JP2001335322A - Method for manufacturing triaxial orientation oxide superconducting complex and triaxial orientation bismuth oxide superconducting complex - Google Patents

Method for manufacturing triaxial orientation oxide superconducting complex and triaxial orientation bismuth oxide superconducting complex

Info

Publication number
JP2001335322A
JP2001335322A JP2000152797A JP2000152797A JP2001335322A JP 2001335322 A JP2001335322 A JP 2001335322A JP 2000152797 A JP2000152797 A JP 2000152797A JP 2000152797 A JP2000152797 A JP 2000152797A JP 2001335322 A JP2001335322 A JP 2001335322A
Authority
JP
Japan
Prior art keywords
oxide superconductor
oxide superconducting
composite
triaxially oriented
temperature gradient
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2000152797A
Other languages
Japanese (ja)
Other versions
JP3548795B2 (en
Inventor
Akiyoshi Matsumoto
明善 松本
Hitoshi Kitaguchi
仁 北口
Hiroaki Kumakura
浩明 熊倉
Kazumasa Togano
一正 戸叶
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
National Institute for Materials Science
Original Assignee
National Institute for Materials Science
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by National Institute for Materials Science filed Critical National Institute for Materials Science
Priority to JP2000152797A priority Critical patent/JP3548795B2/en
Publication of JP2001335322A publication Critical patent/JP2001335322A/en
Application granted granted Critical
Publication of JP3548795B2 publication Critical patent/JP3548795B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Inorganic Compounds Of Heavy Metals (AREA)
  • Crystals, And After-Treatments Of Crystals (AREA)
  • Superconductors And Manufacturing Methods Therefor (AREA)

Abstract

PROBLEM TO BE SOLVED: To realize a triaxially oriented organization of oxide superconducting complexes, having an excellent critical current density, by employing a remarkably simple process. SOLUTION: A composite comprising a precursor and a substrate of an oxide superconductor is baked in a furnace with a temperature gradient of 0.5-10 deg.C/cm, allowing at least one part of the precursor to melt. Thereafter, the composite is slowly cooled and solidified with the above temperature gradient being maintained, and transformed into a triaxial orientation oxide superconductor having a triaxially oriented organization.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】この出願の発明は、3軸配向
酸化物超伝導複合体の製造方法と3軸配向ビスマス系酸
化物超伝導複合体に関するものである。さらに詳しく
は、この出願の発明は、臨界電流密度に優れた3軸配向
組織を非常に簡単なプロセスで実現する、実用化技術と
して好適な3軸配向酸化物超伝導複合体の製造方法と、
3軸配向組織を有する新しい3軸配向ビスマス系酸化物
超伝導複合体に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for producing a triaxially oriented oxide superconducting composite and a triaxially oriented bismuth-based oxide superconducting composite. More specifically, the invention of this application provides a method for producing a triaxially oriented oxide superconducting composite suitable as a practical application technique, which realizes a triaxially oriented structure excellent in critical current density by a very simple process,
The present invention relates to a novel triaxially oriented bismuth-based oxide superconducting composite having a triaxially oriented structure.

【0002】[0002]

【従来の技術】酸化物超伝導体についてはその実用化に
向けて研究開発が進められている。例えば、各種電気機
器、エネルギー貯蔵装置、磁気分離装置、NMR分析機
器、高エネルギー加速器、核融合炉等の超伝導機器に用
いるために、線材化が検討されている。
2. Description of the Related Art Research and development of oxide superconductors are proceeding for practical use. For example, the use of wires has been studied for use in various electrical devices, energy storage devices, magnetic separation devices, NMR analysis devices, high energy accelerators, superconducting devices such as fusion reactors, and the like.

