JP2001342537A - Steel material excellent in toughness of welding heat- affected zone and its production - Google Patents

Steel material excellent in toughness of welding heat- affected zone and its production

Info

Publication number
JP2001342537A
JP2001342537A JP2000294878A JP2000294878A JP2001342537A JP 2001342537 A JP2001342537 A JP 2001342537A JP 2000294878 A JP2000294878 A JP 2000294878A JP 2000294878 A JP2000294878 A JP 2000294878A JP 2001342537 A JP2001342537 A JP 2001342537A
Authority
JP
Japan
Prior art keywords
steel
toughness
steel material
affected zone
oxide particles
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2000294878A
Other languages
Japanese (ja)
Other versions
JP3502822B2 (en
Inventor
Masanori Minagawa
昌紀 皆川
Toshihiko Koseki
敏彦 小関
Yuji Funatsu
裕二 船津
Jun Otani
潤 大谷
Tomohiko Hata
知彦 秦
Masamitsu Wakao
昌光 若生
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp filed Critical Nippon Steel Corp
Priority to JP2000294878A priority Critical patent/JP3502822B2/en
Publication of JP2001342537A publication Critical patent/JP2001342537A/en
Application granted granted Critical
Publication of JP3502822B2 publication Critical patent/JP3502822B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Treatment Of Steel In Its Molten State (AREA)

Abstract

PROBLEM TO BE SOLVED: To realize a steel material with an excellent HAZ toughness in which an austenite particle enlargement by heating at a high temperature for a long time is greatly suppressed even in welding with a large amount of heat input of 200 kJ/cm2 or more. SOLUTION: The steel material excellent in heat-affected zone toughness, is characterized in that in a steel having required components, oxide particles in circular equivalent diameter of 0.005-2.0 μm, preferably 0.1-2.0 μm, are contained, and oxide particles having at least Ca and Al, or Ca, Al and Mg as the composition, wherein the mass ratio of elements excepting O, is Ca: 5% or above and Al: 5% or above, or Ca: 5% above, Al: 5% above and Mg: 1% or above, are contained in 100-5,000 pieces/mm2.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、船舶、海洋構造
物、中高層ビルなどに使用される溶接熱影響部(以下H
AZと称す)の靭性に優れた溶接構造用鋼材およびその
製造方法に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a welding heat affected zone (hereinafter referred to as H) used for ships, offshore structures, middle and high rise buildings and the like.
AZ) and a method for producing the same.

【0002】[0002]

【従来の技術】近年、船舶、海洋構造物、中高層ビル、
橋梁などの大型構造物に使用される溶接用鋼材の材質特
性に対する要望は厳しさを増している。さらにそのよう
な構造物を建造する際、溶接の効率化を促進するため、
フラックス−銅バッキング溶接法、エレクトロガス溶接
法、エレクトロスラグ溶接法などに代表されるような大
入熱溶接法の適用が希望されており、鋼材自身の靭性と
同様に、HAZの靭性への要求も厳しさを増している。
2. Description of the Related Art In recent years, ships, marine structures, middle and high-rise buildings,
Demands on the material properties of welding steel used for large structures such as bridges are increasing. Furthermore, when building such a structure, to promote more efficient welding,
It is desired to apply a large heat input welding method typified by a flux-copper backing welding method, an electrogas welding method, an electroslag welding method, etc., as well as the toughness of the steel material itself, as well as the demands on the toughness of the HAZ. Are also becoming more severe.

【0003】大入熱溶接時の鋼材のHAZ靭性に注目し
た提案は従来から数多くある。
There have been many proposals focusing on the HAZ toughness of steel during large heat input welding.

【0004】例えば、特公昭55−26164号公報等
に開示されるように、微細なTi窒化物を鋼中に確保す
ることによって、HAZのオーステナイト粒を小さく
し、靭性を向上させる方法がある。また、特開平3−2
64614号公報ではTi窒化物とMnSとの複合析出
物をフェライトの変態核として活用し、HAZの靭性を
向上させる方法が提案されている。
[0004] For example, as disclosed in Japanese Patent Publication No. 55-26164, there is a method of reducing austenite grains of HAZ and improving toughness by securing fine Ti nitride in steel. Also, Japanese Patent Application Laid-Open No. 3-2
Japanese Patent No. 64614 proposes a method of improving the toughness of HAZ by utilizing a composite precipitate of Ti nitride and MnS as a transformation nucleus of ferrite.

【0005】しかしながら、Ti窒化物は、HAZのう
ち最高到達温度が1400℃を超える溶接金属との境界
(溶接ボンド部と称する)近傍ではほとんど固溶してし
まうので靭性向上効果が低下してしまうという問題があ
り、近年の厳しい鋼材特性への要求を達成することが困
難である。
[0005] However, Ti nitride almost completely forms a solid solution near the boundary (referred to as a weld bond portion) with the weld metal having a maximum temperature exceeding 1400 ° C. of the HAZ, so that the effect of improving the toughness is reduced. Therefore, it is difficult to achieve the recent strict requirements for steel material properties.

【0006】この溶接ボンド部近傍の靭性を改善する方
法として、Ti酸化物を含有した鋼が厚板、形鋼などの
様々な分野で使用されている。例えば厚板分野では特開
昭61−79745号公報や特開昭62−103344
号公報に例示されているように、Ti酸化物を含有した
鋼が大入熱溶接部靭性向上に非常に有効であり、高張力
鋼への適用が有望である。この原理は、鋼の融点におい
ても安定なTi酸化物をサイトとして、溶接後の温度低
下途中にTi窒化物、MnS等が析出し、さらにそれら
をサイトとして微細フェライトが生成し、その結果靭性
に有害な粗大フェライトの生成が抑制され、靭性の劣化
が防止できるというものである。しかしながら、このよ
うなTi酸化物は鋼中へ分散される個数をあまり多くす
ることができない。その原因はTi酸化物の粗大化や凝
集合体であり、Ti酸化物の個数を増加させようとすれ
ば5μm以上の粗大なTi酸化物、いわゆる介在物が増
加してしまう。この5μm以上の介在物は構造物の破壊
の起点となって有害であり、靭性の低下を引き起こす。
したがって、さらなるHAZ靭性の向上を達成するため
には、粗大化や凝集合体が起こりにくく、Ti酸化物よ
りも微細に分散する酸化物を活用する必要がある。
As a method for improving the toughness in the vicinity of the weld bond, steels containing Ti oxide are used in various fields such as thick plates and section steels. For example, in the field of thick plates, Japanese Patent Application Laid-Open Nos. 61-79745 and 62-103344.
As exemplified in the publication, steel containing Ti oxide is very effective in improving the toughness of a large heat input weld, and its application to high-strength steel is promising. This principle is based on the fact that Ti nitrides, MnS, etc., are precipitated while the temperature is lowered after welding, and fine ferrite is generated using the Ti oxides, which are stable even at the melting point of steel, as sites. The formation of harmful coarse ferrite is suppressed, and the deterioration of toughness can be prevented. However, the number of such Ti oxides dispersed in steel cannot be so large. This is due to coarsening and aggregation of Ti oxides. If the number of Ti oxides is to be increased, coarse Ti oxides of 5 μm or more, so-called inclusions, will increase. The inclusions having a size of 5 μm or more are harmful as a starting point of the destruction of the structure and cause a decrease in toughness.
Therefore, in order to further improve the HAZ toughness, it is necessary to utilize an oxide which is less likely to be coarsened and aggregated and which is more finely dispersed than a Ti oxide.

【0007】また、このようなTi酸化物の鋼中への分
散方法としては、Al等の強脱酸元素を実質的に含まな
い溶鋼中へのTi添加によるものが多い。しかしなが
ら、単に溶鋼中にTiを添加するだけでは鋼中のTi酸
化物の個数、分散度を制御することは困難であり、さら
には、TiN、MnS等の析出物の個数、分散度を制御
することも困難である。その結果、Ti脱酸のみによっ
てTi酸化物を分散させた鋼においては、例えば、Ti
酸化物の個数が十分でなかったり、厚板の板厚方向の靭
性変動を生じる等の問題点が認められる。
As a method for dispersing such Ti oxides in steel, there are many methods in which Ti is added to molten steel substantially containing no strong deoxidizing element such as Al. However, it is difficult to control the number and dispersity of Ti oxides in steel simply by adding Ti to molten steel, and further control the number and dispersity of precipitates such as TiN and MnS. It is also difficult. As a result, in steel in which Ti oxide is dispersed only by Ti deoxidation, for example, Ti
Problems such as insufficient number of oxides and variation in toughness in the thickness direction of the thick plate are observed.

【0008】さらに、上記特開昭61−79745号公
報などの方法では、Ti酸化物を生成しやすくするため
に、Al量の上限を、0.007%という非常に少ない
量で制限している。鋼材中のAl量が少ない場合、Al
N析出物量の不足などの原因により、母材の靭性が低下
する場合がある。また、通常使用されている溶接材料を
用いてAl量の少ない鋼板を溶接した場合、溶接金属の
靭性が低下する場合がある。
Further, in the method disclosed in Japanese Patent Application Laid-Open No. 61-79745 or the like, the upper limit of the amount of Al is limited to a very small amount of 0.007% in order to easily form a Ti oxide. . If the amount of Al in the steel is small,
There may be a case where the toughness of the base material is reduced due to a cause such as an insufficient amount of N precipitates. Further, when a steel sheet having a small amount of Al is welded using a commonly used welding material, the toughness of the weld metal may be reduced.

【0009】このような課題に対して、特開平6−29
3937号公報、特開平6−293937号公報におい
てTi添加直後のAlを添加することで、生成するTi
−Al複合酸化物を活用する技術が提案されている。こ
の技術により、大入熱溶接HAZ靭性を大幅に向上させ
ることが可能であるが、直近、造船業界、建設業界にお
いては、200kJ/cm以上、大きいものでは100
0kJ/cmものさらなる溶接入熱の増加が進められて
おり、より一層のHAZ靭性を有する鋼材が必要とされ
ている。この際、特に溶接融合部近傍の靭性向上が必要
となる。
To solve such a problem, Japanese Patent Laid-Open No. 6-29
No. 3937 and JP-A-6-293937, Ti formed by adding Al immediately after adding Ti
-A technology utilizing an Al composite oxide has been proposed. With this technology, large heat input welding HAZ toughness can be greatly improved, but in recent years, in the shipbuilding industry and the construction industry, it is 200 kJ / cm or more, and when it is large, it is 100 kJ / cm.
A further increase in welding heat input of as much as 0 kJ / cm is in progress, and a steel material having even higher HAZ toughness is required. At this time, it is particularly necessary to improve the toughness in the vicinity of the weld fusion part.

【0010】[0010]

【発明が解決しようとする課題】本発明は、前記のよう
な超大入熱の溶接時においても、高温に長時間加熱され
たときのオーステナイト粒粗大化を一層抑制して、優れ
たHAZ靭性を実現した溶接熱影響部靭性の優れた鋼材
およびその製造方法を提供することを課題とするもので
ある。
SUMMARY OF THE INVENTION The present invention provides an excellent HAZ toughness by further suppressing the austenite grain coarsening when heated to a high temperature for a long time even during the welding with the super-high heat input as described above. It is an object of the present invention to provide a steel material having excellent toughness of a weld heat-affected zone and a method of manufacturing the same.

