JP2001336788A - Supercooling water-manufacturing device, and its control method - Google Patents

Supercooling water-manufacturing device, and its control method

Info

Publication number
JP2001336788A
JP2001336788A JP2000157077A JP2000157077A JP2001336788A JP 2001336788 A JP2001336788 A JP 2001336788A JP 2000157077 A JP2000157077 A JP 2000157077A JP 2000157077 A JP2000157077 A JP 2000157077A JP 2001336788 A JP2001336788 A JP 2001336788A
Authority
JP
Japan
Prior art keywords
temperature
water
shell
refrigerant
subcooler
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2000157077A
Other languages
Japanese (ja)
Inventor
Tsuneo Kouki
恒雄 幸喜
Akira Akiyoshi
亮 秋吉
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
IHI Corp
Original Assignee
IHI Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by IHI Corp filed Critical IHI Corp
Priority to JP2000157077A priority Critical patent/JP2001336788A/en
Publication of JP2001336788A publication Critical patent/JP2001336788A/en
Pending legal-status Critical Current

Links

Landscapes

  • Production, Working, Storing, Or Distribution Of Ice (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a supercooling water-manufacturing device and method for stably maintaining supercooling water at an optimum temperature (for example, 2 deg.C±0.2 deg.C) for generating ice by a refrigerant, reducing the error in temperature measurement and time constant, accurately maintaining the supercooling water at an outlet, and hence preventing freezing inside for operating stably for a long time. SOLUTION: The steam pressure of liquid refrigerant in a supercooler 1 is detected, and the flow rate of a suction constriction valve V1 and an expansion valve 4 is controlled by an ice generation-controlling device 10.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、冷媒を用いて過冷
却水を氷生成に適した最適温度に維持する過冷却水製造
装置とその制御方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a supercooled water producing apparatus for maintaining supercooled water at an optimum temperature suitable for ice formation using a refrigerant, and a control method thereof.

【0002】[0002]

【従来の技術】空調用の冷却水を凝固温度(0℃)以下
の過冷却水にまで冷却し、この過冷却水から微細な氷を
析出させて蓄熱槽に備えるようにした氷蓄熱システムが
注目されており、このシステムに適用する過冷却水製造
手段として、特開平3−271671号、特開平6−2
57925号、特開平8−313128号、等が提案さ
れている。
2. Description of the Related Art An ice heat storage system in which cooling water for air conditioning is cooled to supercooling water having a solidification temperature (0 ° C.) or less, and fine ice is precipitated from the supercooling water and provided in a heat storage tank. As means for producing supercooled water applied to this system, Japanese Patent Application Laid-Open Nos.
No. 57925, JP-A-8-313128, and the like have been proposed.

【0003】特開平3−271671号の「過冷却水製
造用ヒートポンプ装置の制御方法」は、図4に例示する
ように、チューブ側に水をシェル側に冷媒を供給するよ
うにしたシェルアンドチューブ型の熱交換器1でヒート
ポンプ装置の蒸発器を構成し、この蒸発器1から圧縮機
2、凝縮器3および膨張弁4を経て蒸発器1に戻る冷媒
循環サイクルを形成したヒートポンプ装置を稼働してい
る間、蒸発器1のシェル内に液冷媒を存在させてこれを
沸騰蒸発させながらチューブ内を流れる水を0℃以下の
温度に冷却して過冷却水を連続的に製造し、その際蒸発
器のチューブ1aに入る前の水の温度を検出し続け、こ
の検出値に基いて検出水温より所定温度だけ低い温度に
シェル1b内の冷媒温度が維持されるように圧縮機2の
容量制御を行うものである。
Japanese Patent Application Laid-Open No. Hei 3-271167 discloses a method of controlling a heat pump apparatus for producing supercooled water. As shown in FIG. 4, a shell-and-tube system in which water is supplied to a tube and refrigerant is supplied to a shell. An evaporator of a heat pump device is constituted by the heat exchanger 1 of the mold type, and a heat pump device having a refrigerant circulation cycle formed by returning from the evaporator 1 to the evaporator 1 via the compressor 2, the condenser 3 and the expansion valve 4 is operated. In the meantime, while the liquid refrigerant is present in the shell of the evaporator 1 and the water flowing in the tube is cooled to a temperature of 0 ° C. or less while boiling and evaporating the liquid refrigerant, supercooled water is continuously produced. The temperature of the water before entering the tube 1a of the evaporator is continuously detected, and the capacity of the compressor 2 is controlled based on the detected value so that the refrigerant temperature in the shell 1b is maintained at a predetermined temperature lower than the detected water temperature. Do too It is.

【0004】この制御方法は、過冷却器(蒸発器1)に
おける熱伝達を沸騰熱伝達で行うので均一な熱伝達がで
き、かつその温度制御をチューブ1aに入る前の水の温
度を検出して圧縮機2の容量制御を行うので、温度検出
が容易である特徴がある。
In this control method, the heat transfer in the supercooler (evaporator 1) is performed by boiling heat transfer, so that uniform heat transfer can be performed, and the temperature control is performed by detecting the temperature of water before entering the tube 1a. Since the capacity of the compressor 2 is controlled by the pressure control, the temperature is easily detected.

【0005】特開平6−257925号の「過冷却水製
造装置」は、同様の装置において、冷水を加熱する予熱
熱交換器を設け、冷水中に氷核が入っていた場合でも、
予熱熱交換器で氷核を融解し、過冷却器内の伝熱管の凍
結を防止したものである。更に、特開平8−31312
8号の「過冷却水製造装置」は、同様の装置において、
蓄熱槽内の水を循環させるポンプと過冷却器とを繋ぐ水
管と並列に再熱管を設け、過冷却器入口の水温が一定と
なるように再熱管の水量を制御するものである。
[0005] Japanese Patent Application Laid-Open No. 6-257925 discloses a "supercooled water producing apparatus". In a similar apparatus, a preheating heat exchanger for heating cold water is provided.
Ice nuclei are melted by a preheat heat exchanger to prevent freezing of the heat transfer tubes in the subcooler. Further, JP-A-8-31312
No. 8 “supercooled water production equipment” is similar equipment,
A reheat pipe is provided in parallel with a water pipe connecting the pump for circulating water in the heat storage tank and the supercooler, and the amount of water in the reheat pipe is controlled so that the water temperature at the inlet of the supercooler becomes constant.

