JP2001342290A - Method for decomposing thermosetting resin and apparatus for decomposition - Google Patents

Method for decomposing thermosetting resin and apparatus for decomposition

Info

Publication number
JP2001342290A
JP2001342290A JP2000167345A JP2000167345A JP2001342290A JP 2001342290 A JP2001342290 A JP 2001342290A JP 2000167345 A JP2000167345 A JP 2000167345A JP 2000167345 A JP2000167345 A JP 2000167345A JP 2001342290 A JP2001342290 A JP 2001342290A
Authority
JP
Japan
Prior art keywords
thermosetting resin
decomposition
solvent
decomposing
weight
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2000167345A
Other languages
Japanese (ja)
Inventor
Michio Murai
道雄 村井
Muneharu Sano
宗治 佐能
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP2000167345A priority Critical patent/JP2001342290A/en
Publication of JP2001342290A publication Critical patent/JP2001342290A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W30/00Technologies for solid waste management
    • Y02W30/50Reuse, recycling or recovery technologies
    • Y02W30/62Plastics recycling; Rubber recycling

Landscapes

  • Separation, Recovery Or Treatment Of Waste Materials Containing Plastics (AREA)
  • Catalysts (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide both a method for decomposition and an apparatus for decomposition by which the method is suitable for recycling a thermosetting resin that provides an insoluble and infusible solid after curing, is not easily subjected to chemical cycling and requires treatment at high temperatures for long time or at high temperatures under high pressures and the thermosetting resin is converted into a liquid decomposition product by treatment at a low temperature in a short time. SOLUTION: This method for decomposing the thermosetting resin comprises dipping the thermosetting resin in a solvent containing a gas dissolved therein and irradiating the thermosetting resin dipped in the solvent with ultrasonic waves and, as necessary, adding a decomposition catalyst to the solvent.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は廃棄物等に含まれる
熱硬化性樹脂の処理に関する。更に詳しくは、熱硬化性
樹脂の化学処理による分解方法と分解装置に関するもの
である。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to the treatment of thermosetting resins contained in wastes and the like. More specifically, the present invention relates to a method and an apparatus for decomposing a thermosetting resin by chemical treatment.

【0002】[0002]

【従来の技術】熱硬化性樹脂はその優れた機械特性、耐
熱性、難燃性、耐薬品性などにより従来から様々な用途
に広く利用されている。また熱硬化性樹脂はその用途に
より樹脂単体で使用されるばかりでなく、充填材を含有
する複合体として、あるいは内部に気泡を含有する発泡
体として使用されている。
2. Description of the Related Art Thermosetting resins have been widely used in various applications because of their excellent mechanical properties, heat resistance, flame retardancy, chemical resistance and the like. The thermosetting resin is used not only as a single resin depending on the application, but also as a composite containing a filler or as a foam containing bubbles inside.

【0003】熱硬化性樹脂は一般に、硬化後に3次元架
橋構造を形成し不溶不融の固体となるため分解処理が困
難である。そのため熱硬化性樹脂はリサイクル利用には
適合しがたいものと考えられ、従来は埋め立て処理等に
より廃棄されてきた。
A thermosetting resin generally forms a three-dimensional crosslinked structure after curing and becomes an insoluble and infusible solid, so that it is difficult to perform a decomposition treatment. For this reason, thermosetting resins are considered to be unsuitable for recycling, and have conventionally been discarded by landfilling or the like.

【0004】しかし近年、廃棄物の増加及び廃棄物処理
施設の不足などにより、廃棄樹脂の分解及びリサイクル
が重要な問題となっている。熱硬化性樹脂は住宅建材、
軽量構造体などの大型製品の製造に使用されることも多
く、廃棄熱硬化性樹脂の減容化及びリサイクル技術の開
発が必要とされている。
However, in recent years, decomposition and recycling of waste resin has become an important problem due to an increase in waste and a shortage of waste treatment facilities. Thermosetting resin is used for house building materials,
It is often used for the production of large products such as lightweight structures, and there is a need for the development of recycling technologies for reducing the volume of waste thermosetting resins.

【0005】リサイクルの形態は、廃棄物を焼却して放
出される熱エネルギーを回収・再利用するエネルギーリ
サイクル、廃棄物を機械的に破砕して構造材料として用
いるマテリアルリサイクル、及び、廃棄物を化学的処理
等により再利用可能な工業原料、例えば樹脂の合成原料
となる低分子物質等に変換するケミカルリサイクルの3
つに大別することができる。
[0005] The forms of recycling include energy recycling for recovering and reusing thermal energy released by incineration of waste, material recycling using mechanically crushed waste as a structural material, and chemical recycling of waste. Of chemical recycling that converts into industrial materials that can be reused by chemical treatment, such as low-molecular substances that can be used as raw materials for resin
Can be roughly divided into two.

【0006】しかし、エネルギーリサイクルは1度しか
行うことのできない再利用度の低い方法である。またマ
テリアルリサイクルも、エネルギーリサイクルに比較す
れば再利用度は高いが、リサイクル製品の性能を元の製
品以上に維持することができないため、リサイクルを繰
り返すに従い製品の性能が低下し、数回のリサイクル後
には再利用不可能となり最終的には埋め立てなどで廃棄
せざるを得ない。これに対して、ケミカルリサイクル
は、樹脂の合成原料となる低分子物質等に変換するの
で、再利用度の高い方法である。
[0006] However, energy recycling is a low reuse method that can be performed only once. In material recycling, the degree of reuse is higher than energy recycling, but the performance of recycled products cannot be maintained higher than the original products. Later, it cannot be reused and must eventually be disposed of in landfills. On the other hand, chemical recycling is a method with a high degree of reuse because it is converted into a low-molecular substance or the like which is a raw material for resin synthesis.

【0007】[0007]

【発明が解決しようとする課題】しかし、熱硬化性樹脂
は、硬化後に不溶不融の固体となり、機械強度が大き
い、耐熱性が高い、耐薬品性を有するなどの優れた特性
が、そのケミカルリサイクルを困難なものにしており、
酸あるいはアルカリを含有した有機溶剤の処理において
は、高温で長時間の処理が必要であるとの課題があっ
た。また、加圧水による処理では、高温で高圧力の処理
が必要であり、安全対策を施した大規模な設備が必要に
なるという課題があった。
However, the thermosetting resin becomes an insoluble and infusible solid after curing, and has excellent properties such as high mechanical strength, high heat resistance, and chemical resistance. Making recycling difficult,
In the treatment of an organic solvent containing an acid or an alkali, there is a problem that a long time treatment at a high temperature is required. Further, the treatment with pressurized water requires a treatment at a high temperature and a high pressure, and there is a problem that a large-scale facility with safety measures is required.

