vane linear shape example, 3 ... Streamline at the time of a large amount of exhaust, 4 ... Exhaust turbine, 5 ... Fluid separation Large generation part, 6 ... Small part of fluid separation.

───────────────────────────────────────────────────── フロントページの続き (72)発明者 平井 良明 茨城県ひたちなか市高場2477番地 株式会 社日立カーエンジニアリング内 Fターム(参考) 3G005 EA15 EA16 GA04 GB24 3G071 AB06 BA07 BA09 DA16 HA04 ────────────────────────────────────────────────── ─── Continued on the front page (72) Inventor Yoshiaki Hirai 2477 Takaba, Hitachinaka-shi, Ibaraki F-term in Hitachi Car Engineering Co., Ltd. (Reference) 3G005 EA15 EA16 GA04 GB24 3G071 AB06 BA07 BA09 DA16 HA04

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 タービンロータの周囲に配置したノズル
ベーンが、回転する事で排気流量を絞る事が可能な過給
機において、ノズルベーンの形状を円弧形状とした事を
特徴とする自動車用排気タービン式過給機。
An exhaust turbine type for an automobile, wherein a nozzle vane disposed around a turbine rotor is capable of reducing an exhaust flow rate by rotating so that the nozzle vane has an arc shape. Supercharger.
JP2000164749A 2000-05-30 2000-05-30 Exhaust turbine type supercharger for automobile Pending JP2001342841A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2000164749A JP2001342841A (en) 2000-05-30 2000-05-30 Exhaust turbine type supercharger for automobile

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2000164749A JP2001342841A (en) 2000-05-30 2000-05-30 Exhaust turbine type supercharger for automobile

Publications (1)

Publication Number Publication Date
JP2001342841A true JP2001342841A (en) 2001-12-14

Family

ID=18668331

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000164749A Pending JP2001342841A (en) 2000-05-30 2000-05-30 Exhaust turbine type supercharger for automobile

Country Status (1)

Country Link
JP (1) JP2001342841A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009074542A (en) * 2007-08-28 2009-04-09 Toyota Central R&D Labs Inc Variable capacity turbocharger
CN102482948A (en) * 2009-09-14 2012-05-30 欧陆汽车有限责任公司 Guide vane for a turbo-compressor, guide vane arrangement, turbo-compressor, motor vehicle and method
JP2012159089A (en) * 2012-06-01 2012-08-23 Ihi Corp Vane shape of variable nozzle and variable capacity supercharger

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009074542A (en) * 2007-08-28 2009-04-09 Toyota Central R&D Labs Inc Variable capacity turbocharger
CN102482948A (en) * 2009-09-14 2012-05-30 欧陆汽车有限责任公司 Guide vane for a turbo-compressor, guide vane arrangement, turbo-compressor, motor vehicle and method
JP2012159089A (en) * 2012-06-01 2012-08-23 Ihi Corp Vane shape of variable nozzle and variable capacity supercharger

Similar Documents

Publication Publication Date Title
JP4242212B2 (en) Turbocharger
JP2009281197A (en) Mixed flow turbine
WO2003058038A1 (en) Vane wheel for radial turbine
JP2008128064A (en) Diagonal flow turbine or radial turbine
WO2014203372A1 (en) Radial-inflow type axial turbine and turbocharger
JP2002213202A (en) Gas turbine blade
JP4632076B2 (en) Exhaust turbine turbocharger
JP2000097111A (en) Egr device for supercharger engine
JP2001342841A (en) Exhaust turbine type supercharger for automobile
JP2012002140A (en) Turbine and supercharger
JP2013015034A (en) Variable capacity radial turbine and turbocharger having the same
JP2005240569A (en) Supercharging compressor having working fluid circulation passage
JP2001098959A (en) Throttle controller for internal combustion engine
JP5427900B2 (en) Mixed flow turbine
WO2013131214A1 (en) Mixed variable flow volute
JPH11257082A (en) Nozzle vane shape of variable capacity turbo charger
JPH0758041B2 (en) Variable capacity nozzleless radial bottle
JP2005188337A (en) Compressor for supercharging having working fluid recirculating path
JP2007192180A (en) Turbine for turbocharger
JPH01318790A (en) Flashing vane of multistage pump
JP4402503B2 (en) Wind machine diffusers and diffusers
JP2016053353A (en) Exhaust gas turbine of turbocharger
JP2005351193A (en) Turbo-charging device
JP2004084539A (en) Turbine
JP2008095572A (en) Turbocharger