【0006】[0006]

【発明が解決しようとする課題】凝固温度(氷結温度)
以下まで冷却された過冷却水はわずかな衝撃でも凍結し
やすい性質をもっている。このため、過冷却水を製造す
る過程で熱交換器が凍結しやすく、過冷却水製造装置を
長時間、安定稼働することが難かしい問題点があった。
SUMMARY OF THE INVENTION Solidification temperature (freezing temperature)
Supercooled water cooled to below has the property of being easily frozen by a slight impact. Therefore, there is a problem that the heat exchanger is easily frozen in the process of producing the supercooled water, and it is difficult to stably operate the supercooled water producing apparatus for a long time.

【0007】特に、過冷却水の温度管理が重要であり、
過冷却水の温度を下げると氷の生成効率が向上するが衝
撃を加えると凍る性質がある。そのため、過冷却水製造
に適した熱交換器を用いると共に、製造される過冷却水
の温度を適切な温度(例えば2℃±0.2℃)に管理
し、熱交換器内部での凍結を防止する必要がある。
In particular, it is important to control the temperature of the supercooled water,
Decreasing the temperature of the supercooled water improves the ice generation efficiency, but has the property of freezing when subjected to an impact. Therefore, while using a heat exchanger suitable for the production of supercooled water, the temperature of the produced supercooled water is controlled to an appropriate temperature (for example, 2 ° C. ± 0.2 ° C.), and freezing inside the heat exchanger is performed. Need to be prevented.

【0008】しかし、過冷却水の温度計測は困難であっ
た。すなわち、過冷却水温度を直接計測すると温度検出
端で氷が生成されてしまい、正確な温度計測ができなく
なる。また、過冷却水温度を間接的に計測する放射温度
計等では、外乱の影響を受けやすく、かつ精度が低く
(例えば±1℃程度)、上述した高精度の温度計測はで
きなかった。更に、上述した従来例では、過冷却器入口
の水温を検出し制御するが、温度計測の時定数が大きい
(10秒前後)のため、計測の遅れが大きく、凍結を検
出しても対応が遅れて安定運転できない問題点があっ
た。
However, it has been difficult to measure the temperature of the supercooled water. That is, when the supercooling water temperature is directly measured, ice is generated at the temperature detecting end, and accurate temperature measurement cannot be performed. Further, a radiation thermometer or the like that indirectly measures the temperature of the supercooled water is susceptible to disturbance and has low accuracy (for example, about ± 1 ° C.), so that the above-described high-precision temperature measurement cannot be performed. Furthermore, in the above-described conventional example, the water temperature at the inlet of the subcooler is detected and controlled. However, since the time constant of the temperature measurement is large (around 10 seconds), the measurement delay is large, and even if freezing is detected, it is difficult to cope with the detection. There was a problem that stable operation was not possible with a delay.

【0009】また、氷生成条件の維持が難しい問題点が
あった。すなわち、過冷却器温度と過冷却水温度の関係
は一定でなく、運転条件や経年劣化により変化するた
め、過冷却水を氷生成に適した温度に保つことが難しか
った。
There is also a problem that it is difficult to maintain the conditions for ice formation. That is, the relationship between the temperature of the supercooler and the temperature of the supercooled water is not constant, and varies depending on operating conditions and aging. Therefore, it has been difficult to maintain the temperature of the supercooled water at a temperature suitable for ice formation.

【0010】更に、冷媒の代わりにブラインを取り扱う
過冷却器では、ブラインを冷却する装置が過冷却器の他
に必要となり、設備が大型となるほか、ブライン濃度の
維持管理が必要となり運用コストも高く、昼間の冷房需
要を夜間電力を使用して氷の形で蓄熱する氷蓄熱システ
ムのメリットが少なくなる問題点があった。
Further, in a subcooler that uses brine instead of a refrigerant, a device for cooling the brine is required in addition to the subcooler, so that the equipment becomes large, and the maintenance and management of the brine concentration is required, and the operating cost is reduced. There is a problem in that the merit of an ice heat storage system that stores heat in the form of ice by using nighttime electric power for daytime cooling demand is reduced.

【0011】本発明は上述した種々の問題点を解決する
ために創案されたものである。すなわち、本発明の目的
は、冷媒を用いて過冷却水を氷生成に適した最適温度
(例えば2℃±0.2℃)に安定して維持することがで
き、かつ温度計測の誤差と時定数が小さく、出口の過冷
却水を高精度に維持でき、これにより内部での凍結を防
止して長時間、安定稼働することができる過冷却水製造
装置とその制御方法を提供することにある。
The present invention has been made to solve the various problems described above. That is, an object of the present invention is to stably maintain supercooled water at an optimum temperature (for example, 2 ° C. ± 0.2 ° C.) suitable for ice formation by using a refrigerant, and to reduce the temperature measurement error and time. It is an object of the present invention to provide a supercooled water producing apparatus and a control method thereof, wherein the constant is small, the supercooled water at the outlet can be maintained with high precision, and thereby the freezing inside can be prevented and the stable operation can be performed for a long time. .