【0008】本発明の目的は、このような課題を解決す
るためになされたものであり、特別な高温、高圧を必要
としない短時間の化学処理により、熱硬化性樹脂をリサ
イクルに適した液状分解生成物に変換することができる
熱硬化性樹脂の分解方法及び分解装置を提供することで
ある。
SUMMARY OF THE INVENTION An object of the present invention is to solve such a problem, and a thermosetting resin suitable for recycling can be obtained by a short-time chemical treatment that does not require a special high temperature and high pressure. An object of the present invention is to provide a method and an apparatus for decomposing a thermosetting resin that can be converted into decomposition products.

【0009】[0009]

【課題を解決するための手段】本発明に係る第1の熱硬
化性樹脂の分解方法は、熱硬化性樹脂を溶剤に浸漬する
工程と、この溶剤に浸漬された熱硬化性樹脂に超音波を
照射する工程とを備えることである。
A first method for decomposing a thermosetting resin according to the present invention comprises a step of immersing the thermosetting resin in a solvent, and a step of immersing the thermosetting resin in the solvent in an ultrasonic wave. Irradiation step.

【0010】本発明に係る第2の熱硬化性樹脂の分解方
法は、前記第1の熱硬化性樹脂の分解方法において、前
記溶剤中に、熱硬化性樹脂の分解を促進する触媒を含有
することである。
In a second method for decomposing a thermosetting resin according to the present invention, in the first method for decomposing a thermosetting resin, the solvent contains a catalyst for accelerating the decomposition of the thermosetting resin. That is.

【0011】本発明に係る第3の熱硬化性樹脂の分解方
法は、前記第1または2の熱硬化性樹脂の分解方法にお
いて、前記溶剤を予め気体が溶存された溶剤とすること
である。
A third method for decomposing a thermosetting resin according to the present invention is that, in the first or second method for decomposing a thermosetting resin, the solvent is a solvent in which gas is dissolved in advance.

【0012】本発明に係る第4の熱硬化性樹脂の分解方
法は、前記第1ないし3のいずれかの熱硬化性樹脂の分
解方法において、照射する超音波の周波数を20kHz以
上1MHz以下とすることである。
A fourth method for decomposing a thermosetting resin according to the present invention is the method for decomposing a thermosetting resin according to any one of the first to third aspects, wherein the frequency of the ultrasonic wave to be applied is 20 kHz or more and 1 MHz or less. That is.

【0013】本発明に係る第5の熱硬化性樹脂の分解方
法は、前記第1ないし4のいずれかの熱硬化性樹脂の分
解方法において、照射する超音波の音波強度を1W/cm2
以上500W/cm2以下とすることである。
A fifth method for decomposing a thermosetting resin according to the present invention is the method for decomposing a thermosetting resin according to any one of the first to fourth aspects, wherein the intensity of the ultrasonic wave to be applied is 1 W / cm 2.
More than 500 W / cm 2 .

【0014】本発明に係る第6の熱硬化性樹脂の分解方
法は、前記第1ないし5のいずれかの熱硬化性樹脂の分
解方法において、熱硬化性樹脂が、エステル結合、ウレ
タン結合、尿素結合のうち少なくとも1種類の結合を含
むことである。
A sixth method of decomposing a thermosetting resin according to the present invention is the method of decomposing a thermosetting resin according to any one of the first to fifth aspects, wherein the thermosetting resin comprises an ester bond, a urethane bond, and a urea. At least one type of bond is included.

【0015】本発明に係る第7の熱硬化性樹脂の分解方
法は、前記第1ないし5のいずれかの熱硬化性樹脂の分
解方法において、熱硬化性樹脂をポリウレタン樹脂とす
ることである。
A seventh method for decomposing a thermosetting resin according to the present invention is the method for decomposing a thermosetting resin according to any one of the first to fifth aspects, wherein the thermosetting resin is a polyurethane resin.

【0016】本発明に係る第1の熱硬化性樹脂の分解装
置は、熱硬化性樹脂を溶剤に浸漬する手段と、前記溶剤
に浸漬された熱硬化性樹脂に超音波を照射する手段とを
備えたものである。
The first thermosetting resin decomposition apparatus according to the present invention comprises a means for immersing the thermosetting resin in a solvent, and a means for irradiating the thermosetting resin immersed in the solvent with ultrasonic waves. It is provided.

【0017】本発明に係る第2分の熱硬化性樹脂の分解
装置は、前記第1の熱硬化性樹脂の分解装置において、
溶剤に気体を溶存させる手段を備えたものである。
The thermosetting resin decomposing apparatus according to the second aspect of the present invention is the first thermosetting resin decomposing apparatus, wherein:
It is provided with means for dissolving gas in the solvent.

【0018】[0018]

【発明の実施の形態】実施の形態1図1は、この発明の
実施の形態1における熱硬化性樹脂分解装置の構成図で
ある。図において、1は超音波発生装置、2は超音波振
動子、3は温度調節用媒体流路、4は気体吹込管、5は
熱硬化性樹脂投入口、6は攪拌機、7は冷却器、8は分
解槽、9は溶剤、10は熱硬化性樹脂分解装置である。
Embodiment 1 FIG. 1 is a configuration diagram of a thermosetting resin decomposition apparatus according to Embodiment 1 of the present invention. In the figure, 1 is an ultrasonic generator, 2 is an ultrasonic vibrator, 3 is a temperature control medium flow path, 4 is a gas blowing pipe, 5 is a thermosetting resin inlet, 6 is a stirrer, 7 is a cooler, Reference numeral 8 denotes a decomposition tank, 9 denotes a solvent, and 10 denotes a thermosetting resin decomposition device.

