JP2001339158A - Method for producing multilayer metal foil clad plate having inner layer circuit - Google Patents

Method for producing multilayer metal foil clad plate having inner layer circuit

Info

Publication number
JP2001339158A
JP2001339158A JP2000157662A JP2000157662A JP2001339158A JP 2001339158 A JP2001339158 A JP 2001339158A JP 2000157662 A JP2000157662 A JP 2000157662A JP 2000157662 A JP2000157662 A JP 2000157662A JP 2001339158 A JP2001339158 A JP 2001339158A
Authority
JP
Japan
Prior art keywords
mirror plate
pressure
metal foil
prepreg
inner layer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2000157662A
Other languages
Japanese (ja)
Inventor
Norio Makimura
訓男 牧村
Hiroaki Yamaguchi
裕朗 山口
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Resonac Corp
Original Assignee
Shin Kobe Electric Machinery Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shin Kobe Electric Machinery Co Ltd filed Critical Shin Kobe Electric Machinery Co Ltd
Priority to JP2000157662A priority Critical patent/JP2001339158A/en
Publication of JP2001339158A publication Critical patent/JP2001339158A/en
Pending legal-status Critical Current

Links

Abstract

PROBLEM TO BE SOLVED: To suppress irregularities on the surface caused by the printed circuit on a core substrate when multilayer components are hot pressed while sandwiching metallic mirror face plates of 0.8 mm thick or less. SOLUTION: A prepreg and a metal foil are laid sequentially from the inside on the opposite sides of a core board substrate where printed circuits are formed to obtain a multilayer component 1 for forming a multilayer metal foil clad plate having an inner layer circuit. The multilayer components are hot pressed while sandwiching metallic mirror face plates 2 of 0.8-0.4 mm thick and integrated. In this regard, a metallic mirror face plate 2 having Brinell hardness 60 (HBW10/500) or above is employed.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、内層にプリント回
路を有する多層金属箔張り積層板の製造法に関する。こ
の多層金属箔張り積層板は、多層プリント回路板の製造
に使用される。
The present invention relates to a method for producing a multilayer metal foil-clad laminate having a printed circuit in an inner layer. This multilayer metal foil-clad laminate is used in the manufacture of multilayer printed circuit boards.

【0002】[0002]

【従来の技術】上記多層金属箔張り積層板は、プリント
回路を形成したコア基板の両側にプリプレグと金属箔を
この順に内側から外側へ重ね、この積層構成体をプレス
熱盤間で加熱加圧成形して一体化することにより製造す
る。コア基板を複数枚使用する場合には、位置決めをし
て重ね合せたコア基板同士の間にもプリプレグを介在さ
せ、前記加熱加圧成形をする。上記加熱加圧成形におい
ては、プレス熱盤一段間に複数組の積層構成体を投入
し、積層構成体同士の間には金属製鏡面板を介在させ
る。工数低減、製造時間短縮を図るために、プレス熱盤
間に投入する積層構成体の組数を増やす試みがあるが、
単純に組数を増やすと積層構成体の昇温速度が遅くな
り、最高温度到達までの時間も長くなる。この問題を解
決するためには、積層構成体同士の間に介在させる金属
製鏡面板の厚さを薄くして、昇温速度、最高温度到達時
間の現状維持に務めなければならない。
2. Description of the Related Art The above-mentioned multilayer metal foil-clad laminate is prepared by laminating a prepreg and a metal foil in this order on both sides of a core substrate on which a printed circuit is formed, from the inside to the outside, and heating and pressing the laminated structure between press hot plates. It is manufactured by molding and integrating. When a plurality of core substrates are used, a prepreg is also interposed between the core substrates that have been positioned and overlapped with each other, and the heat and pressure molding is performed. In the above-mentioned heat and pressure molding, a plurality of sets of laminated structures are put in one stage of a press hot platen, and a metal mirror plate is interposed between the laminated structures. In order to reduce man-hours and manufacturing time, there is an attempt to increase the number of sets of laminated components to be put between press hot plates,
If the number of sets is simply increased, the rate of temperature rise of the laminated structure is reduced, and the time required to reach the maximum temperature is also increased. In order to solve this problem, it is necessary to reduce the thickness of the metal mirror plate interposed between the laminated components to maintain the current state of the rate of temperature rise and the time to reach the maximum temperature.