【0012】[0012]

【課題を解決するための手段】本発明によれば、シェル
アンドチューブ型熱交換器からなる過冷却器(1)のシ
ェル(1b)から圧縮機(2)、凝縮器(3)および膨
張弁(4)を経て前記シェルに戻る冷媒循環サイクルを
形成したヒートポンプ装置と、前記過冷却器のチューブ
(1a)内に冷水を循環供給する冷水循環装置とを備
え、蒸発器のシェル内の液冷媒を沸騰蒸発させてチュー
ブ内を流れる水を凝固点以下の温度に冷却して過冷却水
を連続的に製造する過冷却水製造装置において、シェル
(1b)内の液冷媒の蒸気圧力を検出してこれを制御す
る氷生成制御装置(10)を備える、ことを特徴とする
過冷却水製造装置が提供される。
According to the present invention, a compressor (2), a condenser (3) and an expansion valve are provided from a shell (1b) of a subcooler (1) comprising a shell-and-tube heat exchanger. (4) a heat pump device forming a refrigerant circulation cycle returning to the shell through the shell; and a chilled water circulating device for circulating chilled water into the tube (1a) of the subcooler. In a supercooled water producing apparatus for continuously producing supercooled water by boiling and evaporating the water flowing in the tube to a temperature below the freezing point, the vapor pressure of the liquid refrigerant in the shell (1b) is detected. An apparatus for producing supercooled water, comprising: an ice generation control device (10) for controlling this;

【0013】また、本発明によれば、シェルアンドチュ
ーブ型熱交換器からなる過冷却器(1)のシェル(1
b)から圧縮機(2)、凝縮器(3)および膨張弁
(4)を経て前記シェルに戻る冷媒循環サイクルを形成
したヒートポンプ装置と、前記過冷却器のチューブ(1
a)内に冷水を循環供給する冷水循環装置とを備え、蒸
発器のチューブ内を流れる水を凝固点以下の温度に冷却
して過冷却水を連続的に製造する過冷却水製造装置の制
御方法であって、シェル(1b)内の液冷媒の蒸気圧力
を検出してこれを一定範囲に制御する、ことを特徴とす
る過冷却水製造装置の制御方法が提供される。
Further, according to the present invention, the shell (1) of the subcooler (1) comprising a shell and tube type heat exchanger is provided.
b) a heat pump device that forms a refrigerant circulation cycle returning to the shell via the compressor (2), the condenser (3) and the expansion valve (4), and the tube (1) of the subcooler.
a) a method for controlling a supercooled water producing apparatus for continuously producing supercooled water by cooling a water flowing in a tube of an evaporator to a temperature below a freezing point, comprising: And a control method of the supercooled water producing apparatus, characterized in that the vapor pressure of the liquid refrigerant in the shell (1b) is detected and controlled within a certain range.

【0014】上記本発明の装置及び方法によれば、過冷
却水温度を直接計測して過冷却水温度を制御する直接方
式ではなく、過冷却器の冷媒温度を安定制御すること
で、過冷却水温度を安定させる間接方式であるので、過
冷却水温度を計測する不安定で寿命の短い温度検出器
(例えば熱電対)の使用を回避することができる。ま
た、過冷却器内温度を直接計測した場合は、局所的な冷
媒ガス雰囲気の温度を計測することになるが、飽和蒸気
圧力を計測することで、過冷却器内冷媒ガスと冷媒液の
境界面の温度を高精度に計測することができる。
According to the above-described apparatus and method of the present invention, the supercooling is performed by controlling the temperature of the supercooler in a stable manner, instead of directly controlling the temperature of the supercooled water by directly measuring the temperature of the supercooled water. Since this is an indirect method for stabilizing the water temperature, it is possible to avoid using an unstable and short-life temperature detector (for example, a thermocouple) for measuring the temperature of the supercooled water. When the temperature inside the subcooler is directly measured, the temperature of the local refrigerant gas atmosphere is measured, but by measuring the saturated vapor pressure, the boundary between the refrigerant gas inside the subcooler and the refrigerant liquid is measured. The temperature of the surface can be measured with high accuracy.

【0015】本発明の好ましい実施形態によれば、前記
シェル(1b)内の液冷媒の蒸気圧力を検出する蒸気圧
力検出器P3と、シェル(1b)から圧縮機(2)への
蒸発冷媒の流量を制御する吸入絞り弁V1と、を備え、
蒸気圧力検出器P3で検出した蒸気圧力信号を前記氷生
成制御装置(10)に入力し、この氷生成制御装置によ
り、吸入絞り弁V1と前記膨張弁(4)の流量を制御す
る。すなわち、最適に氷が生成される液冷媒の飽和蒸気
温度に対応する飽和蒸気圧力を予め設定し、飽和蒸気圧
力に対応する冷媒温度が氷生成に最適な温度になるよう
に吸入絞り弁及び膨張弁を同時に制御する。この構成及
び方法により、飽和蒸気圧力に対応する冷媒温度を氷生
成に最適な温度に安定して制御することができる。
According to a preferred embodiment of the present invention, a vapor pressure detector P3 for detecting the vapor pressure of the liquid refrigerant in the shell (1b), and a vaporized refrigerant from the shell (1b) to the compressor (2). A suction throttle valve V1 for controlling the flow rate,
The steam pressure signal detected by the steam pressure detector P3 is input to the ice generation control device (10), and the flow rate of the suction throttle valve V1 and the expansion valve (4) is controlled by the ice generation control device. That is, the saturated vapor pressure corresponding to the saturated vapor temperature of the liquid refrigerant in which ice is optimally generated is preset, and the suction throttle valve and the expansion valve are set so that the refrigerant temperature corresponding to the saturated vapor pressure becomes the optimal temperature for ice generation. Control valves simultaneously. With this configuration and method, it is possible to stably control the temperature of the refrigerant corresponding to the saturated vapor pressure to a temperature optimum for ice formation.

【0016】また、前記凝縮器(3)から膨張弁(4)
へ流れる液冷媒の温度を検出する冷媒温度検出器T4
と、前記液冷媒の温度を一定にするように凝縮器を制御
する凝縮液温度制御装置(12)とを備え、凝縮器から
供給される液冷媒の温度を一定範囲に保つ。この構成及
び方法により、凝縮器から供給される液冷媒の温度を安
定させ、過冷却器が最適に機能する条件に保つことがで
きる。
Further, the condenser (3) is connected to an expansion valve (4).
Temperature detector T4 for detecting the temperature of the liquid refrigerant flowing to
And a condensed liquid temperature control device (12) for controlling the condenser so as to keep the temperature of the liquid refrigerant constant, so as to keep the temperature of the liquid refrigerant supplied from the condenser within a constant range. With this configuration and method, it is possible to stabilize the temperature of the liquid refrigerant supplied from the condenser and maintain the condition in which the subcooler functions optimally.