【0019】実施の形態1の熱硬化性樹脂分解装置10
は、分解槽8に熱硬化性樹脂を分解する溶剤9を貯える
ことができ、分解層8に貯えられた溶剤9は、分解層8
の外側に設置された温度調節用媒体の流路3に所定温度
の媒体を循環させることにより、所定温度に保持され
る。また、気体吹込管4は、図には示さないが、気体供
給装置に連結されており、溶剤9中に気体を吹き込み、
溶剤9中に気体を溶存させる。本実施の形態では、気体
吹込管4は一個であるが、複数個設けても良い。また、
気体吹込管4には、複数の気体吹出孔を設けるのが溶剤
9中への気体の溶存効率を向上させるので好ましい。本
実施の形態では、溶剤9への気体を溶存させるため気体
吹込管4を用いているが、エアローディング装置を用い
ても良い。超音波振動子2は、分解槽8の底部に設置さ
れており、超音波発生装置1からの信号により、溶剤9
中に浸漬された熱硬化性樹脂に超音波を照射し、熱硬化
性樹脂を分解できる。本実施の形態では、超音波振動子
2を分解槽8の底部に設置したが、分解槽8に投入され
た熱硬化性樹脂に超音波を照射できれば、設置位置は分
解槽8の底部に限定するものではない。攪拌機6は、超
音波照射時に溶剤9とともに熱硬化性樹脂を攪拌し、熱
硬化性樹脂への超音波の照射を均一にすることにより、
熱硬化性樹脂の分解効率を向上させる。冷却器7は、分
解槽8内の圧力上昇を防止するとともに、揮発した溶剤
9を液化トラップし、分解槽8に戻し、溶剤9の留出を
防止する。
The thermosetting resin decomposition apparatus 10 according to the first embodiment
Can store the solvent 9 for decomposing the thermosetting resin in the decomposition tank 8, and the solvent 9 stored in the decomposition layer 8
The medium is maintained at a predetermined temperature by circulating a medium at a predetermined temperature through the temperature control medium flow path 3 installed outside the device. Although not shown in the figure, the gas blowing pipe 4 is connected to a gas supply device, and blows gas into the solvent 9.
The gas is dissolved in the solvent 9. In the present embodiment, the number of the gas blowing pipes 4 is one, but a plurality may be provided. Also,
It is preferable to provide a plurality of gas blowing holes in the gas blowing pipe 4 because the gas dissolving efficiency in the solvent 9 is improved. In the present embodiment, the gas blowing pipe 4 is used to dissolve the gas in the solvent 9, but an air loading device may be used. The ultrasonic vibrator 2 is installed at the bottom of the decomposition tank 8, and receives a solvent 9 by a signal from the ultrasonic generator 1.
By irradiating the thermosetting resin immersed therein with ultrasonic waves, the thermosetting resin can be decomposed. In the present embodiment, the ultrasonic vibrator 2 is installed at the bottom of the decomposition tank 8. However, if ultrasonic waves can be applied to the thermosetting resin put into the decomposition tank 8, the installation position is limited to the bottom of the decomposition tank 8. It does not do. The stirrer 6 stirs the thermosetting resin together with the solvent 9 at the time of ultrasonic irradiation, and makes the irradiation of the ultrasonic waves to the thermosetting resin uniform,
Improves the decomposition efficiency of thermosetting resin. The cooler 7 prevents the pressure in the decomposition tank 8 from rising, and liquefies and traps the volatilized solvent 9 to return to the decomposition tank 8 to prevent the solvent 9 from being distilled.

【0020】次に、本発明の熱硬化性樹脂の分解方法に
ついて、図1を用いて説明する。まず、分解装置10の
分解槽8に所定量の溶剤9を貯える。この時、熱硬化性
樹脂の分解を促進する触媒を必要に応じて添加しても良
い。触媒は、溶剤100重量部に対して、0.1重量部
〜10重量部の比率で添加するのが好ましい。次に、温
度調節用媒体の流路3に熱媒を循環させ、溶剤9をその
沸点以下の所定温度にする。次に、気体吹込管4から溶
剤9中に気体を吹き込むバブリングにより溶剤9中に気
体を溶存させる。気体の吹き込み量は、溶剤100cc当
たり、1分間に0.1cc〜10ccが好ましい。また、溶
剤9中への気体の溶存方法として、エアローディング法
を用いても良い。次に、樹脂投入孔5から溶剤中に分解
させる熱硬化性樹脂を投入する。投入する熱硬化性樹脂
を機械的に粉砕し細片にすることは、溶剤9との接触面
積を増大させ、熱硬化性樹脂の分解速度を速くするので
好ましい。熱硬化性樹脂の細片の寸法は例えば0.1mm
〜50mmが好ましい。
Next, the method for decomposing the thermosetting resin of the present invention will be described with reference to FIG. First, a predetermined amount of the solvent 9 is stored in the decomposition tank 8 of the decomposition apparatus 10. At this time, a catalyst for promoting the decomposition of the thermosetting resin may be added as necessary. The catalyst is preferably added at a ratio of 0.1 parts by weight to 10 parts by weight with respect to 100 parts by weight of the solvent. Next, the heat medium is circulated through the flow path 3 of the temperature control medium, and the solvent 9 is set to a predetermined temperature equal to or lower than its boiling point. Next, the gas is dissolved in the solvent 9 by bubbling for blowing the gas into the solvent 9 from the gas blowing pipe 4. The amount of gas blown is preferably 0.1 cc to 10 cc per minute per 100 cc of the solvent. As a method for dissolving the gas in the solvent 9, an air loading method may be used. Next, a thermosetting resin to be decomposed into a solvent is injected through the resin injection hole 5. It is preferable to mechanically pulverize the injected thermosetting resin into small pieces, since the contact area with the solvent 9 is increased and the decomposition rate of the thermosetting resin is increased. The size of the thermosetting resin strip is, for example, 0.1 mm
~ 50 mm is preferred.

【0021】次に、攪拌機6で、熱硬化性樹脂が投入さ
れた溶剤9を攪拌し、熱硬化性樹脂を溶剤中に分散させ
る。次に、溶剤中に分散された熱硬化性樹脂に、超音波
振動子2より、周波数が20kHz〜1MHzで、音波強度
が1W/cm2〜500W/cm2の超音波を所定時間照射する。
超音波を照射中も、気体の吹き込みと溶剤の攪拌を行う
ことが、熱硬化性樹脂の分解効率向上させるので好まし
い。また、溶剤9に予め気体を溶存させない場合でも、
多少分解時間が長くなるが、超音波照射により熱硬化性
樹脂を低温で分解できる。
Next, the solvent 9 containing the thermosetting resin is stirred by the stirrer 6 to disperse the thermosetting resin in the solvent. Next, the distributed thermosetting resin in a solvent, from the ultrasonic oscillator 2, a frequency is at 20 kHz to 1 MHz, acoustic intensity ultrasonic irradiation of 1W / cm 2 ~500W / cm 2 for a predetermined time.
It is preferable to perform blowing of gas and stirring of the solvent even during the irradiation with the ultrasonic wave, since the decomposition efficiency of the thermosetting resin is improved. Further, even when the gas is not dissolved in the solvent 9 in advance,
Although the decomposition time is slightly longer, the thermosetting resin can be decomposed at a low temperature by ultrasonic irradiation.

【0022】本実施の形態で用いられる熱硬化性樹脂と
しては、エポキシ樹脂、ポリウレタン樹脂、フェノール
樹脂、不飽和ポリエステル樹脂、尿素樹脂、メラミン樹
脂、ポリイミド樹脂、シリコーン樹脂などが挙げられ
る。
The thermosetting resin used in the present embodiment includes epoxy resin, polyurethane resin, phenol resin, unsaturated polyester resin, urea resin, melamine resin, polyimide resin, silicone resin and the like.