【0011】[0011]

【課題を解決するための手段】本発明は、特定鋼成分の
鋼中にCa、AlあるいはCa、Al、Mgの微細な酸
化物を分散させことにより、上記課題を解決し得ること
を知見し、本発明を完成した。
The present invention has been found to solve the above-mentioned problems by dispersing Ca, Al or fine oxides of Ca, Al, Mg in steel having a specific steel component. Thus, the present invention has been completed.

【0012】本発明の要旨は、以下の通りである。The gist of the present invention is as follows.

【0013】(1) 質量%で、C :0.03〜0.
18%、Si:≦0.5%、Mn:0.4〜2.0%、
P :≦0.02%、S :≦0.02%、Al:0.
005〜0.04%、Ti:0.005〜0.03%、
Ca:0.0005〜0.003%、N :0.000
5〜0.006%、O :0.0005〜0.006%
を含有し、残部はFeおよび不可避不純物からなる鋼
で、かつ、この鋼中に円相当径で0.005〜2.0μ
mの酸化物粒子を単位面積当たりの個数密度で100〜
5000個/mm2含有し、その酸化物粒子の組成が少
なくともCa、Al、Oの元素からなり、該Oを除いた
元素が質量%で、Ca:5%以上、Al:5%以上であ
ることを特徴とする溶接熱影響部靭性の優れた鋼材。
(1) In mass%, C: 0.03-0.
18%, Si: ≤ 0.5%, Mn: 0.4 to 2.0%,
P: ≦ 0.02%, S: ≦ 0.02%, Al: 0.
005 to 0.04%, Ti: 0.005 to 0.03%,
Ca: 0.0005 to 0.003%, N: 0.000
5 to 0.006%, O: 0.0005 to 0.006%
, The balance being steel consisting of Fe and unavoidable impurities, and having a circle equivalent diameter of 0.005 to 2.0 μm in the steel.
m of oxide particles in a number density per unit area of 100 to
5,000 particles / mm 2, and the composition of the oxide particles is composed of at least elements of Ca, Al and O, and the element excluding O is mass%, and Ca is 5% or more and Al is 5% or more. A steel material with excellent toughness in the heat-affected zone of a weld, characterized in that:

【0014】(2) 質量%で、C :0.03〜0.
18%、Si:≦0.5%、Mn:0.4〜2.0%、
P :≦0.02%、S :≦0.02%、Al:0.
005〜0.04%、Ti:0.005〜0.03%、
Ca:0.0005〜0.003%、Mg:0.000
1〜0.002%、N :0.0005〜0.006
%、O :0.0005〜0.006%を含有し、残部
はFeおよび不可避不純物からなる鋼で、かつ、この鋼
中に円相当径で0.005〜2.0μmの酸化物粒子を
単位面積当たりの個数密度で100〜5000個/mm
2含有し、その酸化物粒子の組成が少なくともCa、A
l、Mg、Oの元素からなり、該Oを除いた元素が質量
%で、Ca:5%以上、Al:5%以上、Mg:1%以
上であることを特徴とする溶接熱影響部靭性の優れた鋼
材。
(2) C: 0.03-0.
18%, Si: ≤ 0.5%, Mn: 0.4 to 2.0%,
P: ≦ 0.02%, S: ≦ 0.02%, Al: 0.
005 to 0.04%, Ti: 0.005 to 0.03%,
Ca: 0.0005-0.003%, Mg: 0.000
1 to 0.002%, N: 0.0005 to 0.006
%, O: 0.0005 to 0.006%, the balance being steel consisting of Fe and unavoidable impurities, and oxide steel particles having a circle equivalent diameter of 0.005 to 2.0 μm in the steel. 100-5000 pieces / mm in number density per area
2 containing oxide particles having a composition of at least Ca, A
1, heat-affected zone toughness characterized in that the element excluding O is represented by mass%, and Ca is 5% or more, Al is 5% or more, and Mg is 1% or more. Excellent steel material.

【0015】(3) 質量%で、Cu:≦1.0%、N
i:≦1.5%、Nb:≦0.03%、V :≦0.1
%、Cr:≦0.6%。Mo:≦0.6%、REM:≦
0.05%を含有することを特徴とする上記(1)また
は(2)記載の溶接熱影響部靭性の優れた鋼材。
(3) In mass%, Cu: ≦ 1.0%, N
i: ≦ 1.5%, Nb: ≦ 0.03%, V: ≦ 0.1
%, Cr: ≦ 0.6%. Mo: ≦ 0.6%, REM: ≦
The steel material having excellent toughness of the weld heat affected zone according to the above (1) or (2), containing 0.05%.

【0016】(4) 前記酸化物粒子の組成が、さら
に、Sを質量%で1%以上含有することを特徴とする上
記(1)〜(3)のいずれかに記載の溶接熱影響部靭性
の優れた鋼材。
(4) The weld heat-affected zone toughness according to any one of (1) to (3), wherein the composition of the oxide particles further contains 1% by mass or more of S. Excellent steel material.

【0017】(5) 前記酸化物粒子の組成が、さら
に、Mgを質量%で1%以上含有することを特徴とする
上記(2)〜(4)のいずれかに記載の溶接熱影響部靭
性の優れた鋼材。
(5) The weld heat-affected zone toughness according to any one of (2) to (4), wherein the composition of the oxide particles further contains 1% or more by mass of Mg. Excellent steel material.

【0018】(6) 前記鋼がさらに、質量%で、B
:0.0005〜0.003%を含有し、EN=(%
N)−0.292(%Ti)−1.292(%B)なる
当量式において0≦EN≦0.002を満足することを
特徴とする上記(1)〜(5)のいずれかに記載の溶接
熱影響部靭性の優れた鋼材。
(6) The steel further comprises, by mass%, B
: 0.0005 to 0.003%, EN = (%
N) -0.292 (% Ti) -1.292 (% B) In the equivalent equation, 0 ≦ EN ≦ 0.002 is satisfied. Steel with excellent toughness in the heat affected zone of welding.

【0019】(7) 前記酸化物粒子の円相当径で0.
1〜2.0μmであることを特徴とする上記(1)〜
(6)のいずれかに記載の溶接熱影響部靭性の優れた鋼
材。
(7) The oxide particles have a circle equivalent diameter of 0.1.
(1) to (1) to 2.0 μm.
(6) The steel material excellent in toughness of the weld heat-affected zone according to any of (6).

【0020】(8) 減圧雰囲気の二次精錬工程で、酸
素濃度が80ppm以下の溶鋼にTi、Al、CaをT
i、Al、Caの順で添加して、上記(1)〜(7)の
いずれかに記載の化学成分、酸化物を有する溶鋼とし、
これを鋳造して、鋳片とすることを特徴とする溶接熱影
響部靭性の優れた鋼材の製造方法。
(8) In the secondary refining process in a reduced-pressure atmosphere, Ti, Al, and Ca are added to molten steel having an oxygen concentration of 80 ppm or less by T
i, Al, and Ca are added in this order to obtain a molten steel having a chemical component and an oxide according to any one of the above (1) to (7),
A method for producing a steel material having excellent toughness in a heat-affected zone of a weld, characterized by casting this into a slab.

【0021】(9) 前記二次精錬工程における溶鋼中
の酸素濃度が80ppm超〜200ppm以下の場合に
は、AlまたはAl合金を添加して該溶鋼中の酸素濃度
を80ppm以下とすることを特徴とする上記(8)記
載の溶接熱影響部靭性の優れた鋼材の製造方法。
(9) When the oxygen concentration in the molten steel in the secondary refining step is more than 80 ppm to 200 ppm or less, the oxygen concentration in the molten steel is reduced to 80 ppm or less by adding Al or an Al alloy. The method for producing a steel material having excellent toughness of a weld heat affected zone according to the above (8).

【0022】(10) 前記二次精錬工程における溶鋼
中の酸素濃度が200ppm超の場合には、減圧雰囲気
でCを添加してC脱酸により該溶鋼中の酸素濃度を20
0ppm以下とすることを特徴とする上記(9)記載の
溶接熱影響部靭性の優れた鋼材の製造方法。
(10) When the oxygen concentration in the molten steel in the secondary refining step is more than 200 ppm, C is added in a reduced pressure atmosphere and the oxygen concentration in the molten steel is reduced to 20 by C deoxidation.
The method for producing a steel material having excellent toughness of a weld heat affected zone according to the above (9), wherein the content is set to 0 ppm or less.

【0023】[0023]

【発明の実施の形態】以下、本発明について詳細に説明
する。本発明者らはHAZ靭性を向上させる金属組織要
因として、1400℃以上に加熱されるHAZ領域の再
加熱オーステナイト細粒化を、酸化物を利用して達成す
ることを検討した。
BEST MODE FOR CARRYING OUT THE INVENTION Hereinafter, the present invention will be described in detail. The present inventors have studied the use of oxides to achieve reheating austenite grain refinement in a HAZ region heated to 1400 ° C. or higher as a metal structure factor for improving HAZ toughness.

【0024】再加熱オーステナイト粒を細粒化するため
には高温でのオーステナイト粒成長を抑制することが必
要である。その手段として最も有効な方法は、分散粒子
によりオーステナイトの粒界をピンニングし、粒界の移
動を止める方法が考えられる。そのような作用をする分
散粒子の一つとしては、従来、Tiの窒化物と酸化物が
有効であると考えられていた。しかしながらTi窒化物
は1400℃以上の高温では固溶する割合が大きくなる
ため、一部粗大粒が生成してしまいピンニング効果が小
さくなることは先に述べた。これに対し、高温で安定な
酸化物をピンニング粒子として活用することが必要であ
る。
In order to reduce the size of the reheated austenite grains, it is necessary to suppress the growth of austenite grains at a high temperature. The most effective method is to pin the austenite grain boundaries with dispersed particles and stop the movement of the grain boundaries. As one of the dispersed particles having such an effect, a nitride and an oxide of Ti have been conventionally considered to be effective. However, as described above, since the proportion of solid solution of Ti nitride at a high temperature of 1400 ° C. or more increases, coarse particles are partially generated to reduce the pinning effect. On the other hand, it is necessary to utilize oxides stable at high temperatures as pinning particles.

【0025】さらに、安定な酸化物の近傍は加工時に不
均一変形領域となるため、γ粒界とともに再結晶の優先
核生成サイトとなり、再結晶γの微細化を促進するとい
う効果もある。
Furthermore, since the vicinity of the stable oxide becomes a non-uniform deformation region at the time of processing, it becomes a preferential nucleation site for recrystallization together with the γ grain boundary, and has the effect of promoting the miniaturization of recrystallized γ.