【0017】更に、前記過冷却器(1)に供給される冷
水の温度と圧力を検出する冷水温度検出器T1及び冷水
圧力検出器P1と、前記過冷却器の上流側に設置された
加熱器及び循環ポンプと、過冷却器に供給される冷水の
温度と圧力を一定にするように加熱器及び循環ポンプを
制御する冷水系制御装置(14)とを備え、過冷却器に
供給される水の圧力を一定範囲に保ち、かつ冷水入口温
度を一定にして供給する。この構成及び方法により、過
冷却器に供給される水の圧力を一定に保つことにより、
過冷却器が最適に機能する流量条件を保つことができ
る。また、蓄熱水槽から吸引した冷水に微少な氷塊が残
留していた場合でも、冷水入口温度を一定にして供給す
ることにより、氷塊が氷の核となり、過冷却器内部で凍
結するのを防止することができる。
Furthermore, a chilled water temperature detector T1 and a chilled water pressure detector P1 for detecting the temperature and pressure of the chilled water supplied to the subcooler (1), and a heater installed upstream of the subcooler And a circulating pump, and a chilled water system controller (14) for controlling the heater and the circulating pump so as to keep the temperature and pressure of the chilled water supplied to the subcooler constant. Is maintained within a certain range, and the cold water inlet temperature is kept constant. With this configuration and method, by keeping the pressure of the water supplied to the subcooler constant,
The flow condition under which the subcooler functions optimally can be maintained. In addition, even if minute ice blocks remain in the cold water sucked from the heat storage water tank, the ice blocks become cores of ice and are prevented from freezing inside the supercooler by supplying the cold water inlet temperature at a constant temperature. be able to.

【0018】[0018]

【発明の実施の形態】以下、本発明の好ましい実施形態
を図面を参照して説明する。なお、各図において、共通
する部分には同一の符号を付して使用する。図1は、本
発明の過冷却水製造装置の全体構成図である。この図に
示すように、本発明の過冷却水製造装置は、ヒートポン
プ装置と冷水循環装置とを備える。ヒートポンプ装置
は、シェルアンドチューブ型熱交換器からなる過冷却器
1のシェル1bから圧縮機2、凝縮器3および膨張弁4
を経てシェル1bに戻る冷媒循環サイクルを形成してい
る。また、冷水循環装置は、蓄熱水槽11、加熱器H及
び循環ポンプPを備え、蓄熱水槽11から過冷却器1の
チューブ1a内に冷水を循環供給する。この構成によ
り、この過冷却水製造装置は、蒸発器1のシェル1b内
の液冷媒を沸騰蒸発させてチューブ内を流れる水を凝固
点以下の温度に冷却して過冷却水を連続的に製造するよ
うになっている。
DESCRIPTION OF THE PREFERRED EMBODIMENTS Preferred embodiments of the present invention will be described below with reference to the drawings. In the drawings, common parts are denoted by the same reference numerals. FIG. 1 is an overall configuration diagram of a supercooled water production device of the present invention. As shown in this figure, the supercooled water production device of the present invention includes a heat pump device and a cold water circulation device. The heat pump device includes a compressor 1, a condenser 3 and an expansion valve 4 from a shell 1 b of a subcooler 1 composed of a shell and tube heat exchanger.
To form a refrigerant circulation cycle returning to the shell 1b. The chilled water circulation device includes a heat storage water tank 11, a heater H, and a circulation pump P, and circulates and supplies cold water from the heat storage water tank 11 into the tube 1a of the supercooler 1. With this configuration, the supercooled water producing apparatus continuously produces supercooled water by boiling and evaporating the liquid refrigerant in the shell 1b of the evaporator 1 to cool the water flowing in the tube to a temperature below the freezing point. It has become.

【0019】本発明において、過冷却器1は、液冷媒が
内部のチューブ1aのまわりを満たすレベルまで満たさ
れた満液式熱交換器であり、ブラインを使用しない。ま
た、蓄熱水槽11は過冷却器1で製造された水と氷の混
合体を貯蔵する。
In the present invention, the subcooler 1 is a liquid-filled heat exchanger filled with liquid refrigerant to a level that fills the inside of the tube 1a, and does not use brine. The heat storage water tank 11 stores a mixture of water and ice produced by the supercooler 1.

【0020】また、本発明の過冷却水製造装置は、氷生
成制御装置10、凝縮液温度制御装置12、冷水系制御
装置14及び総括制御装置16を備えている。総括制御
装置16は、過冷却器1が安定動作できるように氷生成
制御装置10、凝縮液温度制御装置12、冷水系制御装
置14を集中制御して各機器の運転状態を集中監視す
る。なお、この総括制御装置16は不可欠ではなく、そ
れぞれの制御装置で独立して制御してもよい。
The apparatus for producing supercooled water according to the present invention includes an ice generation controller 10, a condensate temperature controller 12, a chilled water controller 14, and a general controller 16. The general control device 16 centrally controls the ice generation control device 10, the condensate temperature control device 12, and the chilled water system control device 14 so as to stably operate the subcooler 1, and centrally monitors the operation state of each device. Note that the general control device 16 is not indispensable, and may be independently controlled by each control device.