【0023】本実施の形態で用いられる溶剤9として
は、水や有機溶剤が挙げられる。特に、分子中にエステ
ル結合、ウレタン結合、尿素結合のいずれか1つ以上の
結合を有する熱硬化性樹脂であるエポキシ樹脂、不飽和
ポリエステル樹脂、ポリウレタン樹脂、尿素樹脂、メラ
ミン樹脂を分解する際には、溶剤9として分子中に水酸
基を少なくとも1つ以上有するものが使用される。具体
的には水、メタノールやエタノール等のアルコール類、
エチレングリコールやプロピレングリコール等のグリコ
ール類、ポリオールなどが挙げられる。
The solvent 9 used in the present embodiment includes water and an organic solvent. In particular, when decomposing an epoxy resin, an unsaturated polyester resin, a polyurethane resin, a urea resin, a melamine resin which is a thermosetting resin having at least one bond of an ester bond, a urethane bond and a urea bond in a molecule. As the solvent 9, one having at least one hydroxyl group in the molecule as the solvent 9 is used. Specifically, water, alcohols such as methanol and ethanol,
Glycols such as ethylene glycol and propylene glycol, and polyols are exemplified.

【0024】本実施の形態で必要に応じて用いられる分
解促進用の触媒としては、アルカリ金属の水酸化物、ア
ルカリ土類金属の水酸化物などの無機塩基性化合物、有
機アミン化合物等の有機塩基性化合物、ジブチルチンジ
ラウレート、ジブチルチンジアセテートなどの有機金属
化合物、硫酸、塩酸、硝酸、有機カルボン酸、過酸化水
素などの酸が挙げられる。
The catalyst for accelerating the decomposition used as required in the present embodiment includes inorganic basic compounds such as hydroxides of alkali metals and hydroxides of alkaline earth metals, and organic compounds such as organic amine compounds. Examples include basic compounds, organic metal compounds such as dibutyltin dilaurate and dibutyltin diacetate, and acids such as sulfuric acid, hydrochloric acid, nitric acid, organic carboxylic acids, and hydrogen peroxide.

【0025】本実施の形態で用いられる溶剤9に溶存さ
せる気体は、分解反応を阻害しないものであれば何でも
よく、例えば、空気、窒素、酸素、ヘリウムなどの汎用
的なものが挙げられる。
The gas dissolved in the solvent 9 used in the present embodiment may be any gas as long as it does not inhibit the decomposition reaction, and examples thereof include general-purpose gases such as air, nitrogen, oxygen, and helium.

【0026】次に、本発明の超音波の照射により熱硬化
性樹脂の分解を促進する作用について説明する。溶剤に
超音波を照射すると、例えば加藤らの文献(日本化学会
誌1998年 No.8 P.530)に記載されているように、溶
剤中の溶存気体による気泡の発生(キャビテーション)
と、その圧壊による高温高圧状態(ホットスポット)と
が発生し、その局所的に発生した高温高圧反応場が熱硬
化性樹脂の分解を促進するのである。
Next, the action of the present invention for promoting the decomposition of the thermosetting resin by the irradiation of ultrasonic waves will be described. When a solvent is irradiated with ultrasonic waves, for example, as described in Kato et al.'S literature (Chemical Society of Japan 1998, No.8, page 530), bubbles are generated by dissolved gas in the solvent (cavitation).
Then, a high-temperature and high-pressure state (hot spot) is generated by the crushing, and the locally generated high-temperature and high-pressure reaction field accelerates the decomposition of the thermosetting resin.

【0027】次に、実施例と比較例とを挙げて本発明を
さらに詳しく説明する。
Next, the present invention will be described in more detail with reference to Examples and Comparative Examples.

【0028】[0028]

【実施例】実施例1.熱硬化性樹脂発泡体として、ポリ
オール(水酸基価:460mgKOH/g)100重量部と、有機
アミン系触媒3重量部と、シリコーン整泡剤3重量部
と、シクロペンタン12重量部と、水2重量部とを予め
添加した混合液に、ポリメリックジフェニルメタンジイ
ソシアネート(アミン当量:135g/当量)160重量部
を混合し、ポリウレタン発泡体を調製した。このポリウ
レタン発泡体を粉砕機により粉砕し、平均粒径が1mm以
下のポリウレタン発泡体粉末を得た。
[Embodiment 1] As a thermosetting resin foam, 100 parts by weight of a polyol (hydroxyl value: 460 mg KOH / g), 3 parts by weight of an organic amine catalyst, 3 parts by weight of a silicone foam stabilizer, 12 parts by weight of cyclopentane, and 2 parts by weight of water And 160 parts by weight of polymeric diphenylmethane diisocyanate (amine equivalent: 135 g / equivalent) was mixed with the mixed solution previously added to obtain a polyurethane foam. This polyurethane foam was pulverized by a pulverizer to obtain a polyurethane foam powder having an average particle size of 1 mm or less.

【0029】次に、例えば図1に示した分解装置10の
分解槽8に、溶剤9のジプロピレングリコール100重
量部に対して分解触媒の水酸化カリウム1重量部を溶解
させた溶液101重量部を投入する。次に、この溶液を
80℃に加熱保持し、エアポンプを用い、気体吹込管4
から溶液中に空気を1時間バブリングさせる。その後、
液温80℃の溶液中にポリウレタン発泡体粉末100重
量部を投入し攪拌しながら、溶液に周波数100kHz、
音波強度1W/cm2の超音波を照射し、ポリウレタン発泡
体粉末を分解させる。ポリウレタン発泡体粉末は嵩体積
が大きいため、分解槽8の大きさによっては一度に全て
の粉末を分解槽8に投入できない場合があるので、ポリ
ウレタン発泡体粉末を複数回に分けて投入しても良い。
本実施例では5時間後に分解が完了した。また、本実施
例で用いたものよりも小さい粒径のポリウレタン発泡体
粉末を用いると、分解時間がさらに短縮できる。このよ
うにして得られた分解生成物は水酸基価が440mgKOH/
gの再生ポリオール化合物であった。
Next, for example, 101 parts by weight of a solution obtained by dissolving 1 part by weight of potassium hydroxide as a decomposition catalyst in 100 parts by weight of dipropylene glycol as a solvent 9 in the decomposition tank 8 of the decomposition apparatus 10 shown in FIG. Input. Next, the solution was heated and maintained at 80 ° C.
Bubble air through the solution for 1 hour. afterwards,
100 parts by weight of the polyurethane foam powder was put into a solution having a liquid temperature of 80 ° C., and the solution was stirred at a frequency of 100 kHz.
The polyurethane foam powder is decomposed by irradiating an ultrasonic wave having a sound wave intensity of 1 W / cm 2 . Since the polyurethane foam powder has a large bulk volume, depending on the size of the decomposition tank 8, not all of the powder may be put into the decomposition tank 8 at one time. good.
In this example, the decomposition was completed after 5 hours. When a polyurethane foam powder having a particle size smaller than that used in this example is used, the decomposition time can be further reduced. The decomposition product thus obtained has a hydroxyl value of 440 mgKOH /
g of the recycled polyol compound.