【0026】また、分散粒子による結晶粒界のピンニン
グ効果は、分散粒子の体積率が大きいほど、一個の粒子
径が大きいほど大きい。ただし、分散粒子の体積率は鋼
中に含まれる粒子を構成する元素の濃度によって上限が
あるので、体積率を一定と仮定した場合には、粒子径は
ある程度小さい方がピンニングには有効である。このよ
うな観点から、本発明者らは酸化物の体積分率を大き
く、かつ適正な粒子径となるよう、種々の検討を行っ
た。
The effect of the dispersed particles on the pinning of the crystal grain boundaries increases as the volume ratio of the dispersed particles increases and as the diameter of one particle increases. However, since the volume fraction of dispersed particles has an upper limit depending on the concentration of the elements constituting the particles contained in the steel, if the volume fraction is assumed to be constant, a smaller particle diameter is more effective for pinning. . From such a viewpoint, the present inventors have conducted various studies to increase the volume fraction of the oxide and to obtain an appropriate particle size.

【0027】酸化物の体積分率を大きくする手段の一つ
として、酸素量を増大させることがあるが、酸素量の増
大は材質に有害な粗大酸化物をも多数生成する原因とな
るため、有効な手段ではない。そこで本発明者らは、酸
素を最大限に利用するため、酸素との溶解度積が小さい
元素を活用することを検討した。酸素との溶解度積が小
さい、すなわち強脱酸元素として、一般的にはAlが用
いられる。しかしながら、Alだけでは酸素を十分利用
するには不充分で、さらにAlよりも強い脱酸元素が必
要で、種々検討の結果、鉄鋼の脱酸工程で汎用的に使用
されるCaを活用することが有効であることを見出し
た。Caは酸素との溶解度積が小さいため、同量の酸素
に対してAlよりも一層多量の酸化物を生成することが
できる。脱酸元素としてCaを用いた実験を種々行った
結果、鋼中に生成する酸化物粒子の組成として、Caが
5%以上、Alが5%以上含まれることで、酸化物の体
積分率すなわち酸化物量を大きくすることが可能となる
ことを知見した。この結果を基に、鋼中に含まれる酸化
物粒子の組成を、少なくともCa、Al、Oを含み、O
を除いた元素が質量比でCaを5%以上、Alを5%以
上とした。
One way to increase the volume fraction of oxides is to increase the amount of oxygen. However, an increase in the amount of oxygen causes the formation of a large number of coarse oxides that are harmful to the material. It is not an effective means. Therefore, the present inventors have studied the use of an element having a small solubility product with oxygen in order to make maximum use of oxygen. Al is generally used as a material having a small solubility product with oxygen, that is, as a strongly deoxidizing element. However, Al alone is not sufficient to sufficiently utilize oxygen, and further requires a deoxidizing element stronger than Al. As a result of various studies, it is necessary to use Ca that is widely used in the deoxidizing process of steel. Was found to be effective. Since Ca has a small solubility product with oxygen, Ca can produce a larger amount of oxide than Al for the same amount of oxygen. As a result of various experiments using Ca as a deoxidizing element, the composition of the oxide particles generated in the steel contained 5% or more of Ca and 5% or more of Al, and thus the volume fraction of the oxide, It has been found that it is possible to increase the amount of oxide. On the basis of this result, the composition of the oxide particles contained in the steel was changed to include at least Ca, Al, O, and O
The elements excluding are set to have a mass ratio of Ca of 5% or more and Al of 5% or more.

【0028】また、Caと同時にMgを使用することも
酸化物を多数生成させることに有効であることを見出し
た。MgはCaほどの効果はないものの、Alより強い
脱酸元素であり、酸素との溶解度積が小さい。したがっ
て、MgをCaと複合して脱酸に使用することで酸化物
個数を一層増加させることが可能となる。発明者らは脱
酸元素としてCaを用いた実験を行った結果、鋼中に生
成する酸化物粒子の組成として、Caが5%以上、Al
が5%以上、Mgが1%以上含まれることで、酸化物の
体積分率すなわち酸化物量を一層大きくすることが可能
となることを知見した。この結果を基に、鋼中に含まれ
る酸化物粒子の組成を、少なくともCa、Al、Mg、
Oを含み、Oを除いた元素が質量比でCaを5%以上、
Alを5%以上、Mgを1%以上とした。
It has also been found that the use of Mg together with Ca is also effective in producing a large number of oxides. Although Mg is not as effective as Ca, it is a stronger deoxidizing element than Al and has a small solubility product with oxygen. Therefore, it is possible to further increase the number of oxides by combining Mg with Ca and using it for deoxidation. The inventors conducted an experiment using Ca as a deoxidizing element, and as a result, as a composition of oxide particles generated in steel, Ca
Was found to be 5% or more and Mg to be 1% or more, thereby making it possible to further increase the volume fraction of the oxide, that is, the amount of the oxide. Based on this result, the composition of the oxide particles contained in the steel was changed to at least Ca, Al, Mg,
The element containing O and excluding O has a mass ratio of Ca of 5% or more,
Al was set to 5% or more, and Mg was set to 1% or more.

【0029】さらには、本発明者らは、酸化物の周囲に
CaSおよびMgSといった硫化物が析出することで、
酸化物と硫化物とを併せてより一層の体積分率の増加が
可能となることを見出したのである。この結果をもと
に、鋼中に含まれる粒子の組成を、少なくともCa、A
l、O、Sを含み、Oを除いた元素が質量比でCaを5
%以上、Alを5%以上、Sを1%以上、もしくは、少
なくともCa、Al、Mg、O、Sを含み、Oを除いた
元素が質量比でCaを5%以上、Alを5%以上、Mg
を1%以上、Sを1%以上とした。なおかつ、不可避的
に混入するSi、Mn、TiなどのAlより弱い脱酸元
素を含んでも本発明効果に影響のないことを確認した。
Furthermore, the present inventors have found that sulfides such as CaS and MgS precipitate around the oxide,
They have found that it is possible to further increase the volume fraction by combining oxides and sulfides. Based on this result, the composition of the particles contained in the steel was changed to at least Ca, A
Elements containing l, O, and S, but excluding O,
% Or more, Al is 5% or more, S is 1% or more, or an element containing at least Ca, Al, Mg, O, and S and excluding O is 5% or more of Ca and 5% or more of Al by mass ratio. , Mg
Was set to 1% or more, and S was set to 1% or more. In addition, it was confirmed that the effect of the present invention was not affected even if a deoxidizing element weaker than Al, such as Si, Mn, or Ti, which was inevitably mixed, was included.

【0030】次に、ピンニングに有効な酸化物粒子の大
きさについて述べる。
Next, the size of the oxide particles effective for pinning will be described.

【0031】分散粒子による結晶粒界のピンニング効果
は、分散粒子の体積率が大きいほど、一個の粒子径が大
きいほど大きいが、粒子の体積率が一定のとき、一個の
酸化物粒子の大きさが小さい方が粒子数が多くなりピン
ニング効果が大きくなるが、あまり小さくなると粒界に
存在する粒子の割合が小さくなるため、その効果は低減
すると考えた。粒子の大きさを種々変化させた試験片を
用いて、高温に加熱したときのオーステナイト粒径を詳
細に調査した結果、ピンニングには粒子の大きさとし
て、0.005〜2.0μmのものが効果が大きいこと
をつきとめた。さらに、オーステナイト粒界の移動を止
めるピンニング力は分散粒子のサイズが大きいほど強い
ことが判明し、粒子径0.005〜2.0μmの中でも
0.1〜2.0μmの粒子の大きさが特に有効であるこ
とを知見するに至った。0.1μmより小さくなるとピ
ンニング効果は徐々に減少し、0.005μmより小さ
くなるとほとんどピンニング効果を発揮しない。また、
2.0μmより大きい酸化物粒子はピンニング効果はあ
るものの、脆性破壊の起点となることがあるため鋼材の
特性上不適である。この結果より、必要な粒子径を0.
005〜2.0μm、その中でも特に0.1〜2.0μ
mが効果がある。
The effect of the dispersed particles on the pinning of the crystal grain boundaries increases as the volume fraction of the dispersed particles increases and as the diameter of one particle increases, but when the volume ratio of the particles is constant, the size of one oxide particle is reduced. It was considered that the smaller the number, the larger the number of particles and the larger the pinning effect, but the smaller the value, the smaller the proportion of the particles present at the grain boundaries, and thus considered that the effect was reduced. As a result of a detailed investigation of the austenite particle size when heated to a high temperature using test pieces with variously changed particle sizes, pinning has a particle size of 0.005 to 2.0 μm. I found that the effect was great. Furthermore, it has been found that the pinning force for stopping the movement of the austenite grain boundary is stronger as the size of the dispersed particles is larger, and among the particle sizes of 0.005 to 2.0 μm, the size of the particles of 0.1 to 2.0 μm is particularly large. They have found that it is effective. When it is smaller than 0.1 μm, the pinning effect gradually decreases, and when it is smaller than 0.005 μm, the pinning effect is hardly exhibited. Also,
Oxide particles larger than 2.0 μm have a pinning effect, but may be a starting point of brittle fracture, and are therefore unsuitable in the properties of steel materials. Based on this result, the required particle size was set at 0.
005 to 2.0 μm, among which 0.1 to 2.0 μm
m is effective.

【0032】次に、HAZ靭性に必要なピンニング粒子
の個数について検討した。
Next, the number of pinning particles required for HAZ toughness was examined.

【0033】酸化物粒子個数が多いほど組織単位は微細
になり、粒子個数が多いほどHAZ靭性が向上するが、
鋼材に要求されるHAZ靭性は、その用途、使用される
溶接方法などによって複雑に異なる。特に要求特性が厳
しいと考えられる高強度の造船用鋼で大入熱溶接施工さ
れる場合に要求されるHAZ靭性、例えば、試験温度−
40℃において吸収エネルギー50J以上を満足するた
めには、図1に示すように、円相当径が0.005〜
2.0μmの酸化物粒子数が100個/mm2以上必要
であることを知見した。ただし、粒子数が多くなるほ
ど、その靭性向上効果は小さくなり、必要以上に粒子個
数を多くすることは靭性に有害な粗大な粒子が生成する
可能性が高くなることを考えると、粒子数の上限は50
00個/mm 2が適切である。すなわち、粒子数が50
00個/mm2を超えると粒子間隔が小さくなり、加熱
オーステナイト粒の微細化には有効であるが、介在物を
起点とする破壊の間隔が小さくなるためシャルピー衝撃
吸収エネルギーに代表される靭性にはむしろ有害である
ことが分かった。したがって、有効かつ必要な粒子個数
を100〜5000個/mm2とした。
The greater the number of oxide particles, the finer the texture unit
HAZ toughness improves as the number of particles increases,
HAZ toughness required for steel materials is
It depends on the welding method. Particularly required characteristics
Large heat input welding with high strength shipbuilding steel
Required HAZ toughness, such as test temperature-
Satisfies absorption energy of 50 J or more at 40 ° C
First, as shown in FIG.
The number of oxide particles of 2.0 μm is 100 / mmTwoNeed more
It was found that. However, as the number of particles increases,
However, the effect of improving toughness is reduced,
Higher numbers produce coarser particles that are detrimental to toughness
Considering that the possibility increases, the upper limit of the number of particles is 50.
00 pieces / mm TwoIs appropriate. That is, when the number of particles is 50
00 pieces / mmTwoIf it exceeds, the particle spacing becomes small and heating
It is effective for refining austenite grains,
Charpy impact due to the reduced distance between fractures
Rather harmful to toughness typified by absorbed energy
I understood that. Therefore, the effective and required number of particles
100 to 5000 pieces / mmTwoAnd

【0034】この酸化物粒子の大きさおよび個数の測定
は、例えば以下の要領で行う。母材となる鋼板から抽出
レプリカを作製し、それを電子顕微鏡にて10000倍
で20視野以上、観察面積にして1000μm2以上を
観察することで該酸化物の大きさおよび個数を測定す
る。大きさの測定は、例えば粒子を撮影した写真をもと
に、その円相当径を求める。このとき鋼板の表層部から
中心部までどの部位から採取した抽出レプリカでもよ
い。また、粒子が適正に観察可能であれば、観察倍率を
低くしてもかまわない。
The size and the number of the oxide particles are measured, for example, in the following manner. An extract replica is prepared from a steel sheet as a base material, and the size and the number of the oxide are measured by observing at least 20 visual fields at a magnification of 10000 and an observation area of 1000 μm 2 or more with an electron microscope. In the measurement of the size, for example, a circle-equivalent diameter is obtained based on a photograph of a particle. At this time, an extracted replica collected from any part from the surface part to the center part of the steel sheet may be used. If the particles can be properly observed, the observation magnification may be reduced.