【0003】積層構成体間に介在させる金属製鏡面板は
圧延工程を経て仕上げるため、ステンレス製鏡面板のよ
うに高強度のものでは薄い板厚に仕上げることが難し
く、厚み1mmまでが限界である。例えば、0.8mm以下
という非常に薄い板厚に仕上げようとすると、金属製鏡
面板の強度をある程度小さくする必要があり、厚み0.
8mm以下に圧延可能な金属製鏡面板として、アルミニウ
ム、鉄等からなる低強度の鏡面板の検討がなされてき
た。
[0003] Since the metal mirror plate interposed between the laminated components is finished through a rolling process, it is difficult to finish the metal mirror plate with a high strength such as a stainless steel mirror plate to a thin plate thickness, and the thickness is limited to 1 mm. . For example, in order to finish the sheet with a very thin thickness of 0.8 mm or less, it is necessary to reduce the strength of the metal mirror plate to a certain extent.
As a metal mirror plate that can be rolled to 8 mm or less, a low-strength mirror plate made of aluminum, iron, or the like has been studied.

【0004】[0004]

【発明が解決しようとする課題】これらアルミニウム、
鉄等からなる鏡面板を積層構成体同士の間に介在させて
加熱加圧成形を行なうと、鏡面板の強度が低いために、
コア基板のプリント回路による凹凸が成形した内層回路
入り多層金属箔張り積層板表面に現れるという問題が発
生する。この凹凸は、表面の金属箔をプリント回路にエ
ッチング加工する工程で貼付けるエッチングレジストフ
ィルムの密着不良やプリント回路に部品を実装するとき
の実装不良等につながる。コア基板のプリント回路の凹
凸が金属製鏡面板にまで影響しないようにするには、前
記凹凸を吸収するクッション材になるものが必要であ
る。これまでの方法では、積層構成体と金属製鏡面板を
交互に積み上げたものの外側に紙もしくはゴム製のクッ
ション材を配しているが、厚み0.8mm以下の金属製鏡
面板は強度がないために、金属製鏡面板そのものがコア
基板のプリント回路による凹凸を吸収してしまう。
SUMMARY OF THE INVENTION These aluminum,
When heat and pressure molding is performed by interposing a mirror plate made of iron or the like between the laminated components, because the strength of the mirror plate is low,
A problem arises in that unevenness due to the printed circuit of the core substrate appears on the surface of the formed multilayer metal foil-clad laminate with the inner layer circuit. The unevenness leads to poor adhesion of an etching resist film to be attached in a step of etching a metal foil on a surface of a printed circuit, mounting failure when mounting components on the printed circuit, and the like. In order to prevent the unevenness of the printed circuit on the core substrate from affecting the metal mirror plate, it is necessary to use a cushion material that absorbs the unevenness. In the conventional method, a laminated member and a metal mirror plate are alternately stacked, and a paper or rubber cushion material is arranged on the outside, but a metal mirror plate having a thickness of 0.8 mm or less has no strength. As a result, the metal mirror plate itself absorbs the unevenness due to the printed circuit of the core substrate.

【0005】内層回路入り多層金属箔張り積層板表面の
凹凸発生防止対策として、一つには、積層構成体の加熱
加圧成形に際し、成形圧力を低圧に設定する方法があ
る。この方法は、成形圧力不十分に起因する回路埋め性
低下(コア基板のプリント回路間の凹部が成形時に溶融
流動する樹脂で十分に埋まらず空隙が残る現象)を防ぐ
ために、プリプレグ特性を変更して低圧成形に対応する
必要がある。しかし、プリプレグ特性を変更すると、金
属箔引きはがし強さや耐熱性、板厚精度等の製品性能を
プリプレグ特性変更前と同等に維持することが困難にな
る。もう一つには、積層構成体の加熱加圧成形に際し、
加熱開始初期は低圧で加熱加圧成形し、その後昇圧して
加熱加圧成形する方法がある。前記低圧は、未だプリプ
レグ中の樹脂が溶融しない段階で、コア基板のプリント
回路による凹凸が表面に影響を与えない大きさの成形圧
力である。また、前記昇圧は、プリプレグ中の樹脂が十
分に溶融したところで、溶融樹脂がコア基板のプリント
回路間凹部を埋めるのに必要十分な圧力への昇圧であ
る。この昇圧段階では、溶融した樹脂がコア基板のプリ
ント回路凹凸を吸収し、表面に現れる凹凸を軽減する。
[0005] As a measure for preventing the occurrence of unevenness on the surface of the multilayer metal foil-clad laminate with an inner layer circuit, one method is to set the molding pressure to a low pressure when heating and pressing the laminated structure. This method changes the prepreg characteristics in order to prevent a decrease in circuit filling property due to insufficient molding pressure (a phenomenon in which a concave portion between printed circuits of a core substrate is not sufficiently filled with a resin that melts and flows during molding and a void remains). Need to cope with low pressure molding. However, when the prepreg characteristics are changed, it becomes difficult to maintain the product performance such as the metal foil peeling strength, heat resistance, and plate thickness accuracy as before the prepreg characteristics were changed. Secondly, when heating and pressing the laminated structure,
There is a method in which heating and pressure molding is performed at a low pressure in the initial stage of heating, and then pressure is increased to perform heating and pressure molding. The low pressure is a molding pressure at a stage where the resin in the prepreg has not yet melted and the unevenness of the printed circuit of the core substrate does not affect the surface. The pressure increase is a pressure increase to a pressure necessary and sufficient for the molten resin to fill the recesses between the printed circuits of the core substrate when the resin in the prepreg is sufficiently melted. In this step, the melted resin absorbs the unevenness of the printed circuit of the core substrate and reduces the unevenness appearing on the surface.