【0030】実施例2.分解触媒の水酸化カリウムの添
加量をジプロピレングリコール100重量部に対して5
重量部にした以外、実施例1と同様にして、分解処理を
行った。水酸化カリウムは溶剤のジプロピレングリコー
ルに完全に溶解せず、水酸化カリウムが溶け残り、実施
例1と同様の5時間後に分解が完了し、分解生成物は水
酸基価が440mgKOH/gの再生ポリオール化合物であっ
た。
Embodiment 2 FIG. The addition amount of potassium hydroxide as a decomposition catalyst was 5 parts per 100 parts by weight of dipropylene glycol.
Decomposition treatment was performed in the same manner as in Example 1 except that the amount was changed to parts by weight. Potassium hydroxide did not completely dissolve in the solvent dipropylene glycol, potassium hydroxide remained undissolved, the decomposition was completed after 5 hours as in Example 1, and the decomposition product was a recycled polyol having a hydroxyl value of 440 mgKOH / g. Compound.

【0031】実施例3.分解触媒として水酸化カリウム
の代わりにトリエチレンジアミン1重量部をジプロピレ
ングリコール100重量部に添加した以外、実施例1と
同様にして分解処理を行った。実施例1より短時間の4
時間後に分解が完了し、分解生成物は水酸基価が440
mgKOH/gの再生ポリオール化合物であった。
Embodiment 3 FIG. The decomposition treatment was performed in the same manner as in Example 1 except that 1 part by weight of triethylenediamine was added to 100 parts by weight of dipropylene glycol instead of potassium hydroxide as a decomposition catalyst. 4 which is shorter than Example 1
After a period of time, the decomposition is completed, and the decomposition product has a hydroxyl value of 440.
The regenerated polyol compound was mgKOH / g.

【0032】実施例4.分解触媒のトリエチレンジアミ
ンの量を5重量部とした以外、実施例3と同様にして分
解処理を行った。分解触媒量の増加に伴い、実施例3よ
り短時間の2.5時間後に分解が完了し、分解生成物は
水酸基価が440mgKOH/gの再生ポリオール化合物であ
った。
Embodiment 4 FIG. The decomposition treatment was performed in the same manner as in Example 3 except that the amount of triethylenediamine as the decomposition catalyst was changed to 5 parts by weight. With the increase in the amount of the cracking catalyst, the cracking was completed 2.5 hours later than in Example 3, and the cracked product was a regenerated polyol compound having a hydroxyl value of 440 mgKOH / g.

【0033】比較例1.分解処理時に超音波を照射しな
かった以外、実施例1と同様にして分解処理を行った。
処理開始24時間後においても投入されたポリウレタン
発泡体粉末は固体状態で残存しており、分解が完結しな
かった。
Comparative Example 1 The decomposition treatment was performed in the same manner as in Example 1 except that no ultrasonic wave was applied during the decomposition treatment.
Even after 24 hours from the start of the treatment, the charged polyurethane foam powder remained in a solid state, and the decomposition was not completed.

【0034】比較例2.分解処理時に超音波を照射せず
溶液温度を180℃にした以外、実施例1と同様にして
分解処理を行った。8時間後に分解が完了し、実施例1
同様の分解生成物が得られた。
Comparative Example 2 The decomposition treatment was performed in the same manner as in Example 1 except that the solution temperature was set to 180 ° C. without irradiating ultrasonic waves during the decomposition treatment. The decomposition was completed after 8 hours, and
A similar decomposition product was obtained.

【0035】比較例3.分解処理時に超音波を照射しな
かった以外、実施例4と同様にして分解処理を行った。
処理開始24時間後においても投入されたポリウレタン
発泡体粉末は固体状態で残存しており、分解が完結しな
かった。
Comparative Example 3 The decomposition treatment was performed in the same manner as in Example 4, except that no ultrasonic wave was applied during the decomposition treatment.
Even after 24 hours from the start of the treatment, the charged polyurethane foam powder remained in a solid state, and the decomposition was not completed.

【0036】比較例4.分解処理時に超音波を照射せず
溶液温度を180℃にした以外、実施例4と同様にして
分解処理を行った。トリエチレンジアミンの蒸気が発生
し、処理開始24時間後においても投入されたポリウレ
タン発泡体粉末は固体状態で残存しており、分解が完結
しなかった。
Comparative Example 4 The decomposition treatment was performed in the same manner as in Example 4 except that the solution temperature was set to 180 ° C. without irradiating ultrasonic waves during the decomposition treatment. Triethylenediamine vapor was generated, and even after 24 hours from the start of the treatment, the charged polyurethane foam powder remained in a solid state, and the decomposition was not completed.

【0037】実施例5.熱硬化性樹脂成形材として、ビ
スフェノール型エポキシ化合物17重量部と、変性酸無
水物15重量部と、シリカ粉末68重量部とを混合し、
加熱硬化してエポキシ樹脂の板状成形品を調製した。こ
の板状成形品を機械的に破砕し、長手方向の寸法が5m
m程度の細片を得た。
Embodiment 5 FIG. As a thermosetting resin molding material, 17 parts by weight of a bisphenol-type epoxy compound, 15 parts by weight of a modified acid anhydride, and 68 parts by weight of silica powder were mixed,
It was cured by heating to prepare an epoxy resin plate-like molded product. This plate-like molded product is mechanically crushed, and the length in the longitudinal direction is 5 m.
m pieces were obtained.

【0038】次に、例えば図1に示した分解装置10の
分解槽8に、1規定の水酸化カリウム水溶液300重量
部を投入する。液温を25℃に調節した水溶液中に、エ
アポンプを用い気体吹込管4から空気を1時間バブリン
グさせる。次に、エポキシ樹脂成形品の細片200重量
部を分解槽8へ投入し攪拌する。水溶液中に分散された
エポキシ樹脂成形品の細片に周波数100kHz、音波強
度1W/cm2の超音波を照射し、エポキシ樹脂成形品を分
解させた。本実施例では3時間後に分解が完了され、液
状生成物とシリカ粉末が回収できた。エポキシ樹脂成形
品を十分に破砕し、粉末状にすると分解時間を短縮でき
る。
Next, for example, 300 parts by weight of a 1 N aqueous potassium hydroxide solution is charged into the decomposition tank 8 of the decomposition apparatus 10 shown in FIG. Using an air pump, air is bubbled through the gas injection pipe 4 for 1 hour into the aqueous solution whose temperature has been adjusted to 25 ° C. Next, 200 parts by weight of the strip of the epoxy resin molded product is put into the decomposition tank 8 and stirred. Ultrasonic waves having a frequency of 100 kHz and a sound intensity of 1 W / cm 2 were irradiated on the strips of the epoxy resin molded product dispersed in the aqueous solution to decompose the epoxy resin molded product. In this example, the decomposition was completed after 3 hours, and the liquid product and the silica powder could be recovered. If the epoxy resin molded product is sufficiently crushed and powdered, the decomposition time can be reduced.