【0035】酸化物粒子は溶鋼を脱酸する際に生成す
る。これを一次酸化物と称する。さらには鋳造、凝固中
に溶鋼温度の低下とともにTi−Al−Ca酸化物は生
成する。これを二次酸化物と称する。本発明では、一次
酸化物と二次酸化物とのどちらを用いてもかまわない。
Oxide particles are generated when deoxidizing molten steel. This is called a primary oxide. Furthermore, during casting and solidification, Ti-Al-Ca oxide is generated as the temperature of the molten steel decreases. This is called a secondary oxide. In the present invention, either a primary oxide or a secondary oxide may be used.

【0036】鋼材を製造するプロセスとして、通常圧延
まま、制御圧延、さらにこれと制御冷却と焼もどしの組
合せ、および焼入れ・焼もどしの組合せなどであっても
酸化物の効果は影響を受けない。
The effects of the oxides are not affected by the process for producing the steel material, which is normally performed as-rolled, controlled-rolling, a combination thereof with controlled cooling and tempering, or a combination of quenching and tempering.

【0037】さらに、このような鋳片の製造条件を詳細
に検討した。鋼の製造過程:転炉→取鍋→二次精錬→連
続鋳造において、鋳片中に残留する酸化物系介在物は、
特に二次精錬工程における脱酸開始前の溶鋼酸素濃度を
80ppm以下に抑え、かつ、脱酸元素をTi、Al、
Caの順に添加することで、顕著に平均粒径が微細化し
個数が増大することを知見した。また、これにより、最
終的に残留する介在物の組成も、上記のように鋼中の酸
化物粒子の組成として、Ca:3%以上、Al:1%以
上含ませることが可能となることを知見した。ここで二
次精錬は、転炉精錬後に真空精練装置や不活性ガス中で
の精練装置によって行われる工程を指す。二次精錬工程
における脱酸開始前の溶鋼酸素濃度が80ppmを超え
る場合、および/または脱酸元素の添加順序が上記の通
りでない場合は、酸化物系介在物の平均サイズは比較的
大きく、したがって個数も目標レベルに達しない。すな
わちこれらの結果から、脱炭を行った溶鋼にSiとMn
を添加後、真空精練装置や不活性ガス中での精練装置等
の二次精錬工程に移し、その際の溶鋼酸素濃度が80p
pm以下の場合には、引き続きTi、Al、Caの順で
添加し、また、溶鋼酸素濃度が200ppmより高い場
合には、減圧雰囲気でコークス粉などのCを添加してC
脱酸を行ない、該溶鋼中の酸素濃度を200ppm以下
としてから、さらに微量のAlまたはAl合金を入れて
酸素濃度を80ppm以下とした後にTi、Al、Ca
の順で添加し、また、溶鋼酸素濃度が80ppmより高
く200ppmより低い場合には、微量のAlまたはA
l合金を入れて酸素濃度を80ppm以下とした後にT
i、Al、Caの順で添加することで、いずれの場合に
おいても上記要件を満たす微細な介在物を分散した鋳片
が製造できることが分かった。ここで、Ti、Al、C
aについては、それぞれの脱酸元素および不可避的不純
物からなる金属粒または金属ワイヤ、もしくは該脱酸元
素を含む合金粒または合金ワイヤの形で添加するが、特
に、脱酸元素を含む合金の形で添加することにより、脱
酸元素の歩留まりが向上するとともに、酸化物の微細化
が一層促進されることが判明した。
Further, the production conditions of such a slab were examined in detail. Steel production process: In converter → ladle → secondary refining → continuous casting, oxide inclusions remaining in the slab are:
In particular, the oxygen concentration of molten steel before the start of deoxidation in the secondary refining process is suppressed to 80 ppm or less, and the deoxidizing elements are Ti, Al,
It has been found that by adding Ca in the order, the average particle size is remarkably reduced and the number increases. In addition, this makes it possible that the composition of the finally remaining inclusions can be included as the composition of the oxide particles in the steel, as described above, in Ca: 3% or more and Al: 1% or more. I learned. Here, secondary refining refers to a process performed by a vacuum refining device or a refining device in an inert gas after converter refining. If the molten steel oxygen concentration before the start of deoxidation in the secondary refining step exceeds 80 ppm and / or the order of adding the deoxidizing element is not as described above, the average size of the oxide-based inclusions is relatively large, and The number does not reach the target level. That is, based on these results, the decarbonized molten steel was added to Si and Mn.
After the addition, the process is transferred to a secondary refining process such as a vacuum refining device or a refining device in an inert gas, where the oxygen concentration of molten steel is 80 p.
pm or less, successively add Ti, Al and Ca in this order, and if the molten steel oxygen concentration is higher than 200 ppm, add C such as coke
After performing deoxidation to reduce the oxygen concentration in the molten steel to 200 ppm or less, and further adding a small amount of Al or an Al alloy to reduce the oxygen concentration to 80 ppm or less, Ti, Al, Ca
, And when the oxygen concentration of molten steel is higher than 80 ppm and lower than 200 ppm, a small amount of Al or A
1 alloy is added to reduce the oxygen concentration to 80 ppm or less, and then T
It was found that by adding i, Al, and Ca in this order, in any case, a slab in which fine inclusions satisfying the above requirements were dispersed could be produced. Here, Ti, Al, C
With respect to a, it is added in the form of metal grains or metal wires composed of the respective deoxidizing elements and unavoidable impurities, or alloy grains or alloy wires containing the deoxidizing elements. It has been found that the addition of the element improves the yield of the deoxidizing element and further promotes the miniaturization of the oxide.

【0038】一方、このようにして鋼中に酸化物を分散
することにより、HAZの再加熱オーステナイト粒はピ
ンニングにより極めて有効に細粒化し、HAZ靭性もそ
れに伴い向上するが、同時にオーステナイト粒が微細化
するに伴い粒界面積が増し、粒界からのフェライト生成
能も増し、非常に厳しい靭性要求においては、特に粒界
の角部(粒界三重点)の比較的粗大なフェライトが起点
となって靭性向上を律速していることが新たな問題点と
して見出された。言い換えれば、このような粒界および
粒界三重点に形成する比較的粗大なフェライトを抑制・
改善することができれば、HAZ組織の微細化効果と重
畳してさらに靭性を大幅に向上することが可能である。
このような粒界および粒界三重点に形成する比較的粗大
なフェライトの問題は、大入熱溶接のHAZ組織を酸化
物で従来になく微細化することで、初めて見出されたも
のである。
On the other hand, by dispersing the oxide in the steel in this way, the reheated austenite grains of the HAZ are extremely effectively refined by pinning, and the HAZ toughness is improved accordingly. As the grain size increases, the grain boundary area increases and the ability to form ferrite from the grain boundary increases. In very strict toughness requirements, the relatively coarse ferrite, especially at the corners of the grain boundary (grain boundary triple point), becomes the starting point. It has been found that controlling the improvement of toughness as a new problem. In other words, relatively coarse ferrite formed at such grain boundaries and grain boundary triple points is suppressed.
If it can be improved, the toughness can be greatly improved by overlapping with the effect of miniaturizing the HAZ structure.
The problem of the relatively coarse ferrite formed at the grain boundary and the grain boundary triple point was first discovered by making the HAZ structure of large heat input welding finer than ever with oxides. .

【0039】本発明者らは、HAZ組織の微細化による
靭性向上の効果を飛躍的に向上すべく、さらに検討を加
えた。その結果、微細な酸化物を多数分散して再加熱オ
ーステナイト粒を細粒化した場合、HAZ組織の形成過
程中で粒界および粒界三重点のフェライトの成長を抑制
するためには、Bの添加が極めて有効であることを見出
した。さらにBの添加効果の機構を詳細に調査した結
果、BとNのバランスが重要であり、Bと原子比で当量
以上の固溶Nがフェライト生成段階で残存していること
がBの添加効果を高め、細粒HAZの靭性を大幅に向上
させ、安定化させることが明らかとなった。
The present inventors have further studied in order to dramatically improve the effect of improving the toughness by making the HAZ structure finer. As a result, when the reheated austenite grains are refined by dispersing a large number of fine oxides, in order to suppress the growth of ferrite at the grain boundaries and grain boundary triple points during the formation process of the HAZ structure, B It has been found that the addition is extremely effective. Furthermore, as a result of a detailed investigation of the mechanism of the effect of the addition of B, the balance between B and N is important. , And significantly improved and stabilized the toughness of the fine-grained HAZ.

【0040】Ti添加鋼では、TiとNの親和力が極め
て大きいため、Tiによって消費されるNを考慮した結
果、図2に示すごとく、HAZ靭性はEN=(%N)−
0.292(%Ti)−1.292(%B)なる当量で
よく整理でき、当量値が0〜0.002の範囲であれ
ば、その添加効果が最も大きく、靭性が大幅に向上する
ことが分かった。この当量値が0未満の場合はBの効果
が認められず、他方、0.002を超える場合は、フェ
ライトは微細化するものの、HAZ靭性は余剰のNによ
って大きく低下した。
In the Ti-added steel, since the affinity between Ti and N is extremely large, the HAZ toughness is determined as EN = (% N)-as shown in FIG.
An equivalent of 0.292 (% Ti) -1.292 (% B) can be arranged well. When the equivalent value is in the range of 0 to 0.002, the effect of addition is the greatest and the toughness is greatly improved. I understood. When the equivalent value is less than 0, the effect of B is not recognized. On the other hand, when the equivalent value is more than 0.002, although the ferrite is refined, the HAZ toughness is greatly reduced by excess N.

【0041】さらに、本発明の基本成分範囲について述
べる。
Further, the basic component range of the present invention will be described.

【0042】Cは鋼の強度を向上させる有効な成分とし
て下限を0.03%とし、また過剰の添加は、鋼材の溶
接性やHAZ靭性などを著しく低下させるので、上限を
0.18%とした。
The lower limit of C is 0.03% as an effective component for improving the strength of steel, and the excessive addition significantly lowers the weldability and HAZ toughness of the steel material. did.