【0021】過冷却器1には、シェル1b内の液冷媒の
蒸気圧力を検出する蒸気圧力検出器P3が設けられてい
る。また、ヒートポンプ装置は、シェル1bから圧縮機
2への蒸発冷媒の流量を制御する吸入絞り弁V1を備え
ている。この構成により、最適に氷が生成される液冷媒
の飽和蒸気温度に対応する飽和蒸気圧力を予め設定し、
蒸気圧力検出器P3で検出した蒸気圧力信号を氷生成制
御装置10に入力し、氷生成制御装置10により、シェ
ル1b内の液冷媒の蒸気圧力を検出して吸入絞り弁V1
と膨張弁4の流量を同時に制御し、これにより液冷媒の
蒸気圧力を一定範囲に制御して飽和蒸気圧力に対応する
冷媒温度が氷生成に最適な温度になるよう制御する。
The supercooler 1 is provided with a vapor pressure detector P3 for detecting the vapor pressure of the liquid refrigerant in the shell 1b. Further, the heat pump device includes a suction throttle valve V1 for controlling the flow rate of the evaporated refrigerant from the shell 1b to the compressor 2. With this configuration, a saturated vapor pressure corresponding to the saturated vapor temperature of the liquid refrigerant at which ice is optimally generated is set in advance,
The steam pressure signal detected by the steam pressure detector P3 is input to the ice generation control device 10, and the ice generation control device 10 detects the vapor pressure of the liquid refrigerant in the shell 1b and detects the suction throttle valve V1.
And the flow rate of the expansion valve 4 are simultaneously controlled, whereby the vapor pressure of the liquid refrigerant is controlled within a certain range, and the refrigerant temperature corresponding to the saturated vapor pressure is controlled to be an optimum temperature for ice formation.

【0022】例えば、冷媒温度が設定温度より高くなる
と、飽和蒸気圧力が高くなるので、吸入絞り弁V1を開
いて圧縮機2の吸引量を増すことにより、シェル1b内
の液冷媒の蒸気圧力を下げ、温度を最適範囲に戻すこと
ができる。同様に膨張弁4の流量を絞ってもシェル1b
内での蒸発量を維持したまま液冷媒の蒸気圧力を下げ、
温度を最適範囲に戻すことができる。吸入絞り弁V1と
膨張弁4は同時に制御するのがよい。なお、冷媒温度が
設定温度より低くなる場合は、この逆の制御となる。
For example, when the refrigerant temperature becomes higher than the set temperature, the saturated vapor pressure becomes higher. Therefore, by opening the suction throttle valve V1 and increasing the suction amount of the compressor 2, the vapor pressure of the liquid refrigerant in the shell 1b is reduced. Lowering the temperature to the optimum range. Similarly, even if the flow rate of the expansion valve 4 is reduced, the shell 1 b
Lowering the vapor pressure of the liquid refrigerant while maintaining the amount of evaporation in the
The temperature can be returned to the optimal range. The suction throttle valve V1 and the expansion valve 4 are preferably controlled simultaneously. When the refrigerant temperature is lower than the set temperature, the control is reversed.

【0023】図2は、本発明で用いる冷媒のモリエル線
図である。この図において、横軸は圧力、縦軸は温度で
ある。このモリエル線図から、液冷媒の飽和蒸気圧力に
対応する冷媒温度は正確に対応していることがわかる。
従って、熱電対等を用いた温度計測では、局所的な温度
しかわからず、かつ温度計測の誤差と時定数の影響が大
きいが、飽和蒸気圧力は気相と液層の界面温度を代表し
ており、誤差と時定数が小さく、かつ局所的な温度のバ
ラツキの影響を受けないことがわかる。
FIG. 2 is a Mollier diagram of the refrigerant used in the present invention. In this figure, the horizontal axis is pressure and the vertical axis is temperature. From this Mollier chart, it is understood that the refrigerant temperature corresponding to the saturated vapor pressure of the liquid refrigerant accurately corresponds to the refrigerant temperature.
Therefore, in the temperature measurement using a thermocouple, etc., only the local temperature is known, and the error of the temperature measurement and the influence of the time constant are large, but the saturated vapor pressure is representative of the interface temperature between the gas phase and the liquid layer. It can be seen that the error and the time constant are small and are not affected by local temperature variations.

【0024】更に図1において、ヒートポンプ装置には
凝縮器3と膨張弁4の間に凝縮器3から膨張弁4へ流れ
る液冷媒の温度を検出する冷媒温度検出器T4が設けら
れている。また、凝縮液温度制御装置12は、冷媒温度
検出器T4で検出した液冷媒の温度を一定にするように
凝縮器3を制御する。この制御は例えば冷却水の流量を
流量調節弁V4で調節することにより行うことができ
る。
Further, in FIG. 1, the heat pump device is provided between the condenser 3 and the expansion valve 4 with a refrigerant temperature detector T4 for detecting the temperature of the liquid refrigerant flowing from the condenser 3 to the expansion valve 4. Further, the condensed liquid temperature control device 12 controls the condenser 3 so as to keep the temperature of the liquid refrigerant detected by the refrigerant temperature detector T4 constant. This control can be performed, for example, by adjusting the flow rate of the cooling water with the flow rate control valve V4.

【0025】また、冷水循環装置には、過冷却器1に供
給される冷水の温度と圧力を検出する冷水温度検出器T
1及び冷水圧力検出器P1と、過冷却器1の上流側に設
置された加熱器H及び循環ポンプPとが設けられてい
る。冷水系制御装置14は、冷水循環装置の状態を監視
し、過冷却器1に供給される冷水の温度T1と圧力P1
を一定範囲にするように加熱器H及び循環ポンプPを制
御する。
The chilled water circulating device has a chilled water temperature detector T for detecting the temperature and pressure of the chilled water supplied to the subcooler 1.
1 and a chilled water pressure detector P1, a heater H and a circulation pump P installed upstream of the subcooler 1. The chilled water control device 14 monitors the state of the chilled water circulation device, and determines the temperature T1 and the pressure P1 of the chilled water supplied to the subcooler 1.
Is controlled so that is within a certain range.