【0006】しかし、表面に現れる凹凸の程度には、積
層構成体同士の間に介在させる金属製鏡面板の材質、コ
ア基板のプリント回路を構成する導体厚み、プリプレグ
材質等によって差異ができる。上記の成形圧力の制御を
実施するだけでは、表面にできる凹凸を十分に抑制でき
ないことがある。特に、コア基板のプリント回路を構成
する導体厚みが70μm以上の場合や、樹脂が溶融する
前のプリプレグ粘度が高い場合に、表面の凹凸が大きく
なりやすい。
However, the degree of the irregularities appearing on the surface can vary depending on the material of the metal mirror plate interposed between the laminated structures, the thickness of the conductor constituting the printed circuit of the core substrate, the material of the prepreg, and the like. Only the control of the molding pressure described above may not sufficiently suppress the unevenness formed on the surface. In particular, when the thickness of the conductor constituting the printed circuit of the core substrate is 70 μm or more, or when the viscosity of the prepreg before the resin is melted is high, the unevenness of the surface tends to increase.

【0007】本発明が解決しようとする課題は、積層構
成体同士の間に厚み0.8mm以下の金属製鏡面板を介在
させて内層回路入り多層金属箔張り積層板を加熱加圧成
形する場合に、プリプレグ特性を殊更変更しなくても、
コア基板のプリント回路に起因する凹凸が表面にできる
だけ現われないようにすることである。
The problem to be solved by the present invention is that a multi-layer metal foil-clad laminate containing an inner layer circuit is formed by heating and pressing with a metal mirror plate having a thickness of 0.8 mm or less interposed between the laminated structures. In addition, even if the prepreg characteristics are not particularly changed,
The purpose is to prevent irregularities due to the printed circuit of the core substrate from appearing on the surface as much as possible.

【0008】[0008]

【課題を解決するための手段】本発明は、金属製鏡面板
の厚みを0.8mm以下に薄くしたときにも、コア基板の
プリント回路の凹凸を金属製鏡面板が吸収しないように
するために、金属製鏡面板の硬度を限定して上記課題を
解決する。すなわち、本発明に係る内層回路入り多層金
属箔張り積層板の製造法は、積層構成体同士の間に介在
させる金属製鏡面板として、ブリネル硬度60(HBW
10/500)以上の金属製鏡面板を使用することを特
徴とする。
SUMMARY OF THE INVENTION The present invention is intended to prevent a metal mirror plate from absorbing irregularities of a printed circuit on a core substrate even when the thickness of the metal mirror plate is reduced to 0.8 mm or less. In addition, the above problem is solved by limiting the hardness of the metal mirror plate. That is, the method for producing a multilayer metal foil-clad laminate with an inner layer circuit according to the present invention uses a Brinell hardness of 60 (HBW) as a metal mirror plate interposed between the laminated structures.
(10/500) or more is used.

【0009】内層回路入り多層金属箔張り積層板の製造
において、金属製鏡面板がコア基板のプリント回路の凹
凸を吸収しない強度を保っている必要がある工程は、初
期の加熱加圧からプリプレグ中の樹脂が加熱により溶融
し熱硬化するまでである。内層回路入り多層金属箔張り
積層板の製造においてプリプレグ中の樹脂が熱硬化反応
を終了する温度は150℃以下である。一般に金属は温
度が高くなるほど硬度が低下するが、金属製鏡面板の常
温における硬度を上記のように限定することにより、金
属製鏡面板の150℃雰囲気における硬度も必要十分な
ものとなり、当該金属製鏡面板を使用することにより、
プリプレグ特性を殊更変更しなくても、表面に凹凸が現
れない、或いは、表面に現れる凹凸が抑制された内層回
路入り多層金属箔張り積層板を得ることが可能になる。
In the production of a multilayer metal-foil-clad laminate with an inner layer circuit, it is necessary to maintain the strength of the metal mirror plate so as not to absorb the unevenness of the printed circuit of the core substrate. Until the resin is melted by heating and thermally cured. The temperature at which the resin in the prepreg ends the thermosetting reaction in the production of the multilayer metal foil-clad laminate with the inner layer circuit is 150 ° C. or less. In general, the hardness of a metal decreases as the temperature increases, but by limiting the hardness of the metal mirror plate at room temperature as described above, the hardness of the metal mirror plate in a 150 ° C. atmosphere is also necessary and sufficient. By using a mirror surface plate made of
Even if the prepreg characteristics are not particularly changed, it is possible to obtain a multilayer metal foil-clad laminate with an inner layer circuit in which no irregularities appear on the surface or irregularities appearing on the surface are suppressed.