【0043】Siは母材の強度確保、脱酸などに必要な
成分であるが、HAZの硬化により靭性が低下するのを
防止するため上限を0.5%とした。好ましくは、0.
03〜0.5%である。
Si is a component necessary for securing the strength of the base material, deoxidizing, and the like, but the upper limit is set to 0.5% in order to prevent the toughness from being reduced by the hardening of the HAZ. Preferably, 0.
03-0.5%.

【0044】Mnは母材の強度、靭性の確保に有効な成
分として0.4%以上の添加が必要であるが、溶接部の
靭性、割れ性などの許容できる範囲で上限を2.0%と
した。
Mn needs to be added in an amount of 0.4% or more as an effective component for securing the strength and toughness of the base material, but the upper limit is 2.0% in the allowable range of the toughness and cracking property of the welded portion. And

【0045】Pは含有量が少ないほど望ましいが、これ
を工業的に低減させるためには多大なコストがかかるこ
とから、0.02%を上限とした。
The content of P is desirably as small as possible. However, in order to industrially reduce the content of P, a large cost is required. Therefore, the upper limit is set to 0.02%.

【0046】Sは含有量が少ないほど望ましいが、これ
を工業的に低減させるためには多大なコストがかかるこ
とから、0.02%を上限とした。
The lower the content of S, the better. However, since it requires a great deal of cost to reduce it industrially, the upper limit was made 0.02%.

【0047】Alは重要な脱酸元素であり、下限値を
0.005%とした。また、Alが多量に存在すると、
鋳片の表面品位が劣化するため、上限を0.04%とし
た。
Al is an important deoxidizing element, and the lower limit is set to 0.005%. Also, when Al is present in a large amount,
Since the surface quality of the slab deteriorates, the upper limit is set to 0.04%.

【0048】Tiは脱酸元素であると同時に、Nと結合
してTi窒化物を形成することで加熱γとHAZの細粒
化に一定の効果を及ぼすために0.005%以上添加す
る。しかし、固溶Ti量が増加するとHAZ靭性が低下
するため、0.03%を上限とした。
Ti is a deoxidizing element and is added in an amount of 0.005% or more in order to combine with N to form a Ti nitride to exert a certain effect on the heating γ and the grain refinement of HAZ. However, when the amount of solid solution Ti increases, the HAZ toughness decreases. Therefore, the upper limit is set to 0.03%.

【0049】CaはCa系酸化物を生成させるために
0.0005%以上の添加が必要である。しかしなが
ら、過剰の添加は粗大介在物を生成させるため、0.0
03%を上限とした。
Ca must be added in an amount of 0.0005% or more in order to form a Ca-based oxide. However, excessive addition produces coarse inclusions,
The upper limit was 03%.

【0050】MgはMg系酸化物を生成させるために
0.0001%以上の添加が必要である。しかしなが
ら、過剰の添加は粗大介在物を生成させるため、0.0
03%を上限とした。
Mg must be added in an amount of 0.0001% or more in order to generate an Mg-based oxide. However, excessive addition produces coarse inclusions,
The upper limit was 03%.

【0051】NはTiNとして析出することでHAZ靭
性の向上効果があるため、下限を0.0005%とし
た。しかしながら固溶Nが増大するとHAZ靭性の低下
を招くことから0.006%を上限とした。
N has the effect of improving the HAZ toughness by being precipitated as TiN, so the lower limit was made 0.0005%. However, an increase in solid solution N causes a decrease in HAZ toughness, so the upper limit was made 0.006%.

【0052】Oは溶鋼を脱炭する際に溶鋼中に含まれ、
その後の脱酸反応により減少するが、酸化物系介在物を
有効に使う目的においては、最終の鋳片段階で少なくと
も0.0005%必要である。一方、過剰に含有するこ
とはすなわち粗大な脱酸生成物(酸化物)を含有するこ
とを意味し、鋼材特性上は好ましくなく、したがって上
限を0.006%とした。
O is contained in the molten steel when the steel is decarburized,
Although reduced by the subsequent deoxidation reaction, at least 0.0005% is required in the final slab stage for the purpose of effectively using oxide-based inclusions. On the other hand, an excessive content means that a coarse deoxidation product (oxide) is contained, which is not preferable in terms of steel material properties. Therefore, the upper limit was made 0.006%.

【0053】BはNとの共存下で加熱オーステナイト粒
界に生成するフェライトの成長を抑制する上で有効な元
素であり、少なくとも0.0005%添加する。しかし
多量に添加すると鋼材の靭性を劣化させるため、上限を
0.003%とした。
B is an element effective in suppressing the growth of ferrite generated at the heated austenite grain boundary in the presence of N, and is added at least 0.0005%. However, if added in a large amount, the toughness of the steel material deteriorates, so the upper limit was made 0.003%.

【0054】Cuは鋼材の強度を向上させるために有効
であるが、1.0%を超えるとHAZ靭性を低下させる
ことから、1.0%を上限とした。
Although Cu is effective for improving the strength of the steel material, if it exceeds 1.0%, the HAZ toughness is reduced. Therefore, the upper limit is set to 1.0%.

【0055】Niは鋼材の強度および靭性を向上させる
ために有効であるが、Ni量の増加は製造コストを上昇
させるので、1.5%を上限とした。
Although Ni is effective for improving the strength and toughness of the steel material, the upper limit is 1.5% because an increase in the amount of Ni increases the production cost.

【0056】Nbは焼入れ性を向上させることにより母
材の強度および靭性を向上させるために有効な元素であ
るが、HAZ部においては過剰な添加は靭性を著しく低
下させるため0.03%を上限とした。
Nb is an element effective for improving the strength and toughness of the base material by improving the hardenability, but in the HAZ portion, an excessive addition significantly lowers the toughness, so the upper limit is 0.03%. And

【0057】V、Cr、MoについてもNbと同様な効
果を有することから、それぞれ0.1%、0.6%、
0.6%を上限とした。
Since V, Cr and Mo have the same effect as Nb, they are 0.1%, 0.6% and
The upper limit was 0.6%.

【0058】REMは溶鋼中Caに次ぐ脱酸力を有し、
Caによる微細酸化物形成を補助する働きがあるが、過
剰に入れるとCaと比較してコストアップが大きいとと
もに、粗大介在物を作って鋼板およびHAZの靭性を阻
害することから、上限を0.05%とした。
REM has deoxidizing power next to Ca in molten steel,
There is a function of assisting the formation of fine oxides by Ca, but if it is added excessively, the cost is larger than that of Ca, and coarse inclusions are formed to impair the toughness of the steel sheet and HAZ. 05%.

【0059】なお、実際の製造プロセスでは、添加した
元素が100%溶鋼中に含まれることになるわけではな
いので、歩留を考慮して余分に添加する必要がある。ま
た、添加方法については、特に規定はしない。上記条件
を満足するように鋼中に含有できる方法であれば、どの
ような方法でもかまわない。ただし前述のごとく、T
i、Al、Caおよび脱酸元素であるMg、REMは、
該脱酸元素を含む合金の形で添加することにより、脱酸
元素の歩留まりが向上するとともに、溶鋼中生成の酸化
物の微細化が一層促進される。
In the actual manufacturing process, the added elements are not necessarily included in the 100% molten steel. Therefore, it is necessary to add the elements in consideration of the yield. There is no particular limitation on the method of addition. Any method may be used as long as it can be contained in steel so as to satisfy the above conditions. However, as described above, T
i, Al, Ca and deoxidizing elements Mg and REM are:
By adding in the form of an alloy containing the deoxidizing element, the yield of the deoxidizing element is improved, and the miniaturization of oxides generated in molten steel is further promoted.

【0060】[0060]

【実施例】(実施例1)表1に示した化学成分で、50
キロ鋼を試作した。1〜9が本発明鋼、10〜17が比
較鋼である。試作鋼は転炉溶製し、RHにて真空脱ガス
処理時に脱酸を行っている。Ti投入前に溶鋼の溶存酸
素をSiで調整し、その後Ti、Alを順に添加し脱酸
を行ない、連続鋳造により280mm厚鋳片に鋳造した
後、加熱圧延を経て、板厚45mmの鋼板として製造し
た。得られた鋼板を1パスのSEGARC溶接した。入
熱は約200kJ/cm2である。
EXAMPLES (Example 1) 50 chemical components shown in Table 1 were used.
A kilo steel was prototyped. 1 to 9 are steels of the present invention, and 10 to 17 are comparative steels. The prototype steel is melted from a converter and deoxidized at RH during vacuum degassing. Before the introduction of Ti, the dissolved oxygen of the molten steel is adjusted with Si, then Ti and Al are sequentially added to perform deoxidation, cast into a 280 mm thick slab by continuous casting, and then subjected to heat rolling to obtain a 45 mm thick steel sheet. Manufactured. The obtained steel plate was subjected to one-pass SEGARC welding. The heat input is about 200 kJ / cm 2 .

【0061】[0061]

【表1】 [Table 1]

【0062】表2には、酸化物粒子の組成、粒子径0.
005〜2.0μmの粒子数、鋼板の圧延条件、母材特
性、およびHAZの靭性を示す。HAZ靭性評価のため
のシャルピー値は、フュージョンラインからHAZ1m
mの部位で9本の試験を行ない、その平均値である。
Table 2 shows the composition of the oxide particles and the particle diameter of the oxide particles.
It shows the number of particles of 005 to 2.0 μm, the rolling conditions of the steel sheet, the properties of the base material, and the toughness of HAZ. The Charpy value for HAZ toughness evaluation was HAZ1m from the fusion line.
Nine tests were performed at the site of m, and the average value was obtained.

【0063】[0063]

【表2】 [Table 2]

【0064】表2から明らかなように、1〜9の本発明
鋼は比較鋼と比べて優れたHAZ靭性を有することが判
る。すなわち、酸化物の粒子径、粒子数、組成の量が本
発明の範囲にあることから、−40℃のHAZ靭性が極
めて優れている。また、本発明鋼の中で、酸化物粒子径
0.1〜2.0μmが100〜5000個/mm2の範
囲内である発明鋼3、4、5、6、8、9、酸化物粒子
組成のMgが1%以上である発明鋼2、4、5、6、
7、8、9、酸化物粒子組成のSが1%以上である発明
鋼3、4、5はそれ以外本発明鋼よりHAZ靭性が良好
であることが解る。
As is clear from Table 2, the steels of the present invention Nos. 1 to 9 have excellent HAZ toughness as compared with the comparative steels. That is, since the particle diameter, the number of particles, and the amount of the composition of the oxide are within the range of the present invention, the HAZ toughness at −40 ° C. is extremely excellent. In addition, among the steels of the present invention, invention steels 3, 4, 5, 6, 8, 9, and oxide particles having an oxide particle diameter of 0.1 to 2.0 μm in the range of 100 to 5000 particles / mm 2. Invention steels 2, 4, 5, 6, in which the composition Mg is 1% or more,
It can be seen that 7, 8, 9, and Invention Steels 3, 4, and 5 in which the S of the oxide particle composition is 1% or more have better HAZ toughness than the other steels of the invention.