【0003】一般に、超伝導体にはその特性から大電流
輸送が期待されており、また、超伝導機器の小型化、こ
れにともなう冷却コストの低減等を推進する上でも高臨
界電流密度の実現が必要不可欠となっている。そのため
に、酸化物超伝導体についても配向組織の形成が考えら
れている。
In general, superconductors are expected to transport large currents due to their characteristics. In addition, realization of a high critical current density is also required to promote the miniaturization of superconducting equipment and the accompanying reduction in cooling costs. Is indispensable. For this reason, formation of an oriented structure is considered for the oxide superconductor.

【0004】[0004]

【発明が解決しようとする課題】しかしながら、これま
でに提供されている酸化物超伝導体の配向組織は、主に
1軸配向組織、特にc軸配向組織であり、酸化物超伝導
体の粒子同士の結合が十分に強固ではないため、得られ
る臨界電流密度はさほど高くない。高臨界電流密度を実
現するためには、c軸ばかりでなく、結晶のab面内にお
いても酸化物超伝導体の結晶粒の向きを揃え、すなわち
3軸配向組織を形成させ、結晶粒間の結合を強力にし、
超伝導電流が流れやすくすることが考えられる。
However, the oriented structure of the oxide superconductor provided so far is mainly a uniaxially oriented structure, particularly a c-axis oriented structure. The critical current density obtained is not very high because the bonds between them are not strong enough. In order to realize a high critical current density, the orientation of the crystal grains of the oxide superconductor is aligned not only in the c-axis but also in the ab plane of the crystal, that is, by forming a triaxially oriented structure, Make the bond stronger,
It is conceivable that the superconducting current easily flows.

【0005】現在、3軸配向組織を得る手法として、配
向基板上に酸化物超伝導体を気相法によりエピタキシャ
ル成長させることが提案されている。
At present, as a technique for obtaining a three-axis texture, it has been proposed to epitaxially grow an oxide superconductor on a textured substrate by a vapor phase method.

【0006】しかしながら、配向基板を用いた酸化物超
伝導体のエピタキシャル成長は、プロセスとして決して
単純でなく、実用化技術としてはコスト面でも問題があ
る。また、いわゆるビスマス系酸化物超伝導体について
は、3軸配向組織を有するものは知られていない。
However, epitaxial growth of an oxide superconductor using an oriented substrate is not a simple process, and there is a problem in terms of cost as a practical application technique. As for a so-called bismuth-based oxide superconductor, one having a triaxial orientation structure is not known.

【0007】この出願の発明は、以上の通りの事情に鑑
みてなされたものであり、実用化技術として好適な3軸
配向酸化物超伝導複合体の製造方法と、3軸配向組織を
有する新しい3軸配向ビスマス系酸化物超伝導複合体を
提供することを目的としている。
The invention of this application has been made in view of the above circumstances, and a method for producing a triaxially oriented oxide superconducting composite suitable as a practical application technique and a new method having a triaxially oriented structure. It is an object of the present invention to provide a triaxially oriented bismuth-based oxide superconducting composite.

【0008】[0008]

【課題を解決するための手段】この出願の発明は、上記
の課題を解決するものとして、酸化物超伝導体の前駆体
と基材とからなる複合体を0.5〜10℃/cmの温度勾配を有
する炉内において、酸化物超伝導体の前駆体の少なくと
も一部を溶融させた後、前記温度勾配を保ちながら徐冷
凝固させ、3軸配向組織を有する3軸配向酸化物超伝導
体を形成させることを特徴とする3軸配向酸化物超伝導
複合体の製造方法(請求項1)を提供する。
Means for Solving the Problems The present invention solves the above-mentioned problems by providing a composite comprising a precursor of an oxide superconductor and a substrate with a temperature gradient of 0.5 to 10 ° C./cm. After melting at least a part of the precursor of the oxide superconductor in the furnace having the above, the solid is slowly cooled and solidified while maintaining the temperature gradient to form a triaxially oriented oxide superconductor having a triaxially oriented structure. A method for producing a triaxially oriented oxide superconducting composite (claim 1) is provided.