【0026】図3は、本発明の実施例を示す図である。
この図において、横軸は朝8時40分頃から午後13時
頃までの時刻であり、縦軸は温度と圧力である。また、
図中の各線は、が過冷却器1の冷却水圧力、が冷却
水の流量、が過冷却器1の中央部温度、が冷却水入
口温度、が過冷却器1の内部圧力、が膨張弁の出口
圧力である。この図から、過冷却器1の内部圧力と、
直接測定した温度との間に相関関係があることがわか
る。また、内部圧力の計測値は非常に安定しており、
高精度で計測できることもこの図からわかる。更に、温
度計測では、保護管等の影響で計測の時間遅れが生じる
が、圧力計測では時間遅れがないため、過冷却器1内の
温度変化をより正確に知ることができる。
FIG. 3 is a diagram showing an embodiment of the present invention.
In this figure, the horizontal axis represents time from about 8:40 am to about 13:00 pm, and the vertical axis represents temperature and pressure. Also,
Each line in the figure represents the cooling water pressure of the subcooler 1, the cooling water flow rate, the central temperature of the subcooler 1, the cooling water inlet temperature, the internal pressure of the subcooler 1, and the expansion valve. At the outlet pressure. From this figure, the internal pressure of the subcooler 1 and
It can be seen that there is a correlation between the directly measured temperature. Also, the measured value of the internal pressure is very stable,
It can be seen from this figure that the measurement can be performed with high accuracy. Further, in the temperature measurement, a time delay of the measurement occurs due to the influence of the protective tube or the like, but since there is no time delay in the pressure measurement, the temperature change in the subcooler 1 can be more accurately known.

【0027】上述したように、本発明は、過冷却水温度
制御方法を改良し、過冷却水温度を計測して過冷却水温
度を安定制御する直接方式ではなく、過冷却器の冷媒温
度を安定制御することで、過冷却水温度を安定させる間
接的方式を採用している。また、過冷却器内温度を直接
計測した場合は、局所的な冷媒ガス雰囲気の温度を計測
することになるが、飽和蒸気圧力を計測することで、過
冷却器内冷媒ガスと冷媒液の境界面の温度を的確に計測
することができた。
As described above, the present invention improves the supercooling water temperature control method, and does not use the direct method of measuring the supercooling water temperature and stably controlling the supercooling water temperature, but the method of controlling the supercooler refrigerant temperature. An indirect system that stabilizes the supercooling water temperature by performing stable control is adopted. When the temperature inside the subcooler is directly measured, the temperature of the local refrigerant gas atmosphere is measured, but by measuring the saturated vapor pressure, the boundary between the refrigerant gas inside the subcooler and the refrigerant liquid is measured. The surface temperature could be measured accurately.

【0028】また、過冷却器内飽和蒸気温度制御を採用
し、最適に氷が生成される飽和蒸気温度に対応する飽和
蒸気圧力を設定し、飽和蒸気圧力に対応する冷媒温度が
氷生成に最適な温度になるように吸入絞り弁、ならびに
膨張弁を同時に制御する方法を採用した。更に、過冷却
器に供給される冷水条件の安定化のために、過冷却器に
供給される水の圧力・温度を一定に保つことにより、過
冷却器が最適に機能する流量条件を保つこととした。
Also, a saturated steam temperature control in the supercooler is adopted, and a saturated steam pressure corresponding to a saturated steam temperature at which ice is generated optimally is set, and a refrigerant temperature corresponding to the saturated steam pressure is optimal for ice formation. A method was adopted in which the suction throttle valve and the expansion valve were simultaneously controlled so as to reach a desired temperature. Furthermore, in order to stabilize the condition of the cold water supplied to the subcooler, the pressure and temperature of the water supplied to the subcooler are kept constant, thereby maintaining the flow condition under which the supercooler functions optimally. And

【0029】また、凝縮器から供給される液冷媒の温度
を安定させ、過冷却器が最適に機能する条件を保つこと
とした。更にブラインを使用しないシェルアンドチュー
ブ型熱交換器を採用したことにより、在来の冷水製造装
置の基本原理がそのまま応用できることとなった。
Further, the temperature of the liquid refrigerant supplied from the condenser is stabilized, and the condition that the supercooler functions optimally is maintained. Furthermore, by adopting a shell and tube type heat exchanger that does not use brine, the basic principle of a conventional chilled water production apparatus can be applied as it is.

【0030】なお、本発明は上述した実施形態に限定さ
れず、本発明の要旨を逸脱しない範囲で種々変更できる
ことは勿論である。
It should be noted that the present invention is not limited to the above-described embodiment, but can be variously modified without departing from the gist of the present invention.

【0031】[0031]

【発明の効果】上述したように、本発明の過冷却水製造
装置とその制御方法は、以下の特徴を有している。 (1)水よりも蓄熱効果が高い氷を使用した氷蓄熱設備
であり、装置全体が小型化され、装置の自由度が増すと
共に建設コストも下げられる。 (2)ブラインを使用しない過冷却器が実用化でき、ブ
ライン冷却用熱交換器が不要になり、従来よりも装置全
体が小型化され、装置の自由度が増すと共に建設コスト
も下げられる。 (3)ブラインを使用しないため、ブライン管理が不要
となるため運転単価が下がり、夜間電力の利用効果が十
分引き出せる。 (4)過冷却器に供給される水、冷媒の条件を安定させ
たことにより、気象条件の変化や経年劣化などが生じて
もその影響を排除することができるため過冷却器の運転
に適した条件が維持され効率的な運用が可能となる。
As described above, the apparatus for producing supercooled water and the control method thereof according to the present invention have the following features. (1) An ice heat storage facility using ice that has a higher heat storage effect than water. The size of the entire apparatus is reduced, the degree of freedom of the apparatus is increased, and the construction cost is reduced. (2) A supercooler that does not use brine can be put to practical use, and a heat exchanger for cooling brine is not required. Thus, the entire apparatus can be downsized, the degree of freedom of the apparatus can be increased, and the construction cost can be reduced. (3) Since no brine is used, it is not necessary to manage the brine, so that the operating unit price is reduced and the nighttime electric power utilization effect can be sufficiently obtained. (4) By stabilizing the conditions of water and refrigerant supplied to the subcooler, it is possible to eliminate the effects of changes in weather conditions and deterioration over time, so that it is suitable for operation of the supercooler. Conditions are maintained and efficient operation is possible.