【0010】金属展伸材の機械的性質の特定には、引張
試験、曲げ試験、硬さ試験などの数値が用いられるが、
本発明においては、金属製鏡面板の強度の指標として硬
さ試験によるブリネル硬度を採用した。
For specifying the mechanical properties of the wrought metal, numerical values such as a tensile test, a bending test, and a hardness test are used.
In the present invention, Brinell hardness by a hardness test was adopted as an index of the strength of the metal mirror plate.

【0011】尚、本発明において、金属製鏡面板のブリ
ネル硬度の上限は、圧延により厚み0.8mm以下に仕上
加工可能な値に自ずと制限される。また、金属製鏡面板
の厚みを0.4mm以上にしないと、金属製鏡面板のブリ
ネル硬度を上記のように限定しても本発明の課題解決は
困難になる。
In the present invention, the upper limit of the Brinell hardness of the metal mirror plate is naturally limited to a value that allows finish processing to a thickness of 0.8 mm or less by rolling. Further, unless the thickness of the metal mirror plate is set to 0.4 mm or more, even if the Brinell hardness of the metal mirror plate is limited as described above, it is difficult to solve the problem of the present invention.

【0012】本発明に係る方法は、加熱加圧成形を好ま
しくは次のように制御する。すなわち、加熱加圧を開始
しプリプレグに含まれる樹脂が溶融してその粘度が低下
し、粘度が5kPa/s以下となるまでは1MPa以下で加熱
加圧を行ない、粘度が5kPa/sになった段階で所定の圧
力まで昇圧して加熱加圧を継続する。この方法は、溶融
状態の樹脂に、コア基板のプリント回路の凹凸を吸収す
るクッションとしての機能をもたせるものである。プリ
プレグに含まれる樹脂が溶融するまでは、プリント回路
の凹凸に起因する金属製鏡面板の変形が起こらない程度
の低い圧力に維持し、樹脂が溶融してその粘度が低下し
たところで、溶融樹脂がプリント回路間の凹部を埋める
のに必要な圧力まで昇圧して加熱加圧を続けるのであ
る。コア基板のプリント回路の形状、厚みに左右される
ことなく、さらに安定した表面凹凸の小さい内層回路入
り多層金属箔張り積層板の成形が可能となる。
In the method according to the present invention, the hot pressing is preferably controlled as follows. That is, the heating and pressurization was started, the resin contained in the prepreg was melted, the viscosity was reduced, and the heating and pressurizing was performed at 1 MPa or less until the viscosity became 5 kPa / s or less, and the viscosity became 5 kPa / s. The pressure is increased to a predetermined pressure at the stage, and the heating and pressurization is continued. According to this method, a resin in a molten state has a function as a cushion for absorbing irregularities of a printed circuit on a core substrate. Until the resin contained in the prepreg is melted, the pressure is maintained at a low level that does not cause deformation of the metal mirror plate due to the unevenness of the printed circuit.When the resin melts and its viscosity decreases, the molten resin is The pressure is increased to the pressure required to fill the recess between the printed circuits, and the heating and pressing are continued. It is possible to form a multilayer metal foil-clad laminate with an inner layer circuit having a small surface unevenness more stably without being affected by the shape and thickness of the printed circuit of the core substrate.

【0013】[0013]

【発明の実施の形態】本発明に係る方法は、図1に示す
ような構成で加熱加圧成形を実施する。両面にプリント
回路を形成したコア基板の両側に、プリプレグと金属箔
をこの順に内側から外側へ重ね、内層回路入り多層金属
箔張り積層板を成形するための積層構成体1とする。こ
の積層構成体1をプレス熱盤間で加熱加圧成形して一体
化するのであるが、プレス熱盤間には複数組の積層構成
体1を投入し、積層構成体1同士の間には厚み0.8〜
0.4mm金属製鏡面板2を介在させる。複数組重ねた積
層構成体の最も外側には、厚み1.2mmのステンレス製
鏡面板3とクラフト紙層からなるクッション材4をこの
順に内側から外側へ重ねる。ステンレス製鏡面板3は、
クッション材4の表面性状がクッション材4に最も近く
位置する積層構成体の金属箔表面に転写されるのを防ぐ
ために配置するものである。上記の説明では、一組の積
層構成体を構成するコア基板の枚数は1枚であるが、一
組の積層構成体にコア基板を複数枚用いてもよい。この
場合には、コア基板同士の間にもプリプレグを介在させ
る。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS In the method according to the present invention, heat and pressure molding is performed in a configuration as shown in FIG. A prepreg and a metal foil are stacked in this order on both sides of a core substrate having a printed circuit formed on both sides from the inside to the outside, thereby forming a laminated structure 1 for forming a multilayer metal foil-clad laminate with an inner layer circuit. This laminated structure 1 is formed by pressing under heat and pressure between press hot plates and integrated, but a plurality of sets of laminated structures 1 are put between the press hot plates, and 0.8 ~
A 0.4 mm metal mirror plate 2 is interposed. On the outermost side of the plurality of laminated components, a 1.2 mm-thick stainless steel mirror plate 3 and a cushion material 4 made of a kraft paper layer are laminated in this order from inside to outside. The stainless steel mirror plate 3
It is arranged to prevent the surface properties of the cushion material 4 from being transferred to the metal foil surface of the laminated structure located closest to the cushion material 4. In the above description, the number of core substrates constituting one set of laminated components is one, but a plurality of core substrates may be used in one set of laminated components. In this case, a prepreg is also interposed between the core substrates.