【0009】この請求項1に係る発明に関し、この出願
の発明は、10℃/時間以下の冷却速度で徐冷凝固させる
こと(請求項2)を好ましい態様として提供する。
With respect to the invention according to claim 1, the invention of this application provides, as a preferred embodiment, slow solidification at a cooling rate of 10 ° C./hour or less (claim 2).

【0010】またこの出願の発明は、3軸配向組織を有
するビスマス系酸化物超伝導体と基材の複合体であるこ
とを特徴とする3軸配向ビスマス系酸化物超伝導複合体
(請求項3)を提供する。
[0010] The invention of this application is a composite of a bismuth-based oxide superconductor having a triaxially oriented structure and a base material, characterized in that it is a triaxially oriented bismuth-based oxide superconductor composite. 3) is provided.

【0011】この請求項3に係る発明に関し、この出願
の発明は、一般式Bi2Sr2CaCu2Oxで示されるビスマス系
酸化物超伝導体であること(請求項4)を好ましい態様
として提供する。
In a preferred embodiment, the invention according to claim 3 is characterized in that the invention of this application is a bismuth-based oxide superconductor represented by the general formula Bi 2 Sr 2 CaCu 2 O x (claim 4). provide.

【0012】以下、実施例を示しつつ、この出願の発明
の3軸配向酸化物超伝導複合体の製造方法と3軸配向ビ
スマス系酸化物超伝導複合体についてさらに詳しく説明
する。
Hereinafter, the method for producing a triaxially oriented oxide superconducting composite and the triaxially oriented bismuth-based oxide superconducting composite of the present invention will be described in more detail with reference to examples.

【0013】[0013]

【発明の実施の形態】この出願の発明の3軸配向酸化物
超伝導複合体の製造方法では、上記の通り、酸化物超伝
導体の前駆体と基材とからなる複合体を0.5〜10℃/cmの
温度勾配を有する電気炉内において、酸化物超伝導体の
前駆体の少なくとも一部を溶融させた後、前記温度勾配
を保ちながら徐冷凝固させる。酸化物超伝導体の前駆体
の少なくとも一部を溶融させた後に徐冷凝固するという
溶融−凝固熱処理は、酸化物超伝導体の製造に通常用い
られる熱処理であるが、この溶融−凝固熱処理を0.5〜1
0℃/cmの温度勾配を有する炉内で行うことにより、製造
される酸化物超伝導体は、c軸とともに結晶のab面内に
おいても酸化物超伝導体の結晶粒の向きが揃った3軸配
向組織を有する3軸配向酸化物超伝導体となる。3軸配
向組織を得る手法として、このような熱処理のみという
非常に簡単なプロセスはこれまでに例はなく、実用化技
術として注目される。
BEST MODE FOR CARRYING OUT THE INVENTION In the method for producing a triaxially oriented oxide superconducting composite according to the present invention, as described above, a composite comprising a precursor of an oxide superconductor and a base material is formed in an amount of 0.5 to 10 In an electric furnace having a temperature gradient of ° C./cm, at least a part of the precursor of the oxide superconductor is melted, and then gradually cooled and solidified while maintaining the temperature gradient. The melt-solidification heat treatment of slowly cooling and solidifying after at least part of the precursor of the oxide superconductor is melted is a heat treatment usually used for manufacturing an oxide superconductor. 0.5-1
By performing the process in a furnace having a temperature gradient of 0 ° C./cm, the produced oxide superconductor has uniform crystal orientation in the ab plane of the crystal as well as in the c-axis. It becomes a triaxially oriented oxide superconductor having an axially oriented structure. As a method for obtaining a triaxially oriented structure, there is no example of such a very simple process of only heat treatment, and attention is paid to a technique for practical use.