【0065】一方、比較例の10〜17は、いずれもシ
ャルピー試験−40℃で40J未満の低い靭性しか示さ
なかった。この原因は、比較例9においては酸化物粒子
組成であるCa量、Mg量および酸化物粒子数が本発明
の下限を外れ、また、比較例10は酸化物粒子のCa量
および酸化物粒子数が本発明の下限を外れていたためで
ある。また、比較例11〜16は酸化物粒子数が本発明
の下限を外れていたためである。また、比較例17は酸
化物粒子のAl量および酸化物粒子数が本発明の下限を
外れていたためである。
On the other hand, all of Comparative Examples 10 to 17 showed low toughness of less than 40 J at -40 ° C. in the Charpy test. The reason for this is that in Comparative Example 9, the content of Ca, Mg, and the number of oxide particles, which are the oxide particle compositions, are out of the lower limits of the present invention. Is outside the lower limit of the present invention. Further, Comparative Examples 11 to 16 are because the number of oxide particles was outside the lower limit of the present invention. In Comparative Example 17, the Al content of the oxide particles and the number of the oxide particles were outside the lower limits of the present invention.

【0066】(実施例2)表3に示した化学成分で、5
0〜60キロ鋼を試作した。1〜8が本発明鋼、9〜1
5が比較鋼である。試作鋼は転炉溶製し、RHにて真空
脱ガス処理時に脱酸を行っている。Ti投入前に溶鋼の
溶存酸素をSiで調整し、その後Ti、Al、Caを順
に添加し脱酸を行ない、連続鋳造により280mm厚鋳
片に鋳造した後、加熱圧延を経て、板厚50mmの鋼板
として製造した。得られた鋼板を1パスのエレクトロガ
ス溶接した。入熱は約280kJ/cm2である。
Example 2 The chemical components shown in Table 3
Prototypes of 0-60 kg steel were produced. 1 to 8 are steels of the present invention, 9 to 1
5 is a comparative steel. The prototype steel is melted from a converter and deoxidized at RH during vacuum degassing. Before the introduction of Ti, the dissolved oxygen of the molten steel is adjusted with Si, and then Ti, Al, and Ca are sequentially added to perform deoxidation, cast into a 280 mm thick slab by continuous casting, and then subjected to hot rolling to a 50 mm thick plate. Manufactured as steel sheet. The obtained steel sheet was subjected to one-pass electrogas welding. The heat input is about 280 kJ / cm 2 .

【0067】[0067]

【表3】 [Table 3]

【0068】表4には、酸化物粒子の平均組成、電子顕
微鏡にて測定した粒子径0.005〜2.0μmの粒子
数、EN=(%N)−0.292(%Ti)−1.29
2(%B)の値、100倍の光学顕微鏡写真20視野に
て切断法で測定したしたHAZ組織のオーステナイト粒
の平均径、およびオーステナイト粒界あるいは粒界三重
点の最大フェライトサイズ(幅)、およびHAZの靭性
を示す。HAZ靭性値は、前記溶接後の鋼板のボンドか
らHAZ1mmの部位で9本の試験片を採取し、これを
−40℃でシャルピー試験を行い、その平均値である。
Table 4 shows the average composition of the oxide particles, the number of particles having a particle size of 0.005 to 2.0 μm measured by an electron microscope, and EN = (% N) −0.292 (% Ti) −1. .29
2 (% B), the average diameter of austenite grains of the HAZ structure measured by a cutting method in 20 visual fields of a 100 times optical micrograph, and the maximum ferrite size (width) of austenite grain boundaries or grain boundary triple points; And HAZ toughness. The HAZ toughness value is an average value obtained by collecting nine test pieces from a bond of the steel sheet after welding at a site of 1 mm HAZ and performing a Charpy test at −40 ° C.

【0069】[0069]

【表4】 [Table 4]

【0070】表4から明らかなように、1〜8の本発明
鋼は比較鋼と比べて優れたHAZ靭性を有することが判
る。すなわち、粒子径が0.005〜2.0μmで、C
a、Alを所定の組成で含む酸化物の粒子数が100〜
5000個/mm2の範囲であることによって、比較鋼
と比較してHAZ組織のオーステナイト粒径も小さく、
かつ、Bの効果によりオーステナイト粒界あるいは粒界
三重点のフェライトも小さくなっており、その結果、−
40℃のシャルピー吸収エネルギー値は、鋼構造物の破
壊力学的立場から一般に要求される平均50Jを大きく
上回っており、HAZ靭性に極めて優れているのが明ら
かである。なお、1、2、4、5、7、8は粒子径0.
1〜2.0μmの粒子数も100個/mm2以上あり、
3および6と比較して相対的にオーステナイト粒径が小
さく、かつ、シャルピー吸収エネルギーも高い。
As is evident from Table 4, the steels of the present invention Nos. 1 to 8 have excellent HAZ toughness as compared with the comparative steels. That is, when the particle diameter is 0.005 to 2.0 μm and C
a, the number of oxide particles containing Al in a predetermined composition is 100 to
By being in the range of 5000 / mm 2 , the austenite grain size of the HAZ structure is smaller than that of the comparative steel,
Further, the ferrite at the austenite grain boundary or the grain boundary triple point is also reduced due to the effect of B, and as a result, −
The Charpy absorbed energy value at 40 ° C. greatly exceeds the average of 50 J generally required from the viewpoint of the fracture mechanics of a steel structure, and it is clear that the HAZ toughness is extremely excellent. In addition, 1, 2, 4, 5, 7, and 8 have a particle diameter of 0.1.
The number of particles of 1 to 2.0 μm is also 100 particles / mm 2 or more,
Compared with Nos. 3 and 6, the austenite grain size is relatively small and the Charpy absorbed energy is high.

【0071】一方、比較例の9〜14は、いずれもシャ
ルピー試験−40℃で50J未満の低い靭性しか示さな
かった。これらの原因は9〜12では、化学成分が本発
明範囲から外れ、酸化物粒子の組成、個数がが本発明の
範囲を外れためであり、比較例13、14は酸化物粒子
の組成、個数は本発明の範囲内であるが、EN当量が本
発明範囲から外れているためである。また、比較例15
は他の鋼より鋼中酸素量が高く、酸化物粒子数が本発明
の上限を外れたため、本発明例鋼より低い靭性となっ
た。
On the other hand, all of Comparative Examples 9 to 14 showed low toughness of less than 50 J at -40 ° C. in Charpy test. The reason is that in 9 to 12, the chemical components are out of the range of the present invention, and the composition and number of the oxide particles are out of the range of the present invention. Is within the range of the present invention, but the EN equivalent is out of the range of the present invention. Comparative Example 15
The steel had a higher oxygen content in the steel than the other steels, and the number of oxide particles was outside the upper limit of the present invention.

【0072】(実施例3)表5に示す化学成分を有する
20鋳片を製造した。いずれも、2000mm幅、28
0mm厚の鋳片であり、転炉出鋼後、RH真空精錬を経
て、連続鋳造にて製造した。溶鋼酸素の制御、脱酸元素
の添加は、RH真空精錬設備にて、表6に示す条件にて
行った。製造した鋳片の幅方向1/4の部位において、
0.005〜2.0μmの介在物個数およびその平均組
成を調べた。厚み方向、表層下20mm、70mm(1
/4厚)、140mm(1/2厚)、210mm(3/
4厚)の4箇所でそれぞれ測定を行ったが、厚み方向の
測定結果はほぼ一定であった。代表として1/4厚にお
ける調査結果を併せて表6に示す。介在物の測定は、鏡
面研磨後エッチングによって介在物を現出し、走査型電
子顕微鏡にて3000倍の倍率で20視野以上観察し、
介在物のサイズおよび個数を計測した。また介在物の組
成はエネルギー分散型分光分析装置を用いて酸化物であ
ることを確認して決定した。同時に、同一部から採集し
たレプリカを用いて、透過型電子顕微鏡にて10000
倍の倍率で20視野以上観察し、走査型顕微鏡での測定
結果の妥当性を検証した。
Example 3 20 cast pieces having the chemical components shown in Table 5 were produced. Both are 2,000 mm wide, 28
It is a slab having a thickness of 0 mm, and is manufactured by continuous casting after RH vacuum refining after tapping from the converter. The control of the molten steel oxygen and the addition of the deoxidizing element were performed in the RH vacuum refining facility under the conditions shown in Table 6. In the 1/4 width direction of the manufactured slab,
The number of inclusions of 0.005 to 2.0 μm and the average composition thereof were examined. Thickness direction, 20mm below surface layer, 70mm (1
厚 thickness), 140 mm (1 / thickness), 210 mm (3 /
The measurement was performed at each of four locations (4 thicknesses), and the measurement results in the thickness direction were almost constant. Table 6 also shows the results of the investigation at 1/4 thickness as representatives. The inclusions were measured by mirror-polishing, revealing the inclusions by etching, observing at least 20 visual fields with a scanning electron microscope at a magnification of 3000 times,
The size and number of inclusions were measured. The composition of the inclusion was determined by using an energy dispersive spectrometer to confirm that it was an oxide. At the same time, using a replica collected from the same part, and using a transmission electron microscope to 10,000
Observation was made at 20 times or more at × magnification to verify the validity of the measurement results with a scanning microscope.

【0073】[0073]

【表5】 [Table 5]

【0074】[0074]

【表6】 [Table 6]

【0075】鋼A〜Hは本発明範囲のものであり、鋼I
〜Uは成分または/および製造条件が本発明範囲から外
れる比較例である。
Steels A to H are within the scope of the present invention,
-U are comparative examples in which the components and / or production conditions are out of the range of the present invention.

【0076】鋼A〜Hについては二次精錬前の初期溶鋼
酸素が80ppm以下の鋼A〜C、F〜Hの場合には、
引き続きTi、Al、Caの順で添加し、また、溶鋼酸
素濃度が200ppmより高い鋼Eの場合には、減圧雰
囲気でC脱酸を行って該溶鋼中の酸素濃度を200pp
m以下としてから、さらに微量のAlまたはAl合金を
入れて酸素濃度を80ppm以下とした後にTi、A
l、Caの順で添加し、また、溶鋼酸素濃度が80pp
mより高く200ppmより低い鋼Dの場合には、微量
のAlまたはAl合金を入れて酸素濃度を80ppm以
下とした後にTi、Al、Caの順で添加した。Ti、
Al、Caの添加原料としては、基本的には、Tiはス
ポンジTi、Alは再生Al、CaはCa−Si合金の
粒を用いたが、鋼B、D、GについてはTi源としてF
e−Ti合金を用いた。本発明鋼に関しては、二次脱酸
工程での脱酸前の溶鋼酸素の制御、および脱酸順序の制
御の結果、いずれの場合も、0.005〜2.0μmの
有効微細介在物個数は100〜5000個/mm2であ
り、かつその平均組成(酸素を除く)はCa≧3%、A
l≧1%となっている。この結果、極めて微細な酸化物
が多数分散された鋳片製造が確認された。またこの中
で、Fe−Ti合金を用いて脱酸した鋼B、D、Gにつ
いては特に介在物個数が多く、またTi歩留まりも良好
であることも確認された。
In the case of steels A to C and F to H in which the initial molten steel oxygen before the secondary refining is 80 ppm or less,
Subsequently, Ti, Al, and Ca are added in this order, and in the case of steel E having a molten steel oxygen concentration higher than 200 ppm, C deoxidation is performed in a reduced pressure atmosphere to reduce the oxygen concentration in the molten steel to 200 pp.
m or less, and then a small amount of Al or Al alloy is added to reduce the oxygen concentration to 80 ppm or less.
1 and Ca in order, and the oxygen concentration of molten steel is 80 pp.
In the case of steel D higher than m and lower than 200 ppm, a small amount of Al or an Al alloy was added to reduce the oxygen concentration to 80 ppm or less, and then Ti, Al, and Ca were added in that order. Ti,
Basically, sponge Ti was used for Ti, regenerated Al was used for Al, and grains of Ca-Si alloy were used for Ca.
An e-Ti alloy was used. Regarding the steel of the present invention, as a result of control of molten steel oxygen before deoxidation in the secondary deoxidation step and control of the deoxidation order, in each case, the number of effective fine inclusions of 0.005 to 2.0 μm is 100 to 5000 particles / mm 2 , and the average composition (excluding oxygen) is Ca ≧ 3%, A
l ≧ 1%. As a result, it was confirmed that slabs in which a large number of extremely fine oxides were dispersed were produced. Further, among these, it was also confirmed that the steels B, D, and G deoxidized using the Fe-Ti alloy had a particularly large number of inclusions and also had a good Ti yield.