【0014】本発明においては、上記金属製鏡面板2の
ブリネル硬度を60(HBW10/500)以上にす
る。勿論、圧延仕上げにより厚み0.8mm以下の鏡面板
にしなければならないので、このような圧延が可能なブ
リネル硬度の上限が自ずと存在する。圧延加工が容易で
0.8mm以下にまで圧延可能な材質は、アルミニウム、
鉄等であるが、これら単体だけでなく、これらを含む合
金など多くの種類があり、強度もそれぞれで大きく異な
る。圧延加工の方法によっても、同じ材質でありながら
強度が異なることもあり、金属製鏡面板2の材質選定に
は多くの選択肢が存在する。
In the present invention, the metal mirror plate 2 has a Brinell hardness of 60 (HBW 10/500) or more. Needless to say, a mirror plate having a thickness of 0.8 mm or less must be formed by rolling, and there is naturally an upper limit of the Brinell hardness at which such rolling is possible. The material that can be easily rolled and rolled to 0.8 mm or less is aluminum,
Iron and the like are not limited to these simple substances, but there are many types such as alloys containing them, and the strengths are greatly different from one another. Depending on the method of rolling, the strength may be different even for the same material, and there are many options for selecting the material of the metal mirror plate 2.

【0015】プリプレグに含まれる樹脂が溶融してその
粘度が低下し、粘度が5kPa/s以下となるまでは1MPa
以下で加熱加圧を行ない、粘度が5kPa/sになった段階
で所定の圧力まで昇圧する発明の実施の形態は、好まし
いものである。実際の加熱加圧成形工程で、樹脂の粘度
を測定することは困難であるので、使用するプリプレグ
について、昇温速度毎の温度−樹脂溶融粘度曲線を予め
求めておき、積層構成体を加熱加圧成形する際に、積層
構成体温度、昇温速度を測定しながら、前記曲線に基づ
いて樹脂の粘度を推定する。図2は、ガラス織布基材エ
ポキシ樹脂プリプレグ(ANSIグレード FR−4)
について、昇温速度が、1℃/min、2℃/min、3℃/
minのそれぞれの場合において、プリプレグの温度と樹
脂粘度との関係を示したものである。昇温速度が速いほ
ど低い温度で5kPa/sの樹脂粘度に達し、最低溶融粘度
も低くなる。
1MPa until the viscosity of the resin contained in the prepreg melts and decreases to a viscosity of 5 kPa / s or less.
The embodiment of the invention in which heating and pressurizing is performed below and the pressure is increased to a predetermined pressure when the viscosity becomes 5 kPa / s is preferable. Since it is difficult to measure the viscosity of the resin in the actual heating and pressing molding process, a temperature-resin melt viscosity curve at each heating rate for the prepreg to be used is determined in advance, and the laminated structure is heated. During the pressing, the viscosity of the resin is estimated on the basis of the curve while measuring the temperature of the laminated structure and the rate of temperature rise. Figure 2 shows a glass woven base epoxy resin prepreg (ANSI grade FR-4)
The temperature rise rate is 1 ° C / min, 2 ° C / min, 3 ° C / min.
The relation between the temperature of the prepreg and the viscosity of the resin in each case of min is shown. As the heating rate increases, the resin viscosity reaches 5 kPa / s at a lower temperature, and the minimum melt viscosity also decreases.