【0014】溶融−凝固熱処理を行う炉内の温度勾配
は、上記の通り、0.5〜10℃/cmに限定される。温度勾配
が、0.5℃/cmより小さい、若しくは10℃/cmより大きい
と、3軸配向組織は得られない。炉内の温度勾配は、例
えば図1に示したように、炉として管状炉を用い、管
(1)の外周にヒーター部(2)を配設し、ヒーター部
(2)の加熱を調節して形成することができる。この場
合、試料(3)は、管(1)の内部において0.5〜10℃/
cmの温度勾配が形成された部位に配置することができ
る。
As described above, the temperature gradient in the furnace for performing the melt-solidification heat treatment is limited to 0.5 to 10 ° C./cm. If the temperature gradient is smaller than 0.5 ° C./cm or larger than 10 ° C./cm, a triaxially oriented structure cannot be obtained. For example, as shown in FIG. 1, a tubular furnace is used as a furnace, a heater (2) is arranged on the outer periphery of a tube (1), and the heating of the heater (2) is adjusted. Can be formed. In this case, the sample (3) is kept at 0.5-10 ° C /
It can be placed at the site where the temperature gradient of cm is formed.

【0015】徐冷凝固の条件としては、0.5〜10℃/cmの
温度勾配を保持することが3軸配向組織を得るために欠
かせないが、十分に高い配向組織を得るためには、冷却
速度を10℃/時間以下とするのが好ましい。冷却速度が1
0℃/時間を超えて速くなると、配向組織の配向度は低下
する傾向が見られる。
As a condition for slow cooling solidification, maintaining a temperature gradient of 0.5 to 10 ° C./cm is indispensable for obtaining a triaxially oriented structure, but for obtaining a sufficiently high oriented structure, cooling is required. Preferably, the rate is 10 ° C./hour or less. Cooling rate is 1
When the temperature exceeds 0 ° C./hour, the degree of orientation of the oriented structure tends to decrease.

【0016】この出願の発明の3軸配向酸化物超伝導複
合体の製造方法は、対象とする酸化物超伝導体の種類を
特に問わない。いわゆるイットリウム系、ビスマス系、
タリウム系等のこれまでに存在が確認されている各種の
酸化物超伝導体と基材の複合体の製造に適用可能であ
る。また、発現させる超伝導相は一種のみであっても、
あるいは二種以上の混在状態とすることも可能である。
The method for producing the triaxially oriented oxide superconductor composite of the invention of this application is not particularly limited as to the type of the target oxide superconductor. So-called yttrium-based, bismuth-based,
The present invention can be applied to the production of composites of various oxide superconductors such as thallium and the like, which have been confirmed so far, and substrates. Also, even if only one type of superconducting phase is developed,
Alternatively, two or more types can be mixed.

【0017】酸化物超伝導体の前駆体とともに使用する
基材の種類についても特に制限はない。銀等の各種のも
のを広く採用することができる。
There is no particular limitation on the type of substrate used together with the oxide superconductor precursor. Various materials such as silver can be widely used.

【0018】この出願の発明の3軸配向ビスマス系酸化
物超伝導複合体は、c軸とともに結晶のab面内において
も酸化物超伝導体の結晶粒の向きが揃った3軸配向組織
を有するビスマス系酸化物超伝導体と基材との複合体で
ある。3軸配向組織のため、ビスマス系酸化物超伝導体
の粒子同士の結合は十分強固であり、例えば後述の実施
例に示すように、10Tの磁場中において40万アンペア/cm
2という高臨界電流密度が得られる。
The triaxially oriented bismuth-based oxide superconducting composite of the invention of this application has a triaxially oriented structure in which the crystal grains of the oxide superconductor are aligned in the ab plane of the crystal together with the c-axis. It is a composite of a bismuth-based oxide superconductor and a substrate. Due to the triaxial orientation structure, the bond between the particles of the bismuth-based oxide superconductor is sufficiently strong. For example, as shown in the examples described below, 400,000 amps / cm
A high critical current density of 2 is obtained.