【0077】一方、比較鋼については、鋼I〜Lは鋳片
成分Ti、Al、Caの値が本発明範囲から外れてお
り、溶鋼酸素量、脱酸順序とも本発明と同様であるにも
拘わらず、微細な酸化物個数は目標個数に至っていな
い。また、鋼M、Nは二次脱酸工程での脱酸前の溶鋼酸
素が本発明範囲より高いにも拘わらず、酸素量を調整す
ることなく次の脱酸を進めたために微細な酸化物を作り
込めていない。さらに鋼P〜Uは脱酸順序が本発明とは
異なるため、いずれも有効な微細介在物数は高HAZ靭
性を得るに十分な数にはならなかった。
On the other hand, as for the comparative steels, the values of the slab components Ti, Al and Ca of the steels I to L are out of the range of the present invention, and the molten steel oxygen content and the deoxidation order are the same as those of the present invention. Regardless, the number of fine oxides has not reached the target number. Further, although the molten steel oxygen before the deoxidation in the secondary deoxidation step was higher than the range of the present invention, the steels M and N were subjected to the next deoxidation without adjusting the oxygen amount, so that fine oxides were formed. Have not been built. Further, since the order of deoxidation of steels P to U was different from that of the present invention, the number of effective fine inclusions was not sufficient to obtain high HAZ toughness.

【0078】なお、これらの鋳片は厚板圧延により、板
厚50mmの厚板とし、建築用などで汎用的に用いられ
る超大入熱エレクトロスラグ溶接を施し、溶接熱HAZ
部の靭性を評価したが、本発明鋼はいずれも優れたHA
Z靭性を安定的に示したのに対し、本発明外の鋼はいず
れも低靭性であった。
These slabs were made into thick plates having a thickness of 50 mm by thick plate rolling, subjected to ultra-high heat input electroslag welding, which is generally used for construction and the like, to obtain welding heat HAZ.
The toughness of each part was evaluated.
While Z toughness was stably exhibited, all steels other than the present invention were low in toughness.

【0079】[0079]

【発明の効果】本発明は、200kJ/cm2以上の大
入熱溶接、超大入熱溶接に対しても優れた溶接継手靭性
を有する鋼材およびその製造方法であり、船舶、海洋構
造物、中高層建築物、橋梁などの破壊に対する厳しいH
AZ靭性要求を満足する鋼材を供給できる。この種の産
業分野にもたらす効果は極めて大きく、さらに構造物の
安全性の意味から社会に対する貢献も非常に大きい。ま
た、本製造方法によって酸化物を微細に分散した鋳片の
安定製造が可能であり、HAZ靭性に優れた鋼板の製造
を可能とするのみならず、粗大介在物に起因する鋼板製
造上の問題の解決としても有効である。
Industrial Applicability The present invention relates to a steel material having excellent weld joint toughness even for large heat input welding of 200 kJ / cm 2 or more and ultra-high heat input welding, and a method for producing the same. Severe H against destruction of buildings, bridges, etc.
A steel material satisfying the AZ toughness requirement can be supplied. The effect on this kind of industrial field is extremely large, and the contribution to society is very large in terms of structural safety. In addition, the present production method enables stable production of cast slabs in which oxides are finely dispersed, and not only enables production of steel sheets having excellent HAZ toughness, but also causes problems in production of steel sheets caused by coarse inclusions. It is also effective as a solution.

【図面の簡単な説明】[Brief description of the drawings]

【図1】鋼中の酸化物粒子の個数とHAZ靭性の関係を
示す図である。
FIG. 1 is a diagram showing the relationship between the number of oxide particles in steel and HAZ toughness.

【図2】当量式ENとHAZ靭性の関係を示す図であ
る。
FIG. 2 is a diagram showing a relation between an equivalent equation EN and HAZ toughness.

───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.7 識別記号 FI テーマコート゛(参考) C21C 7/06 C21C 7/06 C22C 38/14 C22C 38/14 38/58 38/58 (72)発明者 船津 裕二 大分市大字西ノ州1番地 新日本製鐵株式 会社大分製鐵所内 (72)発明者 大谷 潤 大分市大字西ノ州1番地 新日本製鐵株式 会社大分製鐵所内 (72)発明者 秦 知彦 大分市大字西ノ州1番地 新日本製鐵株式 会社大分製鐵所内 (72)発明者 若生 昌光 大分市大字西ノ州1番地 新日本製鐵株式 会社大分製鐵所内 Fターム(参考) 4K013 AA07 AA09 BA08 BA14 CE01 CE06 EA18 EA19 EA25 EA30──────────────────────────────────────────────────続 き Continued on the front page (51) Int.Cl. 7 Identification symbol FI Theme coat ゛ (Reference) C21C 7/06 C21C 7/06 C22C 38/14 C22C 38/14 38/58 38/58 (72) Inventor Yuji Funatsu 1 Nishinoshu Oita Oita City Nippon Steel Corporation Oita Works (72) Inventor Jun Otani Oita City 1 Nishinoshu Oita City Nippon Steel Corporation Oita Steel Corporation 72 Inventor Tomohiko Hata No. 1, Nishinoshu, Oita City Nippon Steel Corporation Oita Works (72) Inventor Masamitsu Wakao No. 1, Nishinoshu Oita City, Oita City F-term in Oita Works, Nippon Steel Corporation (reference) 4K013 AA07 AA09 BA08 BA14 CE01 CE06 EA18 EA19 EA25 EA30

Claims (10)

【特許請求の範囲】[Claims] 【請求項1】 質量%で、C :0.03〜0.18
%、Si:≦0.5%、Mn:0.4〜2.0%、P
:≦0.02%、S :≦0.02%、Al:0.0
05〜0.04%、Ti:0.005〜0.03%、C
a:0.0005〜0.003%、N :0.0005
〜0.006%、O :0.0005〜0.006%を
含有し、残部はFeおよび不可避不純物からなる鋼で、
かつ、この鋼中に円相当径で0.005〜2.0μmの
酸化物粒子を単位面積当たりの個数密度で100〜50
00個/mm2含有し、その酸化物粒子の組成が少なく
ともCa、Al、Oの元素からなり、該Oを除いた元素
が質量%で、Ca:5%以上、Al:5%以上であるこ
とを特徴とする溶接熱影響部靭性の優れた鋼材。
1. C: 0.03 to 0.18 by mass%
%, Si: ≤0.5%, Mn: 0.4-2.0%, P
: ≦ 0.02%, S: ≦ 0.02%, Al: 0.0
0.05 to 0.04%, Ti: 0.005 to 0.03%, C
a: 0.0005 to 0.003%, N: 0.0005
-0.006%, O: 0.0005-0.006%, the balance being steel consisting of Fe and unavoidable impurities,
Further, oxide particles having a circle equivalent diameter of 0.005 to 2.0 μm are contained in the steel in a number density per unit area of 100 to 50.
00 / mm 2, and the composition of the oxide particles is at least Ca, Al, and O elements, and the element excluding O is in mass%, Ca: 5% or more, Al: 5% or more. A steel material with excellent toughness in the heat-affected zone of a weld, characterized in that:
【請求項2】 質量%で、C :0.03〜0.18
%、Si:≦0.5%、Mn:0.4〜2.0%、P
:≦0.02%、S :≦0.02%、Al:0.0
05〜0.04%、Ti:0.005〜0.03%、C
a:0.0005〜0.003%、Mg:0.0001
〜0.002%、N :0.0005〜0.006%、
O :0.0005〜0.006%を含有し、残部はF
eおよび不可避不純物からなる鋼で、かつ、この鋼中に
円相当径で0.005〜2.0μmの酸化物粒子を単位
面積当たりの個数密度で100〜5000個/mm2
有し、その酸化物粒子の組成が少なくともCa、Al、
Mg、Oの元素からなり、該Oを除いた元素が質量%
で、Ca:5%以上、Al:5%以上、Mg:1%以上
であることを特徴とする溶接熱影響部靭性の優れた鋼
材。
2. C: 0.03 to 0.18 by mass%
%, Si: ≤0.5%, Mn: 0.4-2.0%, P
: ≦ 0.02%, S: ≦ 0.02%, Al: 0.0
0.05 to 0.04%, Ti: 0.005 to 0.03%, C
a: 0.0005% to 0.003%, Mg: 0.0001
-0.002%, N: 0.0005-0.006%,
O: 0.0005 to 0.006%, the balance being F
e) and oxide particles having an equivalent circle diameter of 0.005 to 2.0 μm in a number density per unit area of 100 to 5000 particles / mm 2. At least Ca, Al,
It is composed of Mg and O elements, and the element excluding O is mass%.
And a steel material having excellent toughness of the weld heat affected zone, characterized in that: Ca: 5% or more, Al: 5% or more, Mg: 1% or more.
【請求項3】 質量%で、Cu:≦1.0%、Ni:≦
1.5%、Nb:≦0.03%、V :≦0.1%、C
r:≦0.6%。Mo:≦0.6%、REM:≦0.0
5%を含有することを特徴とする請求項1または2記載
の溶接熱影響部靭性の優れた鋼材。
3. In mass%, Cu: ≦ 1.0%, Ni: ≦
1.5%, Nb: ≦ 0.03%, V: ≦ 0.1%, C
r: ≦ 0.6%. Mo: ≦ 0.6%, REM: ≦ 0.0
The steel material having excellent toughness of a heat-affected zone of a weld according to claim 1 or 2, which contains 5%.
【請求項4】 前記酸化物粒子の組成が、さらに、Sを
質量%で1%以上含有することを特徴とする請求項1〜
3のいずれかに記載の溶接熱影響部靭性の優れた鋼材。
4. The composition according to claim 1, wherein the composition of the oxide particles further contains 1% or more by mass of S.
3. A steel material excellent in toughness of a weld heat affected zone according to any one of 3.
【請求項5】 前記酸化物粒子の組成が、さらに、Mg
を質量%で1%以上含有することを特徴とする請求項2
〜4のいずれかに記載の溶接熱影響部靭性の優れた鋼
材。
5. The composition of the oxide particles further comprising Mg
3% or more by mass%.
5. A steel material excellent in toughness of a weld heat affected zone according to any one of the above-mentioned items.
【請求項6】 前記鋼がさらに、質量%で、B :0.
0005〜0.003%を含有し、EN=(%N)−
0.292(%Ti)−1.292(%B)なる当量式
において0≦EN≦0.002を満足することを特徴と
する請求項1〜5のいずれかに記載の溶接熱影響部靭性
の優れた鋼材。
6. The steel according to claim 1, wherein said steel further comprises: B: 0.
0005-0.003%, EN = (% N)-
The weld heat-affected zone toughness according to any one of claims 1 to 5, wherein 0 ≦ EN ≦ 0.002 is satisfied in an equivalent equation of 0.292 (% Ti) -1.292 (% B). Excellent steel material.
【請求項7】 前記酸化物粒子の円相当径で0.1〜
2.0μmであることを特徴とする請求項1〜6のいず
れかに記載の溶接熱影響部靭性の優れた鋼材。
7. The oxide particles have a circle equivalent diameter of 0.1 to
The steel material according to any one of claims 1 to 6, wherein the steel material has excellent toughness in a heat-affected zone of a weld.
【請求項8】 減圧雰囲気の二次精錬工程で、酸素濃度
が80ppm以下の溶鋼にTi、Al、CaをTi、A
l、Caの順で添加して、前記請求項1〜7のいずれか
に記載の化学成分、酸化物を有する溶鋼とし、これを鋳
造して、鋳片とすることを特徴とする溶接熱影響部靭性
の優れた鋼材の製造方法。
8. In a secondary refining process in a reduced-pressure atmosphere, Ti, Al, Ca are converted to Ti, A in molten steel having an oxygen concentration of 80 ppm or less.
A molten steel having a chemical composition and an oxide according to any one of claims 1 to 7, which is added in the order of l and Ca to form a cast slab. A method for manufacturing steel with excellent toughness.
【請求項9】 前記二次精錬工程における溶鋼中の酸素
濃度が80ppm超〜200ppm以下の場合には、A
lまたはAl合金を添加して該溶鋼中の酸素濃度を80
ppm以下とすることを特徴とする請求項8記載の溶接
熱影響部靭性の優れた鋼材の製造方法。
9. When the oxygen concentration in the molten steel in the secondary refining step is more than 80 ppm to 200 ppm or less, A
1 or Al alloy is added to reduce the oxygen concentration in the molten steel to 80
9. The method for producing a steel material having excellent toughness in a heat affected zone of a weld according to claim 8, wherein the content is not more than ppm.
【請求項10】 前記二次精錬工程における溶鋼中の酸
素濃度が200ppm超の場合には、減圧雰囲気でCを
添加してC脱酸により該溶鋼中の酸素濃度を200pp
m以下とすることを特徴とする請求項9記載の溶接熱影
響部靭性の優れた鋼材の製造方法。
10. When the oxygen concentration in the molten steel in the secondary refining step is more than 200 ppm, C is added in a reduced pressure atmosphere and the oxygen concentration in the molten steel is reduced to 200 pp by C deoxidation.
10. The method for producing a steel material having excellent toughness of a weld heat-affected zone according to claim 9, wherein the thickness is not more than m.
JP2000294878A 2000-02-10 2000-09-27 Steel material excellent in toughness of welded heat-affected zone and method for producing the same Expired - Fee Related JP3502822B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2000294878A JP3502822B2 (en) 2000-02-10 2000-09-27 Steel material excellent in toughness of welded heat-affected zone and method for producing the same