【0016】[0016]

【実施例】実施例1〜8、比較例1〜4 0.2mm厚ガラス織布基材エポキシ樹脂両面銅張り積層
板(ANSIグレードFR−4)をエッチング加工し、
両面にプリント回路を形成してコア基板とした。プリン
ト回路形状は、幅1mm、長さ100mmのラインを繰返し
配置したものとした。各例において、プリント回路を形
成している銅箔厚は表1に示すとおりである。また、
0.1mm厚ガラス織布基材エポキシ樹脂プリプレグ(A
NSIグレード FR−4)を用意した。コア基板の両
側に上記プリプレグと18μm厚銅箔をこの順に内側か
ら外側へ重ねた積層構成体をプレス熱盤一段間に32組
投入して加熱加圧成形を行ない、内層回路入り4層銅張
り積層板を得た。プレス熱盤間の積層構成体と鏡面板の
配置は、既に図1を参照しながら説明したとおりであ
り、加熱の昇温測度を2℃/minに設定した。また、積
層構成体同士の間に介在させる金属製鏡面板2として、
0.4mm厚アルミニウム製鏡面板を使用した。このアル
ミニウム製鏡面板は、アルミニウム−マグネシウム系合
金であり、化学成分、質別の異なる3種類(ブリネル硬
度40、60及び80(HBW10/500))を選定
した。表1には、各例で使用したアルミニウム製鏡面板
のブリネル硬度を示すとともに、加熱加圧成形の初期設
定圧力と樹脂粘度が5kPa/sになった段階で昇圧した後
の設定圧力を示した。尚、実施例2,4,6,8、比較
例2,4においては、成形途中で昇圧をせず、初期から
2.5MPaの一定圧力で加熱加圧成形を実施した。各例
で成形した内層回路入り4層銅張り積層板の表面粗さR
aを表1に併せて示す。
EXAMPLES Examples 1 to 8 and Comparative Examples 1 to 4 A 0.2 mm thick glass woven base epoxy resin double-sided copper-clad laminate (ANSI grade FR-4) was etched.
Printed circuits were formed on both sides to form a core substrate. The printed circuit was formed by repeatedly arranging a line having a width of 1 mm and a length of 100 mm. In each example, the thickness of the copper foil forming the printed circuit is as shown in Table 1. Also,
0.1 mm thick glass woven base epoxy resin prepreg (A
NSI grade FR-4) was prepared. The prepreg and the 18 μm thick copper foil were laminated on both sides of the core substrate in this order from the inside to the outside. A laminate was obtained. The arrangement of the laminated structure and the mirror plate between the press hot plates is as described above with reference to FIG. 1, and the heating rate of heating was set at 2 ° C./min. Further, as the metal mirror plate 2 interposed between the laminated structures,
A 0.4 mm thick aluminum mirror plate was used. This aluminum mirror plate was an aluminum-magnesium alloy, and three types (Brinell hardness of 40, 60 and 80 (HBW10 / 500)) having different chemical components and qualities were selected. Table 1 shows the Brinell hardness of the aluminum mirror plate used in each example, and also shows the initial set pressure of the heat and pressure molding and the set pressure after the pressure was raised when the resin viscosity reached 5 kPa / s. . In Examples 2, 4, 6, and 8 and Comparative Examples 2 and 4, the pressure was not increased during the molding, and the heating and press molding was performed at a constant pressure of 2.5 MPa from the beginning. Surface roughness R of four-layer copper-clad laminate with inner layer circuit formed in each example
a is also shown in Table 1.

【0017】[0017]

【表1】 [Table 1]

【0018】表1のデータに基づき、アルミニウム製鏡
面板のブリネル硬度と内層回路入り4層銅張り積層板の
表面粗さの関係を、コア基板の銅箔厚毎に図3(a)
(b)に示した。図3(a)はプリプレグに含まれる樹
脂の粘度が5kPa/sになった段階で成形圧力を上げて加
熱加圧成形を実施した場合であり、図3(b)は成形途
中で昇圧をせず、初期から2.5MPaの一定圧力で加熱
加圧成形を実施した場合である。図3から、コア基板の
銅箔厚が厚い場合と薄い場合、成形途中で成形圧力を上
げる場合と初期から所定の圧力で成形する場合のいずれ
の場合においても、アルミニウム製鏡面板のブリネル硬
度を60(HBW10/500)以上にすることが、表
面粗さの低減につながることを理解できる。また、図3
(a)と(b)の比較から、初期は低圧にし成形途中か
ら高圧にすることが、表面粗さのさらなる低減につなが
ることも理解できる。
Based on the data shown in Table 1, the relationship between the Brinell hardness of the aluminum mirror plate and the surface roughness of the four-layer copper-clad laminate containing the inner layer circuit is shown in FIG.
(B). FIG. 3 (a) shows a case where the molding pressure is increased and the heating and pressing molding is performed when the viscosity of the resin contained in the prepreg reaches 5 kPa / s, and FIG. 3 (b) shows a case where the pressure is increased during molding. In this case, the heating and pressing was performed at a constant pressure of 2.5 MPa from the beginning. From FIG. 3, the Brinell hardness of the aluminum mirror plate is increased in both cases where the thickness of the copper foil of the core substrate is large and small, when the molding pressure is increased during molding, and when molding is performed at a predetermined pressure from the beginning. It can be understood that setting the surface roughness to 60 (HBW 10/500) or more leads to a reduction in surface roughness. FIG.
From the comparison between (a) and (b), it can also be understood that lowering the pressure in the initial stage and increasing the pressure in the middle of the molding leads to a further reduction in the surface roughness.