【0032】従って、本発明の過冷却水製造装置とその
制御方法は、冷媒を用いて過冷却水を氷生成に適した最
適温度(例えば2℃±0.2℃)に安定して維持するこ
とができ、かつ温度計測の誤差と時定数が小さく、出口
の過冷却水を高精度に維持でき、これにより内部での凍
結を防止して長時間、安定稼働することができる、等の
優れた効果を有する。
Therefore, the supercooled water producing apparatus and the control method of the present invention stably maintain the supercooled water at an optimum temperature (for example, 2 ° C. ± 0.2 ° C.) suitable for ice formation by using a refrigerant. And the temperature measurement error and time constant are small, and the supercooled water at the outlet can be maintained with high accuracy. This prevents internal freezing and enables stable operation for a long time. Has the effect.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の過冷却水製造装置の全体構成図であ
る。
FIG. 1 is an overall configuration diagram of an apparatus for producing supercooled water according to the present invention.

【図2】本発明で用いる冷媒のモリエル線図である。FIG. 2 is a Mollier diagram of a refrigerant used in the present invention.

【図3】本発明の実施例を示す図である。FIG. 3 is a diagram showing an embodiment of the present invention.

【図4】従来の過冷却水製造装置の構成図である。FIG. 4 is a configuration diagram of a conventional supercooled water producing apparatus.

【符号の説明】[Explanation of symbols]

1 熱交換器(蒸発器)、1a チューブ、1b シェ
ル、2 圧縮機、3 凝縮器、4 膨張弁、10 氷生
成制御装置、11 蓄熱水槽、12 凝縮液温度制御装
置、14 冷水系制御装置、V1 吸入絞り弁、V2〜
V5 流量調節弁、F1 流量計、P 循環ポンプ、P
1 冷水圧力検出器、P3 蒸気圧力検出器、T1,T
2 冷水温度検出器、T3,T4 冷媒温度検出器、H
加熱器
1 heat exchanger (evaporator), 1a tube, 1b shell, 2 compressor, 3 condenser, 4 expansion valve, 10 ice generation control device, 11 heat storage water tank, 12 condensate temperature control device, 14 cold water system control device, V1 suction throttle valve, V2
V5 flow control valve, F1 flow meter, P circulation pump, P
1 Cold water pressure detector, P3 Steam pressure detector, T1, T
2 Cold water temperature detector, T3, T4 Refrigerant temperature detector, H
Heater

Claims (8)