【0039】比較例5.分解処理時に超音波を照射しな
かった以外、実施例5と同様にして分解処理を行った。
処理開始3時間後においても投入されたエポキシ樹脂成
形品の90wt%以上が固体状態で残存しており、分解の
進行が極めて遅かった。
Comparative Example 5 The decomposition process was performed in the same manner as in Example 5, except that no ultrasonic wave was applied during the decomposition process.
Even 3 hours after the start of the treatment, 90 wt% or more of the charged epoxy resin molded product remained in a solid state, and the progress of decomposition was extremely slow.

【0040】実施例6.熱硬化性樹脂成形材として、不
飽和ポリエステル15.6重量部と、スチレン12.6
重量部と、第3級ブチルパーオキシベンゾエイト0.3
重量部とからなるバインダーに、炭酸カルシウム57重
量部と、ステアリン酸亜鉛2重量部と、酸化マグネシウ
ム1重量部と、ガラス繊維10重量部とからなる充填材
を加えて加熱硬化した不飽和ポリエステル樹脂の板状成
形品を調製した。この板状成形品を機械的に破砕し、長
手方向の寸法が5mm程度の細片を得た。
Embodiment 6 FIG. As a thermosetting resin molding material, 15.6 parts by weight of unsaturated polyester and 12.6 parts of styrene were used.
Parts by weight and tertiary butyl peroxybenzoate 0.3
Unsaturated polyester resin heat-cured by adding a filler composed of 57 parts by weight of calcium carbonate, 2 parts by weight of zinc stearate, 1 part by weight of magnesium oxide, and 10 parts by weight of glass fiber to a binder consisting of Was prepared. This plate-like molded product was mechanically crushed to obtain a strip having a longitudinal dimension of about 5 mm.

【0041】次に、例えば図1に示した分解装置10の
分解槽8に、N-メチル-2-ピロリドン140重量部と、
エタノール50重量部と、トリエチレンジアミン10重
量部とからなる混合溶液を投入する。液温を25℃に調
節した溶液中に、エアポンプを用い気体吹込管4から空
気を1時間バブリングさせる。次に不飽和ポリエステル
樹脂成形品の細片の100重量部を溶液中に投下し攪拌
する。溶液中に均一に分散された不飽和ポリエステル樹
脂成形品の細片に周波数100kHz、音波強度10W/cm2
の超音波を照射し、不飽和ポリエステル樹脂成形品を分
解させた。本実施例では8時間後に分解が完了し、液状
生成物と充填材粉末が回収できた。不飽和ポリエステル
樹脂成形品を十分に破砕し、粉末状にすると分解時間を
短縮できる。
Next, for example, 140 parts by weight of N-methyl-2-pyrrolidone is placed in the decomposition tank 8 of the decomposition apparatus 10 shown in FIG.
A mixed solution comprising 50 parts by weight of ethanol and 10 parts by weight of triethylenediamine is charged. Air is bubbled through the gas injection pipe 4 for one hour using an air pump into the solution whose temperature has been adjusted to 25 ° C. Next, 100 parts by weight of the strip of the unsaturated polyester resin molded product is dropped into the solution and stirred. A strip of an unsaturated polyester resin molded product uniformly dispersed in a solution was applied at a frequency of 100 kHz and a sound intensity of 10 W / cm 2.
Was irradiated to decompose the unsaturated polyester resin molded product. In this example, the decomposition was completed after 8 hours, and the liquid product and the filler powder could be recovered. When the unsaturated polyester resin molded product is sufficiently crushed and powdered, the decomposition time can be reduced.

【0042】比較例6.分解処理時に超音波を照射しな
かった以外、実施例6と同様にして分解処理を行った。
処理開始8時間後においても投入された不飽和ポリエス
テル樹脂成形品の重量減少率は3wt%以下であり、分解
がほとんどおきなかった。
Comparative Example 6 The decomposition process was performed in the same manner as in Example 6, except that no ultrasonic wave was applied during the decomposition process.
Even after 8 hours from the start of the treatment, the weight loss rate of the charged unsaturated polyester resin molded product was 3 wt% or less, and almost no decomposition occurred.

【0043】前記実施例と比較例とに示されるように、
熱硬化性樹脂を溶媒中で分解させる方法において、超音
波のを照射は、分解時間を短縮するとともに、分解温度
を大幅に下げることができる。また、超音波の照射は、
分解処理温度を下げるので、従来の高温での分解処理で
は気化蒸発して使用できなかったトリエチレンジアミン
のような有機アミンの分解触媒が使用できるようにな
る。有機アミンの分解触媒は、分解時に用いられる溶剤
への溶解度が大きく、添加量を増やすことができるの
で、分解時間をさらに短くできる。
As shown in the above Examples and Comparative Examples,
In the method of decomposing a thermosetting resin in a solvent, irradiation with ultrasonic waves can shorten the decomposition time and significantly lower the decomposition temperature. In addition, the ultrasonic irradiation
Since the decomposition treatment temperature is lowered, an organic amine decomposition catalyst such as triethylenediamine, which cannot be used by vaporization and evaporation in the conventional high-temperature decomposition treatment, can be used. The decomposition catalyst of the organic amine has a high solubility in the solvent used at the time of decomposition, and the amount of addition can be increased, so that the decomposition time can be further shortened.

【0044】[0044]

【発明の効果】本発明に係る第1の熱硬化性樹脂の分解
方法は、熱硬化性樹脂を溶剤に浸漬する工程と、この溶
剤に浸漬された熱硬化性樹脂に超音波を照射する工程と
を備えており、溶剤中での熱硬化性樹脂の分解処理にお
いて、分解時間を短縮し、分解温度を低くできる。
The first method for decomposing a thermosetting resin according to the present invention comprises the steps of immersing the thermosetting resin in a solvent, and irradiating the thermosetting resin immersed in the solvent with ultrasonic waves. In the decomposition treatment of the thermosetting resin in a solvent, the decomposition time can be shortened and the decomposition temperature can be lowered.

【0045】本発明に係る第2の熱硬化性樹脂の分解方
法は、前記第1の熱硬化性樹脂の分解方法において、前
記溶剤中に、熱硬化性樹脂の分解を促進する触媒を含有
しており、分解時間の一層の短縮を可能とする。
The second method for decomposing a thermosetting resin according to the present invention is the same as the first method for decomposing a thermosetting resin, wherein the solvent contains a catalyst for accelerating the decomposition of the thermosetting resin. And the decomposition time can be further reduced.