【0019】尚、上記の実施例は、金属製鏡面板2の厚
さ0.8mm〜0.4mmの範囲で最も薄い鏡面板を使用し
た場合について説明した。金属製鏡面板2の厚さ厚くし
た実施例では、さらに良好な結果を得られることは言う
までもない。
In the above-described embodiment, the case where the thinnest mirror plate having a thickness of 0.8 mm to 0.4 mm of the metal mirror plate 2 is used has been described. In the embodiment in which the metal mirror plate 2 is made thicker, it goes without saying that better results can be obtained.

【0020】[0020]

【発明の効果】上述のように、積層構成体同士の間に薄
い金属製鏡面板を介在させて内層回路入り多層金属箔張
り積層板を加熱加圧成形する場合に、本発明のように金
属製鏡面板のブリネル硬度を特定することにより、コア
基板のプリント回路の凹凸の影響が表面に現れるのを抑
制することができる。さらに、上記加熱加圧成形工程で
プリプレグに含まれる樹脂の粘度が低下し、5kPa/sに
なった段階で成形圧力を初期の低圧から所定圧力まで上
げる操作をすると、表面に現れる凹凸を一層小さくする
ことができる。
As described above, when a multi-layered metal foil-clad laminate with an inner layer circuit is formed by heating and pressing with a thin metal mirror plate interposed between the laminated structures, as in the case of the present invention, By specifying the Brinell hardness of the mirror-finished plate, it is possible to suppress the influence of the unevenness of the printed circuit on the core substrate from appearing on the surface. Furthermore, when the viscosity of the resin contained in the prepreg is reduced in the heating and pressing step and the operation of increasing the molding pressure from an initial low pressure to a predetermined pressure at a stage when the resin pressure reaches 5 kPa / s is performed, irregularities appearing on the surface are further reduced. can do.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明に係る方法において、内層回路入り多層
金属箔張り積層板を成形する様子を示す説明図である。
FIG. 1 is an explanatory diagram showing how a multilayer metal foil-clad laminate containing an inner layer circuit is formed in a method according to the present invention.

【図2】昇温測度が1℃/min、2℃/min、3℃/min
のそれぞれの場合において、ガラス織布基材エポキシ樹
脂プリプレグの温度と樹脂粘度との関係を示した曲線図
である。
Fig. 2 Measurement rate of 1 ° C / min, 2 ° C / min, 3 ° C / min
FIG. 4 is a curve diagram showing the relationship between the temperature of the glass woven fabric base epoxy resin prepreg and the resin viscosity in each case.

【図3】アルミニウム製鏡面板のブリネル硬度と、製造
した内層回路入り4層銅張り積層板の表面粗さとの関係
を示した曲線図である。(a)は成形途中で昇圧する場
合、(b)は初期から全工程を通じて一定圧力で成形す
る場合を示す。
FIG. 3 is a curve diagram showing the relationship between the Brinell hardness of an aluminum mirror plate and the surface roughness of a manufactured four-layer copper-clad laminate with an inner layer circuit. (A) shows the case where the pressure is increased during the molding, and (b) shows the case where the molding is performed at a constant pressure throughout the entire process from the beginning.

【符号の説明】[Explanation of symbols]

1は積層構成体 2は厚み0.8〜0.4mm金属製鏡面板 3はステンレス製鏡面板 4はクッション材 1 is a laminated structure 2 is 0.8 to 0.4 mm thick metal mirror plate 3 is stainless steel mirror plate 4 is cushion material

フロントページの続き Fターム(参考) 4F100 AB01C AB17 AB33C AG00 AK53 AT00A BA10A BA10C DG12 DH01B EJ202 EJ422 GB43 JK15 5E346 AA06 AA12 AA15 BB01 CC02 CC08 EE02 EE06 EE09 EE13 EE14 GG01 GG28 HH11 Continued on front page F-term (reference) 4F100 AB01C AB17 AB33C AG00 AK53 AT00A BA10A BA10C DG12 DH01B EJ202 EJ422 GB43 JK15 5E346 AA06 AA12 AA15 BB01 CC02 CC08 EE02 EE06 EE09 EE13 EE14 GG01 GG28 HH11