Applications Claiming Priority (7)

Application Number Priority Date Filing Date Title
JP2000033241 2000-02-10
JP2000-33241 2000-02-10
JP2000-68210 2000-03-13
JP2000068210 2000-03-13
JP2000099461 2000-03-31
JP2000-99461 2000-03-31
JP2000294878A JP3502822B2 (en) 2000-02-10 2000-09-27 Steel material excellent in toughness of welded heat-affected zone and method for producing the same

Publications (2)

Publication Number Publication Date
JP2001342537A true JP2001342537A (en) 2001-12-14
JP3502822B2 JP3502822B2 (en) 2004-03-02

Family

ID=27481022

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000294878A Expired - Fee Related JP3502822B2 (en) 2000-02-10 2000-09-27 Steel material excellent in toughness of welded heat-affected zone and method for producing the same

Country Status (1)

Country Link
JP (1) JP3502822B2 (en)

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002088412A (en) * 2000-09-18 2002-03-27 Nippon Steel Corp Method for melting steel plate for thin sheet and cast slab cast by using the method
JP2007262508A (en) * 2006-03-29 2007-10-11 Nippon Steel Corp Thick steel plate having excellent toughness in high heat input weld heat affected zone
JP2008280573A (en) * 2007-05-09 2008-11-20 Kobe Steel Ltd Steel sheet having excellent toughness in weld heat-affected zone in high heat input welding
WO2010008031A1 (en) * 2008-07-15 2010-01-21 新日本製鐵株式会社 Steel material for welding
JP2010174314A (en) * 2009-01-28 2010-08-12 Kobe Steel Ltd Steel material excellent in toughness of weld heat-affected zone
CN103215507A (en) * 2013-04-18 2013-07-24 湖南华菱湘潭钢铁有限公司 Steel plate smelting method for improving high heat input welding performance
KR20150057998A (en) 2013-11-19 2015-05-28 신닛테츠스미킨 카부시키카이샤 Steel sheet
CN106811574A (en) * 2015-12-01 2017-06-09 镇江市润州金山金属粉末厂 A kind of high efficiency double deoxidizer
JP2017193759A (en) * 2016-04-21 2017-10-26 新日鐵住金株式会社 Thick steel sheet and manufacturing method therefor
JP2021509446A (en) * 2017-12-26 2021-03-25 ポスコPosco Steel materials for pressure vessels and their manufacturing methods
CN114892093A (en) * 2022-05-31 2022-08-12 北京科技大学 High-strength-toughness matched oxide particle dispersion steel and preparation method and application thereof

Cited By (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002088412A (en) * 2000-09-18 2002-03-27 Nippon Steel Corp Method for melting steel plate for thin sheet and cast slab cast by using the method
JP2007262508A (en) * 2006-03-29 2007-10-11 Nippon Steel Corp Thick steel plate having excellent toughness in high heat input weld heat affected zone
JP2008280573A (en) * 2007-05-09 2008-11-20 Kobe Steel Ltd Steel sheet having excellent toughness in weld heat-affected zone in high heat input welding
WO2010008031A1 (en) * 2008-07-15 2010-01-21 新日本製鐵株式会社 Steel material for welding
US8142574B2 (en) 2008-07-15 2012-03-27 Nippon Steel Corporation Steel product for welding
JP2010174314A (en) * 2009-01-28 2010-08-12 Kobe Steel Ltd Steel material excellent in toughness of weld heat-affected zone
CN103215507A (en) * 2013-04-18 2013-07-24 湖南华菱湘潭钢铁有限公司 Steel plate smelting method for improving high heat input welding performance
KR20150057998A (en) 2013-11-19 2015-05-28 신닛테츠스미킨 카부시키카이샤 Steel sheet
CN106811574A (en) * 2015-12-01 2017-06-09 镇江市润州金山金属粉末厂 A kind of high efficiency double deoxidizer
JP2017193759A (en) * 2016-04-21 2017-10-26 新日鐵住金株式会社 Thick steel sheet and manufacturing method therefor
JP2021509446A (en) * 2017-12-26 2021-03-25 ポスコPosco Steel materials for pressure vessels and their manufacturing methods
JP7219882B2 (en) 2017-12-26 2023-02-09 ポスコ カンパニー リミテッド Steel material for pressure vessel and its manufacturing method
JP7219882B6 (en) 2017-12-26 2023-02-28 ポスコ カンパニー リミテッド Steel material for pressure vessel and its manufacturing method
CN114892093A (en) * 2022-05-31 2022-08-12 北京科技大学 High-strength-toughness matched oxide particle dispersion steel and preparation method and application thereof
CN114892093B (en) * 2022-05-31 2022-11-15 北京科技大学 High-strength-toughness matched oxide particle dispersion steel and preparation method and application thereof
US11859269B1 (en) 2022-05-31 2024-01-02 University Of Science And Technology Beijing High strength-ductility matched oxide-particles dispersion steel, preparation method and application thereof

Also Published As

Publication number Publication date
JP3502822B2 (en) 2004-03-02

Similar Documents

Publication Publication Date Title
TWI478785B (en) High heat input welding steel
KR100839262B1 (en) Thick high strength steel plate having excellent low temperature toughness in welding heat affected zone caused by high heat input welding
JP6245417B1 (en) Steel
JP2003213366A (en) Steel having excellent toughness in base metal and large -small heat input weld heat-affected zone
JP2001342537A (en) Steel material excellent in toughness of welding heat- affected zone and its production
JPH0642979B2 (en) Manufacturing method of high strength steel for welding and low temperature containing titanium oxide
JP2007284712A (en) Method for producing thick high-strength steel plate excellent in toughness and thick high-strength steel plate excellent in toughness
EP1262571B1 (en) Steel having weld heat-affected zone excellent in toughness
JP3323414B2 (en) Steel with excellent heat-affected zone toughness in large heat input welding and method for producing the same
JP3879607B2 (en) Welded structural steel with excellent low temperature toughness
JP2003313628A (en) Steel product superior in toughness of weld heat- affected zone
JP7207199B2 (en) Steel material and its manufacturing method
JP3215296B2 (en) Method of manufacturing steel material for welded structures with excellent toughness of weld heat affected zone
JP3882701B2 (en) Method for producing welded structural steel with excellent low temperature toughness
JP2005220379A (en) Method for producing non-heat treated high strength thick steel plate excellent in toughness at extra-large heat input weld heat-affected zone
JP2004011008A (en) Steel member and structure excellent in weld zone toughness
JP4039223B2 (en) Thick steel plate with excellent super tough heat input weld heat affected zone toughness and method for producing the same
JP3502805B2 (en) Method for producing steel with excellent toughness in weld joint
JP7469632B2 (en) Steel material and its manufacturing method
JP3502809B2 (en) Method of manufacturing steel with excellent toughness
JP4261968B2 (en) Steel material excellent in weld heat-affected zone toughness and manufacturing method thereof
JP3616609B2 (en) Steel with excellent weld heat-affected zone toughness
JPH0790474A (en) Production of contained oxide-dispersed slab and rolled shape steel excellent in toughness by the same slab
JP3502851B2 (en) 600MPa class steel with excellent weldability and weld joint toughness
JP3541021B2 (en) Steel material with excellent toughness

Legal Events

Date Code Title Description
TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20031118

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20031208

R151 Written notification of patent or utility model registration

Ref document number: 3502822

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081212

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081212

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091212

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101212

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101212

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111212

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111212

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121212

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121212

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131212

Year of fee payment: 10

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131212

Year of fee payment: 10

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131212

Year of fee payment: 10

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

LAPS Cancellation because of no payment of annual fees