【0019】この3軸配向ビスマス系酸化物超伝導複合
体は、以上のこの出願の発明の3軸配向酸化物超伝導複
合体の製造方法により製造することができる。配向基板
上にエピタキシャル成長させる手法により3軸配向ビス
マス系酸化物超伝導複合体が製造されたという例は今の
ところ見当たらない。
The triaxially oriented bismuth-based oxide superconducting composite can be produced by the above-described method for producing a triaxially oriented oxide superconducting composite of the present invention. At present, no example has been found in which a triaxially oriented bismuth-based oxide superconducting composite has been produced by a technique of epitaxial growth on an oriented substrate.

【0020】なお、この出願の発明の3軸配向酸化物超
伝導複合体の製造方法と3軸配向ビスマス系酸化物超伝
導複合体において、酸化物超伝導体の形態は特に制限さ
れない。線材、テープをはじめ、バルク材も可能であ
る。
The form of the oxide superconductor is not particularly limited in the method for producing a triaxially oriented oxide superconducting composite and the triaxially oriented bismuth-based oxide superconducting composite of the present invention. Bulk materials are also possible, including wires and tapes.

【0021】[0021]

【実施例】固相反応法により一般式Bi2Sr2CaCu2Oxで示
されるビスマス系酸化物超伝導体(Bi-2212超伝導体)
の前駆体粉末を作製し、この前駆体粉末に有機バインダ
ー、溶媒、及び分散剤を加え、懸濁液(スラリー)とし
た。幅10mm、厚さ50μmの銀テープを基材とし、その片
面を粘着テープでマスクして上記スラリーに浸し、スラ
リーを銀テープに均一に塗布した。十分に乾燥後、マス
クを取り除き、銀テープを長手方向に折り曲げてBi-221
2超伝導体の前駆体を包み込むようにして試料を数個作
製した。
EXAMPLE A bismuth-based oxide superconductor represented by the general formula Bi 2 Sr 2 CaCu 2 O x by a solid-state reaction method (Bi-2212 superconductor)
Was prepared, and an organic binder, a solvent, and a dispersant were added to the precursor powder to form a suspension (slurry). A silver tape having a width of 10 mm and a thickness of 50 μm was used as a base material, and one surface thereof was masked with an adhesive tape, immersed in the slurry, and the slurry was uniformly applied to the silver tape. After drying sufficiently, remove the mask and fold the silver tape in the longitudinal direction to remove the Bi-221
Several samples were prepared so as to enclose the precursor of the two superconductors.

【0022】そのうちのいくつかを、0.5、1.5、10℃/c
mの温度勾配を有する各管状型電気炉内に入れ、100%酸
素雰囲気下で熱処理を行った。熱処理は、まず有機物を
除去するために500℃に2時間保持し、その後、880℃ま
で昇温してBi-2212超伝導体の前駆体を部分溶融状態に
し、上記温度勾配を保って880℃から830℃まで2℃/時
間の冷却速度で徐冷凝固させた。そして、室温まで100
℃/時間の冷却速度で冷却した。
Some of them are 0.5, 1.5, 10 ° C./c
Each of the tubular electric furnaces having a temperature gradient of m was placed in a tubular electric furnace and heat-treated in an atmosphere of 100% oxygen. In the heat treatment, first, the temperature is kept at 500 ° C. for 2 hours to remove organic substances, and then the temperature is raised to 880 ° C. to bring the Bi-2212 superconductor precursor into a partially molten state, and the temperature gradient is maintained at 880 ° C. To 830 ° C. at a cooling rate of 2 ° C./hour. And 100 to room temperature
Cooling was performed at a cooling rate of ° C / hour.

【0023】一方、いくつかの試料は、温度勾配を持た
ない電気炉内で上記と同様の熱処理を行った。
On the other hand, some samples were subjected to the same heat treatment as above in an electric furnace having no temperature gradient.