【特許請求の範囲】[Claims] 【請求項1】 シェルアンドチューブ型熱交換器からな
る過冷却器(1)のシェル(1b)から圧縮機(2)、
凝縮器(3)および膨張弁(4)を経て前記シェルに戻
る冷媒循環サイクルを形成したヒートポンプ装置と、前
記過冷却器のチューブ(1a)内に冷水を循環供給する
冷水循環装置とを備え、蒸発器のシェル内の液冷媒を沸
騰蒸発させてチューブ内を流れる水を凝固点以下の温度
に冷却して過冷却水を連続的に製造する過冷却水製造装
置において、 シェル(1b)内の液冷媒の蒸気圧力を検出してこれを
制御する氷生成制御装置(10)を備える、ことを特徴
とする過冷却水製造装置。
1. A compressor (2) from a shell (1b) of a subcooler (1) comprising a shell and tube heat exchanger,
A heat pump device forming a refrigerant circulation cycle returning to the shell via a condenser (3) and an expansion valve (4); and a chilled water circulating device for circulating chilled water into the tube (1a) of the supercooler, In a supercooled water producing apparatus for continuously producing supercooled water by boiling and evaporating a liquid refrigerant in a shell of an evaporator to cool water flowing in a tube to a temperature below a freezing point, the liquid in the shell (1b) An apparatus for producing supercooled water, comprising: an ice generation control device (10) for detecting and controlling the vapor pressure of a refrigerant.
【請求項2】 前記シェル(1b)内の液冷媒の蒸気圧
力を検出する蒸気圧力検出器P3と、シェル(1b)か
ら圧縮機(2)への蒸発冷媒の流量を制御する吸入絞り
弁V1と、を備え、蒸気圧力検出器P3で検出した蒸気
圧力信号を前記氷生成制御装置(10)に入力し、この
氷生成制御装置により、吸入絞り弁V1と前記膨張弁
(4)の流量を制御する、ことを特徴とする請求項1に
記載の過冷却水製造装置。
2. A vapor pressure detector P3 for detecting a vapor pressure of the liquid refrigerant in the shell (1b), and a suction throttle valve V1 for controlling a flow rate of the vaporized refrigerant from the shell (1b) to the compressor (2). The steam pressure signal detected by the steam pressure detector P3 is input to the ice generation control device (10), and the flow rate of the suction throttle valve V1 and the expansion valve (4) is controlled by the ice generation control device. The supercooled water producing apparatus according to claim 1, wherein the apparatus is controlled.
【請求項3】 前記凝縮器(3)から膨張弁(4)へ流
れる液冷媒の温度を検出する冷媒温度検出器T4と、前
記液冷媒の温度を一定にするように凝縮器を制御する凝
縮液温度制御装置(12)とを備える、ことを特徴とす
る請求項1に記載の過冷却水製造装置。
3. A refrigerant temperature detector T4 for detecting a temperature of a liquid refrigerant flowing from the condenser (3) to an expansion valve (4), and a condenser for controlling the condenser to keep the temperature of the liquid refrigerant constant. The apparatus for producing supercooled water according to claim 1, further comprising a liquid temperature control device (12).
【請求項4】 前記過冷却器(1)に供給される冷水の
温度と圧力を検出する冷水温度検出器T1及び冷水圧力
検出器P1と、前記過冷却器の上流側に設置された加熱
器及び循環ポンプと、過冷却器に供給される冷水の温度
と圧力を一定にするように加熱器及び循環ポンプを制御
する冷水系制御装置(14)とを備える、ことを特徴と
する請求項1に記載の過冷却水製造装置。
4. A chilled water temperature detector T1 and a chilled water pressure detector P1 for detecting the temperature and pressure of chilled water supplied to the subcooler (1), and a heater installed upstream of the subcooler. And a circulating pump, and a chilled water control device (14) for controlling the heater and the circulating pump so as to keep the temperature and pressure of the chilled water supplied to the subcooler constant. The supercooled water producing apparatus according to item 1.
【請求項5】 シェルアンドチューブ型熱交換器からな
る過冷却器(1)のシェル(1b)から圧縮機(2)、
凝縮器(3)および膨張弁(4)を経て前記シェルに戻
る冷媒循環サイクルを形成したヒートポンプ装置と、前
記過冷却器のチューブ(1a)内に冷水を循環供給する
冷水循環装置とを備え、蒸発器のチューブ内を流れる水
を凝固点以下の温度に冷却して過冷却水を連続的に製造
する過冷却水製造装置の制御方法であって、 シェル(1b)内の液冷媒の蒸気圧力を検出してこれを
一定範囲に制御する、ことを特徴とする過冷却水製造装
置の制御方法。
5. A compressor (2) from a shell (1b) of a subcooler (1) comprising a shell-and-tube type heat exchanger,
A heat pump device forming a refrigerant circulation cycle returning to the shell via a condenser (3) and an expansion valve (4); and a chilled water circulating device for circulating chilled water into the tube (1a) of the supercooler, A method for controlling a supercooled water producing apparatus for continuously producing supercooled water by cooling water flowing in a tube of an evaporator to a temperature below a freezing point, wherein a vapor pressure of a liquid refrigerant in a shell (1b) is reduced. A method for controlling a supercooled water producing apparatus, comprising detecting and controlling this within a certain range.
【請求項6】 最適に氷が生成される液冷媒の飽和蒸気
温度に対応する飽和蒸気圧力を予め設定し、飽和蒸気圧
力に対応する冷媒温度が氷生成に最適な温度になるよう
に吸入絞り弁及び膨張弁を同時に制御する、ことを特徴
とする請求項5に記載の過冷却水製造装置の制御方法。
6. A suction vapor pressure corresponding to a saturated vapor temperature of a liquid refrigerant in which ice is optimally generated is set in advance, and a suction throttle is set so that a refrigerant temperature corresponding to the saturated vapor pressure becomes an optimal temperature for ice generation. The control method for the supercooled water producing apparatus according to claim 5, wherein the valve and the expansion valve are simultaneously controlled.
【請求項7】 凝縮器から供給される液冷媒の温度を一
定範囲に保つ、ことを特徴とする請求項5に記載の過冷
却水製造装置の制御方法。
7. The method according to claim 5, wherein the temperature of the liquid refrigerant supplied from the condenser is kept within a certain range.
【請求項8】 過冷却器に供給される水の圧力を一定範
囲に保ち、かつ冷水入口温度を一定にして供給する、こ
とを特徴とする請求項5に記載の過冷却水製造装置の制
御方法。
8. The control of the supercooled water producing apparatus according to claim 5, wherein the pressure of the water supplied to the supercooler is maintained within a certain range and the temperature of the cold water inlet is kept constant. Method.
JP2000157077A 2000-05-26 2000-05-26 Supercooling water-manufacturing device, and its control method Pending JP2001336788A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2000157077A JP2001336788A (en) 2000-05-26 2000-05-26 Supercooling water-manufacturing device, and its control method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2000157077A JP2001336788A (en) 2000-05-26 2000-05-26 Supercooling water-manufacturing device, and its control method

Publications (1)

Publication Number Publication Date
JP2001336788A true JP2001336788A (en) 2001-12-07

Family

ID=18661772

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000157077A Pending JP2001336788A (en) 2000-05-26 2000-05-26 Supercooling water-manufacturing device, and its control method

Country Status (1)

Country Link
JP (1) JP2001336788A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2006033141A1 (en) * 2004-09-22 2006-03-30 Takasago Thermal Engineering Co., Ltd. Freezing detection method for ice making apparatus and ice making apparatus

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2006033141A1 (en) * 2004-09-22 2006-03-30 Takasago Thermal Engineering Co., Ltd. Freezing detection method for ice making apparatus and ice making apparatus

Similar Documents

Publication Publication Date Title
JP6931093B2 (en) Liquid temperature control device and method
JPS61280357A (en) Method and device for operating heat pump or refrigerator
RU2368850C2 (en) Control means of cooling loop with internal heat exchanger
KR100612178B1 (en) Absorption chiller control logic
JP2001336788A (en) Supercooling water-manufacturing device, and its control method
KR20170119840A (en) Control method that can prevent excessive cooling of moments using bi-cooled water purifier
JPH05118728A (en) Supercooler for supercooled water manufacturing device
JP2001241753A (en) Steam heater for low-temperature fluid and heating method thereof
JPH0688653A (en) Method for preventing crystallization of absorption refrigerating machine
JPH1019428A (en) Vapor pressure controller for icemaker
JPH0478903B2 (en)
JPS58145837A (en) Operation of ice cooling system
JPH04143562A (en) Low temperature waste heat utilizing absorption type refrigerating plant and controlling method therefor
JPH11211244A (en) Cooling method and device
JP3906343B2 (en) Control method of superfluid helium generator
JPS645731Y2 (en)
JPS6024380B2 (en) Absorption chiller control device
JP3345610B2 (en) Cycle control method for absorption chiller / chiller / heater
JPH0243105B2 (en)
JPH06193921A (en) Supercooling type ice heat storage apparatus
JPH03102130A (en) Frozen state sensing method in low temperature cold water producing device
JPS645732Y2 (en)
JP2020020413A (en) Device and method for supplying pressurized gas to container
JPS6232385B2 (en)
JP2020020414A (en) Device and method for supplying pressurized gas to container

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070307

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20091014

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20091019

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20100303