【0046】本発明に係る第3の熱硬化性樹脂の分解方
法は、前記第1または2の熱硬化性樹脂の分解方法にお
いて、前記溶剤を予め気体が溶存された溶剤とすること
であり、超音波照射による熱硬化性樹脂の分解効率を向
上させる。
A third method of decomposing a thermosetting resin according to the present invention is the method of decomposing the first or second thermosetting resin, wherein the solvent is a solvent in which gas is dissolved in advance. Improves the decomposition efficiency of thermosetting resin by ultrasonic irradiation.

【0047】本発明に係る第4の熱硬化性樹脂の分解方
法は、前記第1ないし3のいずれかの熱硬化性樹脂の分
解方法において、照射する超音波の周波数が20kHz以
上1MHz以下であり、熱硬化性樹脂の分解効率が優れて
いる。
The fourth method for decomposing a thermosetting resin according to the present invention is the method for decomposing a thermosetting resin according to any one of the first to third aspects, wherein the frequency of the ultrasonic wave to be applied is 20 kHz or more and 1 MHz or less. And the decomposition efficiency of the thermosetting resin is excellent.

【0048】本発明に係る第5の熱硬化性樹脂の分解方
法は、前記第1ないし4のいずれかの熱硬化性樹脂の分
解方法において、照射する超音波の音波強度が1W/cm2
以上500W/cm2以下であり、熱硬化性樹脂の分解効率
が良い。
The fifth method for decomposing a thermosetting resin according to the present invention is the method for decomposing a thermosetting resin according to any one of the first to fourth aspects, wherein the intensity of the ultrasonic wave applied is 1 W / cm 2.
It is 500 W / cm 2 or less, and the decomposition efficiency of the thermosetting resin is good.

【0049】本発明に係る第6の熱硬化性樹脂の分解方
法は、前記第1ないし5のいずれかの熱硬化性樹脂の分
解方法において、熱硬化性樹脂が、エステル結合、ウレ
タン結合、尿素結合のうち少なくとも1種類の結合を含
むことであり、分解が容易に起こる。
A sixth method for decomposing a thermosetting resin according to the present invention is the method for decomposing a thermosetting resin according to any one of the first to fifth aspects, wherein the thermosetting resin comprises an ester bond, a urethane bond, a urea Including at least one kind of bond among the bonds, and the decomposition is easily caused.

【0050】本発明に係る第7の熱硬化性樹脂の分解方
法は、前記第1ないし5のいずれかの熱硬化性樹脂の分
解方法において、熱硬化性樹脂がポリウレタン樹脂であ
ることであり、廃棄物の減容化効果が大きい。
A seventh method for decomposing a thermosetting resin according to the present invention is the method for decomposing a thermosetting resin according to any one of the first to fifth aspects, wherein the thermosetting resin is a polyurethane resin. Great effect of volume reduction of waste.

【0051】本発明に係る第1の熱硬化性樹脂の分解装
置は、熱硬化性樹脂を溶剤に浸漬する手段と、前記溶剤
に浸漬された熱硬化性樹脂に超音波を照射する手段とを
備えたものであり、熱硬化性樹脂を低温で短時間に分解
処理できる。
The first thermosetting resin decomposition apparatus according to the present invention comprises a means for immersing the thermosetting resin in a solvent and a means for irradiating the thermosetting resin immersed in the solvent with ultrasonic waves. The thermosetting resin can be decomposed at a low temperature in a short time.

【0052】本発明に係る第2分の熱硬化性樹脂の分解
装置は、前記第1の熱硬化性樹脂の分解装置において、
溶剤に気体を溶存させる手段を備えたものであり、熱硬
化性樹脂の分解効率を向上できる。
The apparatus for decomposing a thermosetting resin for a second minute according to the present invention is the same as the first apparatus for decomposing a thermosetting resin,
This is provided with means for dissolving gas in the solvent, and can improve the decomposition efficiency of the thermosetting resin.

【図面の簡単な説明】[Brief description of the drawings]

【図1】 この発明の実施の形態1における熱硬化性樹
脂分解装置の構成図である。
FIG. 1 is a configuration diagram of a thermosetting resin decomposition device according to Embodiment 1 of the present invention.

【符号の説明】[Explanation of symbols]

1 超音波発生装置、2 超音波振動子、3 温度調節
用媒体流路、4 気体吹込管、5 熱硬化性樹脂投入
口、6 攪拌機、7 冷却器、8 分解槽、9溶剤、1
0 熱硬化性樹脂分解装置。
1 Ultrasonic generator, 2 Ultrasonic vibrator, 3 Temperature control medium flow path, 4 Gas blowing pipe, 5 Thermosetting resin inlet, 6 Stirrer, 7 Cooler, 8 Decomposition tank, 9 Solvent, 1
0 Thermosetting resin decomposition equipment.

───────────────────────────────────────────────────── フロントページの続き Fターム(参考) 4F301 AA22 AA23 AA24 AA25 AA27 AA29 CA09 CA12 CA22 CA23 CA43 CA51 CA61 CA71 4G069 AA06 BA21B BD06B BE15B CA04 CA10 DA02  ──────────────────────────────────────────────────続 き Continued on the front page F term (reference) 4F301 AA22 AA23 AA24 AA25 AA27 AA29 CA09 CA12 CA22 CA23 CA43 CA51 CA61 CA71 4G069 AA06 BA21B BD06B BE15B CA04 CA10 DA02

Claims (9)