【0024】熱処理後、組織確認のために試料から銀テ
ープを取り除き、Bi-2212超伝導体の組織をX線回折に
より観察した。また、四端子抵抗法により4.2K、10Tの
磁界下で臨界電流密度Jcを測定した。
After the heat treatment, the silver tape was removed from the sample to confirm the structure, and the structure of the Bi-2212 superconductor was observed by X-ray diffraction. The critical current density Jc was measured under a magnetic field of 4.2 K and 10 T by a four-terminal resistance method.

【0025】図2は、1.5℃/cmの温度勾配を有する炉内
で熱処理した試料の(115)極点図である。図3は、温度
勾配を持たない炉内で熱処理した試料の(115)極点図で
ある。
FIG. 2 is a (115) pole figure of a sample heat-treated in a furnace having a temperature gradient of 1.5 ° C./cm. FIG. 3 is a (115) pole figure of a sample heat-treated in a furnace having no temperature gradient.

【0026】1.5℃/cmの温度勾配を有する炉内で熱処理
した試料は、明らかな4回対称性が観測され、3軸配向
していることが確認された。一方、温度勾配を持たない
炉内で熱処理した試料は、通常の1軸配向(c軸配向)
しか確認されなかった。
The sample that had been heat-treated in a furnace having a temperature gradient of 1.5 ° C./cm had clear four-fold symmetry and was confirmed to be triaxially oriented. On the other hand, a sample heat-treated in a furnace without a temperature gradient has a normal uniaxial orientation (c-axis orientation).
Was only confirmed.

【0027】Jcについては、1.5℃/cmの温度勾配を有す
る炉内で熱処理した試料では40万アンペア/cm2であった
のに対し、温度勾配を持たない炉内で熱処理した試料は
高々20万アンペア/cm2であった。3軸配向組織によりJc
が向上することが確認された。
As for Jc, the sample heat-treated in a furnace having a temperature gradient of 1.5 ° C./cm was 400,000 A / cm 2 , whereas the sample heat-treated in a furnace having no temperature gradient was at most 20 J / cm 2. 10,000 amps / cm 2 . Jc due to triaxial texture
Was confirmed to improve.

【0028】残りの試料については、温度勾配を0.4、1
1℃/cmとした各管状型電気炉内に入れ、上記と同様の熱
処理を行った。温度勾配が0.5、10℃/cmの炉内で熱処理
した試料は、X線回折の結果、3軸配向が確認された
が、温度勾配0.4、11℃/cmの炉内で熱処理した試料は、
いずれも、温度勾配を持たない炉内で熱処理した試料と
同様に、1軸配向(c軸配向)しか確認されなかった。
For the remaining samples, a temperature gradient of 0.4, 1
Each was placed in each tubular electric furnace at 1 ° C./cm, and subjected to the same heat treatment as described above. Samples heat-treated in a furnace with a temperature gradient of 0.5 and 10 ° C./cm showed triaxial orientation as a result of X-ray diffraction.
In each case, only uniaxial orientation (c-axis orientation) was confirmed as in the sample heat-treated in a furnace having no temperature gradient.

【0029】また、1.5℃/cmの温度勾配を有する管状型
電気炉内での熱処理において880℃から830℃までの冷却
速度を5、10℃/時間に替えて冷却凝固を行った。そ
の結果、冷却速度が上がるにつれてBi-2212超伝導体の
配向度は下がり、Jcも下がった。さらに冷却速度を上げ
ると、Jcは実用レベルに達しなくなった。
In the heat treatment in a tubular electric furnace having a temperature gradient of 1.5 ° C./cm, cooling and solidification were performed by changing the cooling rate from 880 ° C. to 830 ° C. to 5, 10 ° C./hour. As a result, as the cooling rate increased, the degree of orientation of the Bi-2212 superconductor decreased, and Jc also decreased. When the cooling rate was further increased, Jc no longer reached the practical level.