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】プリント回路を形成したコア基板にプリプ
レグと金属箔をこの順に内側から外側へ重ね、この積層
構成体の複数組をプレス熱盤間に投入して加熱加圧成形
するに際し、前記積層構成体同士の間には金属製鏡面板
を介在させ、当該金属製鏡面板は、その厚みを0.8mm
以下0.4mm以上とし、ブリネル硬度を60(HBW1
0/500)以上とすることを特徴とする内層回路入り
多層金属張り積層板の製造法。
1. A prepreg and a metal foil are laminated in this order from the inside to the outside on a core substrate on which a printed circuit is formed, and a plurality of sets of the laminated structure are put between press hot plates to perform heating and pressing. A metal mirror plate is interposed between the laminated components, and the metal mirror plate has a thickness of 0.8 mm.
And a Brinell hardness of 60 (HBW1
0/500) or more.
【請求項2】プリプレグに含まれる樹脂が溶融してその
粘度が低下し、粘度が5kPa/sになるまでは1MPa以下
の圧力で加熱加圧を行い、粘度が5kPa/sになった段階
で所定の圧力まで昇圧して加熱加圧成形を行なうことを
特徴とする請求項1記載の内層回路入り多層金属箔張り
積層板の製造法。
2. The resin contained in the prepreg is melted to lower its viscosity, and is heated and pressurized at a pressure of 1 MPa or less until the viscosity becomes 5 kPa / s, and when the viscosity becomes 5 kPa / s. 2. The method for producing a multilayer metal-foil-clad laminate with an inner circuit according to claim 1, wherein the pressure is increased to a predetermined pressure and the heating and press-forming is performed.
JP2000157662A 2000-05-29 2000-05-29 Method for producing multilayer metal foil clad plate having inner layer circuit Pending JP2001339158A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2000157662A JP2001339158A (en) 2000-05-29 2000-05-29 Method for producing multilayer metal foil clad plate having inner layer circuit

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2000157662A JP2001339158A (en) 2000-05-29 2000-05-29 Method for producing multilayer metal foil clad plate having inner layer circuit

Publications (1)

Publication Number Publication Date
JP2001339158A true JP2001339158A (en) 2001-12-07

Family

ID=18662252

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000157662A Pending JP2001339158A (en) 2000-05-29 2000-05-29 Method for producing multilayer metal foil clad plate having inner layer circuit

Country Status (1)

Country Link
JP (1) JP2001339158A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2011037173A1 (en) * 2009-09-25 2011-03-31 住友化学株式会社 Method for producing metal foil laminate
WO2011037138A1 (en) * 2009-09-25 2011-03-31 住友化学株式会社 Method for producing metal foil laminate

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2011037173A1 (en) * 2009-09-25 2011-03-31 住友化学株式会社 Method for producing metal foil laminate
WO2011037138A1 (en) * 2009-09-25 2011-03-31 住友化学株式会社 Method for producing metal foil laminate

Similar Documents

Publication Publication Date Title
KR101116079B1 (en) Method for manufacturing multilayer printed circuit board and multilayer printed circuit board
JP7178634B2 (en) Method for manufacturing metal-clad laminate, method for manufacturing electronic circuit board
JPWO2006040942A1 (en) Multilayer circuit board manufacturing method
JP2008307886A (en) Metal-clad laminated board, multilayer laminated board and method for manufacturing the same
TWI337516B (en)
EP1487245B1 (en) Manufacturing method for a circuit board
CN107278015B (en) Copper foil, copper-clad laminated board and flexible printed board and electronic equipment
JP2001339158A (en) Method for producing multilayer metal foil clad plate having inner layer circuit
JP3405271B2 (en) Manufacturing method of multi-layer metal foil-clad laminate with inner layer circuit
JP3405237B2 (en) Manufacturing method of multi-layer metal foil-clad laminate with inner layer circuit
JP3800989B2 (en) Heat press equipment
JP3952862B2 (en) Manufacturing method of metal foil clad laminate with inner layer circuit
KR20100111144A (en) Method for manufacturing multi layer printed circuit board
JP4715017B2 (en) Multilayer laminate manufacturing method
JPH11214844A (en) Production of multilayer board
JP2007165436A (en) Process for manufacturing circuit board
JP3605917B2 (en) Manufacturing method of laminated board with inner layer circuit
JPH09116264A (en) Method for sticking conductor circuit forming metallic material to printed wiring board
JPH04215496A (en) Manufacture of multilayer circuit board
JP2000114720A (en) Manufacture of layered printed wiring board
JPH06126855A (en) Film for forming laminate plate and method for producing said laminate plate
JPH1131886A (en) Manufacture of multilayered printed wiring board
JP2000196238A (en) Manufacture of multilayer metal foil laminate board with inner circuit
CN117686386A (en) Method for testing fluidity of bonding sheet
JPH05110256A (en) Manufacture of copper-clad laminated board for multilayer printed board

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20051025

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20051108

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20060307