【特許請求の範囲】[Claims] 【請求項1】 熱硬化性樹脂を溶剤に浸漬する工程と、
この溶剤に浸漬された熱硬化性樹脂に超音波を照射する
工程とを備えることを特徴とする熱硬化性樹脂の分解方
法。
A step of immersing the thermosetting resin in a solvent;
Irradiating the thermosetting resin immersed in the solvent with ultrasonic waves.
【請求項2】 前記溶剤中に、熱硬化性樹脂の分解を促
進する触媒を含有することを特徴とする請求項1に記載
の熱硬化性樹脂の分解方法。
2. The method for decomposing a thermosetting resin according to claim 1, wherein the solvent contains a catalyst for promoting the decomposition of the thermosetting resin.
【請求項3】 前記溶剤が、予め気体が溶存された溶剤
であることを特徴とする請求項1または2に記載の熱硬
化性樹脂の分解方法。
3. The method for decomposing a thermosetting resin according to claim 1, wherein the solvent is a solvent in which gas is dissolved in advance.
【請求項4】 照射する超音波の周波数が20kHz以上1MH
z以下であることを特徴とする請求項1ないし3のいず
れかに記載の熱硬化性樹脂の分解方法。
4. The frequency of the ultrasonic wave to be irradiated is 20 kHz or more and 1 MHz.
The method for decomposing a thermosetting resin according to any one of claims 1 to 3, wherein z is not more than z.
【請求項5】 照射する超音波の音波強度が1W/cm2
上500W/cm2以下であることを特徴とする請求項1な
いし4のいずれかに記載の熱硬化性樹脂の分解方法。
5. The method for decomposing a thermosetting resin according to claim 1, wherein the intensity of the ultrasonic wave to be applied is 1 W / cm 2 or more and 500 W / cm 2 or less.
【請求項6】 熱硬化性樹脂が、エステル結合、ウレタ
ン結合、尿素結合のうち少なくとも1種類の結合を含む
ことを特徴とする請求項1ないし5のいずれかに記載の
熱硬化性樹脂の分解方法。
6. The decomposition of a thermosetting resin according to claim 1, wherein the thermosetting resin contains at least one kind of bond among an ester bond, a urethane bond and a urea bond. Method.
【請求項7】 熱硬化性樹脂がポリウレタン樹脂である
ことを特徴とする請求項1ないし5のいずれかに記載の
熱硬化性樹脂の分解方法。
7. The method for decomposing a thermosetting resin according to claim 1, wherein the thermosetting resin is a polyurethane resin.
【請求項8】 熱硬化性樹脂を溶剤に浸漬する手段と、
前記溶剤に浸漬された熱硬化性樹脂に超音波を照射する
手段とを備えたことを特徴とする熱硬化性樹脂の分解装
置。
8. A means for immersing a thermosetting resin in a solvent,
Means for irradiating ultrasonic waves to the thermosetting resin immersed in the solvent.
【請求項9】 溶剤に気体を溶存させる手段を備えたこ
とを特徴とする請求項8に記載の熱硬化性樹脂の分解装
置。
9. The thermosetting resin decomposing apparatus according to claim 8, further comprising means for dissolving a gas in the solvent.
JP2000167345A 2000-06-05 2000-06-05 Method for decomposing thermosetting resin and apparatus for decomposition Pending JP2001342290A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2000167345A JP2001342290A (en) 2000-06-05 2000-06-05 Method for decomposing thermosetting resin and apparatus for decomposition

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2000167345A JP2001342290A (en) 2000-06-05 2000-06-05 Method for decomposing thermosetting resin and apparatus for decomposition

Publications (1)

Publication Number Publication Date
JP2001342290A true JP2001342290A (en) 2001-12-11

Family

ID=18670511

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000167345A Pending JP2001342290A (en) 2000-06-05 2000-06-05 Method for decomposing thermosetting resin and apparatus for decomposition

Country Status (1)

Country Link
JP (1) JP2001342290A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002363339A (en) * 2001-06-12 2002-12-18 Hitachi Chem Co Ltd Solution for treating cured epoxy resin, method of treatment by using it, and treated product
JP2002363338A (en) * 2001-06-12 2002-12-18 Hitachi Chem Co Ltd Solution for treating cured unsaturated polyester resin, method of treatment by using it, and treated product
JP2006219640A (en) * 2005-02-14 2006-08-24 Yamaguchi Prefecture Decomposition treatment method of thermosetting resin and decomposition treatment method of fiber reinforced plastic waste material based on thermosetting resin
JP2020511343A (en) * 2017-03-24 2020-04-16 エイセル インダストリーズ リミテッドAcell Industries Limited Method for molding cured thermosetting resin

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002363339A (en) * 2001-06-12 2002-12-18 Hitachi Chem Co Ltd Solution for treating cured epoxy resin, method of treatment by using it, and treated product
JP2002363338A (en) * 2001-06-12 2002-12-18 Hitachi Chem Co Ltd Solution for treating cured unsaturated polyester resin, method of treatment by using it, and treated product
JP4654537B2 (en) * 2001-06-12 2011-03-23 日立化成工業株式会社 Treatment solution for cured unsaturated polyester resin, treatment method and treatment product using the same
JP2006219640A (en) * 2005-02-14 2006-08-24 Yamaguchi Prefecture Decomposition treatment method of thermosetting resin and decomposition treatment method of fiber reinforced plastic waste material based on thermosetting resin
JP4654333B2 (en) * 2005-02-14 2011-03-16 地方独立行政法人山口県産業技術センター Method for decomposing thermosetting resin
JP2020511343A (en) * 2017-03-24 2020-04-16 エイセル インダストリーズ リミテッドAcell Industries Limited Method for molding cured thermosetting resin
JP7190752B2 (en) 2017-03-24 2022-12-16 エイセル インダストリーズ リミテッド Method for molding cured thermosetting resin
US11904507B2 (en) * 2017-03-24 2024-02-20 Acell Industries Limited Method of shaping a cured thermosetting resin
IL270589B1 (en) * 2017-03-24 2024-06-01 Acell Ind Ltd Method of shaping a cured thermosetting resin
IL270589B2 (en) * 2017-03-24 2024-10-01 Acell Ind Ltd A method for designing a resin that hardens when heated

Similar Documents

Publication Publication Date Title
JP2021191872A (en) Recycling carbon fiber based materials
Navarro et al. A structural chemistry look at composites recycling
Liu et al. Progress in chemical recycling of carbon fiber reinforced epoxy composites
CN1094804C (en) Resource recovery method of resin moulded rotary motor and resin for moulding
JPH08225635A (en) Method and apparatus for reclaiming unsaturated polyester scrap
CA2217414A1 (en) A method for preparation of recycled polyols and a method for manufacturing polyurethane foams with improved thermal insulation property
CN1221588C (en) Method and device for producing polyester polyol, polyester polyol and polurethane foam
JP2010065230A (en) Process liquid for decomposition or dissolution of ester bond-containing macromolecule, treating method using the process liquid, and method of separating composite material
JP2001342290A (en) Method for decomposing thermosetting resin and apparatus for decomposition
US6465531B1 (en) Method for recycling thermoset resin materials
TW202423649A (en) Method of producing recycled reinforcing fibers
Jayakumari et al. A Review On Recycling Of Thermosets
JP4765202B2 (en) Treatment solution for cured epoxy resin, treatment method and treatment product using the same
JP4645160B2 (en) Treatment liquid for decomposition or dissolution of ester bond-containing polymer, treatment method using the treatment liquid, and separation method of composite material
KR20020034654A (en) Process for preparing depolymerized polyol
JP2006219640A (en) Decomposition treatment method of thermosetting resin and decomposition treatment method of fiber reinforced plastic waste material based on thermosetting resin
JP4291126B2 (en) Plastic disassembly method
JP4654537B2 (en) Treatment solution for cured unsaturated polyester resin, treatment method and treatment product using the same
JPH09194614A (en) Molded plastic, and method of treatment of molded plastic
Sane et al. Recycling of Polyurethanes
JP2023169600A (en) Solid material and method for treating thermosetting resin
JPH11323009A (en) Recycling of polyurethane foam
JP4754246B2 (en) Plastic disassembly method
JP2023111250A (en) Depolymerization method of polybutylene terephthalate resin
Hao Chemical Recycling of Fiber Reinforced Epoxy Composites and Development of High-Performance Recyclable Alternatives