【0030】勿論、この出願の発明は、以上の実施形態
及び実施例により限定されるものではない。酸化物超伝
導体の種類、形態等の細部については様々な態様が可能
であることは言うまでもない。
Of course, the invention of this application is not limited by the above embodiments and examples. It goes without saying that various aspects are possible for details such as the type and form of the oxide superconductor.

【0031】[0031]

【発明の効果】以上詳しく説明した通り、この出願の発
明により、酸化物超伝導複合体について、臨界電流密度
に優れた3軸配向組織を非常に簡単なプロセスで実現す
ることができ、実用化技術として好適となる。
As described in detail above, according to the invention of this application, it is possible to realize a triaxially oriented structure having an excellent critical current density in an oxide superconducting composite by a very simple process. It becomes suitable as technology.

【0032】また、この出願の発明により、3軸配向組
織を有する全く新しい3軸配向ビスマス系酸化物超伝導
複合体が提供される。この3軸配向ビスマス系酸化物超
伝導複合体は、臨界電流密度が十分高く、線材として、
また、バルク材として各種超伝導機器に応用可能であ
り、超伝導機器の小型化、ひいては冷却コストの低減に
有効となる。
Further, according to the invention of this application, a completely new triaxially oriented bismuth-based oxide superconducting composite having a triaxially oriented structure is provided. This triaxially oriented bismuth-based oxide superconducting composite has a sufficiently high critical current density, and
Further, it can be applied to various superconducting devices as a bulk material, and is effective in reducing the size of superconducting devices and, in turn, reducing cooling costs.

【図面の簡単な説明】[Brief description of the drawings]

【図1】温度勾配を有する炉と温度勾配について概略的
に示した図である。
FIG. 1 is a diagram schematically showing a furnace having a temperature gradient and a temperature gradient.

【図2】1.5℃/cmの温度勾配を有する炉内で熱処理した
試料の(115)極点図である。
FIG. 2 is a (115) pole figure of a sample heat-treated in a furnace having a temperature gradient of 1.5 ° C./cm.

【図3】温度勾配を持たない炉内で熱処理した試料の(1
15)極点図である。
FIG. 3 shows a sample (1) heat-treated in a furnace having no temperature gradient.
15) It is a pole figure.

【符号の説明】[Explanation of symbols]

1 管 2 ヒーター部 3 試料 1 tube 2 heater section 3 sample

───────────────────────────────────────────────────── フロントページの続き (72)発明者 戸叶 一正 茨城県つくば市千現1丁目2番1号 科学 技術庁金属材料技術研究所内 Fターム(参考) 4G047 JA03 JB02 JC10 KD09 4G048 AA05 AB01 AC04 AD06 AE05 5G321 AA01 AA05 DB30  ────────────────────────────────────────────────── ─── Continuing on the front page (72) Inventor Kazumasa Toba 1-2-1, Sengen, Tsukuba, Ibaraki Pref. 5G321 AA01 AA05 DB30

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】 酸化物超伝導体の前駆体と基材とからな
る複合体を0.5〜10℃/cmの温度勾配を有する炉内におい
て、酸化物超伝導体の前駆体の少なくとも一部を溶融さ
せた後、前記温度勾配を保ちながら徐冷凝固させ、3軸
配向組織を有する3軸配向酸化物超伝導体を形成させる
ことを特徴とする3軸配向酸化物超伝導複合体の製造方
法。
In a furnace having a temperature gradient of 0.5 to 10 ° C./cm, at least a part of a precursor of an oxide superconductor is mixed with a composite comprising a precursor of an oxide superconductor and a substrate. A method for producing a triaxially oriented oxide superconductor composite, comprising: gradually melting and solidifying the melt while maintaining the temperature gradient to form a triaxially oriented oxide superconductor having a triaxially oriented structure. .
【請求項2】 10℃/時間以下の冷却速度で徐冷凝固さ
せる請求項1記載の3軸配向酸化物超伝導複合体の製造
方法。
2. The method for producing a triaxially oriented oxide superconducting composite according to claim 1, wherein the solid is slowly cooled and solidified at a cooling rate of 10 ° C./hour or less.
【請求項3】 3軸配向組織を有するビスマス系酸化物
超伝導体と基材の複合体であることを特徴とする3軸配
向ビスマス系酸化物超伝導複合体。
3. A triaxially oriented bismuth-based oxide superconductor composite, which is a composite of a bismuth-based oxide superconductor having a triaxially oriented structure and a substrate.
【請求項4】 一般式Bi2Sr2CaCu2Oxで示されるビスマ
ス系酸化物超伝導体である請求項3記載の3軸配向ビス
マス系酸化物超伝導複合体。
4. The triaxially oriented bismuth-based oxide superconductor composite according to claim 3, which is a bismuth-based oxide superconductor represented by the general formula Bi 2 Sr 2 CaCu 2 O x .
JP2000152797A 2000-05-24 2000-05-24 Method for producing triaxially oriented oxide superconducting composite Expired - Lifetime JP3548795B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2000152797A JP3548795B2 (en) 2000-05-24 2000-05-24 Method for producing triaxially oriented oxide superconducting composite

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2000152797A JP3548795B2 (en) 2000-05-24 2000-05-24 Method for producing triaxially oriented oxide superconducting composite

Publications (2)

Publication Number Publication Date
JP2001335322A true JP2001335322A (en) 2001-12-04
JP3548795B2 JP3548795B2 (en) 2004-07-28

Family

ID=18658167

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000152797A Expired - Lifetime JP3548795B2 (en) 2000-05-24 2000-05-24 Method for producing triaxially oriented oxide superconducting composite

Country Status (1)

Country Link
JP (1) JP3548795B2 (en)

Also Published As

Publication number Publication date
JP3548795B2 (en) 2004-07-28

Similar Documents

Publication Publication Date Title
Morita et al. Processing and properties of QMG materials
Macmanus‐Driscoll Materials chemistry and thermodynamics of REBa2Cu3O7− x
JP3089294B2 (en) Manufacturing method of superconducting tape material
JPH09306256A (en) Bulk oxide superconductor, and production of wire rod and plate thereof
EP1107324B1 (en) Method of joining oxide superconductors and superconductor members produced by same
JPH05193938A (en) Oxide superconductor and production thereof
JP3548795B2 (en) Method for producing triaxially oriented oxide superconducting composite
JPH05201729A (en) Production of yttrium superconductor
JPH1125771A (en) Oxide superconducting tape material and its manufacture
Hults et al. PrBa2Cu3O x Polycrystalline Superconductor Preparation
Salama et al. Melt texturing of YBCO for high current applications
JP4925639B2 (en) RE123 oxide superconductor and manufacturing method thereof
JP3854364B2 (en) Method for producing REBa2Cu3Ox-based superconductor
JP2501281B2 (en) Method for producing superconductor with high critical current density
Lo et al. Growth morphology of large YBCO grains fabricated by seeded peritectic solidification:(I) The seeding process
JP2782594B2 (en) Method for producing superconducting fibrous crystal
JPH052933A (en) Manufacture of oxide superconductive wire
JPH0687611A (en) Oxide superconductor and production thereof and wire rod thereof
JP4967173B2 (en) Hollow oxide superconductor and method for producing the same
JP3174847B2 (en) Superconducting whisker and manufacturing method thereof
JP2000247795A (en) Production of re123 oxide superconductive bulk body
JP3524530B2 (en) Method and apparatus for manufacturing oxide superconductor structure
JPH0465395A (en) Superconducting fibrous crystal and its production
JP2692614B2 (en) Oxide superconductor with new structure
Wegmann et al. The role of platinum in partial melt textured growth of bulk YBCO

Legal Events

Date Code Title Description
TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20040323

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

Ref document number: 3548795

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

EXPY Cancellation because of completion of term