JP2001332778A - Method of polarizing piezoelectric element - Google Patents

Method of polarizing piezoelectric element

Info

Publication number
JP2001332778A
JP2001332778A JP2000154739A JP2000154739A JP2001332778A JP 2001332778 A JP2001332778 A JP 2001332778A JP 2000154739 A JP2000154739 A JP 2000154739A JP 2000154739 A JP2000154739 A JP 2000154739A JP 2001332778 A JP2001332778 A JP 2001332778A
Authority
JP
Japan
Prior art keywords
polarization
piezoelectric material
piezoelectric
thin plates
polarizing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2000154739A
Other languages
Japanese (ja)
Inventor
Junichi Inoue
淳一 井上
Hisashi Nakano
寿 中野
Kazuaki Endo
一明 遠藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
FDK Corp
Original Assignee
FDK Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by FDK Corp filed Critical FDK Corp
Priority to JP2000154739A priority Critical patent/JP2001332778A/en
Publication of JP2001332778A publication Critical patent/JP2001332778A/en
Pending legal-status Critical Current

Links

Landscapes

  • Piezo-Electric Or Mechanical Vibrators, Or Delay Or Filter Circuits (AREA)

Abstract

PROBLEM TO BE SOLVED: To polarize many thin plates consisting of piezoelectric material efficiently and easily with less processing loss, and also to polarize them easily without forming an electrode (conductive film)for polarization. SOLUTION: This method is for polarizing the thin plates consisting of piezoelectric material in its in-plane direction (a direction vertical to the thickness direction of the plate). Plural sheets of thin plates 20 consisting of piezoelectric material are stacked on top of one another, and then high voltage is applied to both their opposite sides of the stack, thereby polarizing the piled thin plates consisting of piezoelectric materials en block. A method of forming conductive films 22 directly on the films consisting of piezoeiectric material and polarizing them utilizing the conductive film, and a method of polarizing them utilizing conductive sheets without forming conductive films, are available.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、圧電材料からなる
薄板を、その面内方向(厚さ方向に垂直な方向)に分極
処理する方法に関し、更に詳しく述べると、複数枚の圧
電材料からなる薄板を積み重ねた状態で一括して分極処
理する方法に関するものである。この分極処理方法は、
特に薄板状の剪断型圧電素子の製造に有用である。
The present invention relates to a method of polarizing a thin plate made of a piezoelectric material in an in-plane direction (a direction perpendicular to the thickness direction). More specifically, the present invention relates to a method of polarizing a thin plate made of a plurality of piezoelectric materials. The present invention relates to a method for collectively performing polarization processing in a state where thin plates are stacked. This polarization processing method
In particular, it is useful for manufacturing a thin plate-type shearing type piezoelectric element.

【0002】[0002]

【従来の技術】圧電材料は、電気的信号を機械的変位に
変換する機能を利用してアクチュエータ、発音体、振動
子などに、機械的変位を電気的信号に変換する機能を利
用してセンサなどに、あるいは両方の機能を複合させて
フィルタなどに、広く用いられている。
2. Description of the Related Art Piezoelectric materials are used in actuators, sound generators, vibrators, etc. by utilizing the function of converting electrical signals into mechanical displacements. Sensors utilizing the function of converting mechanical displacements into electrical signals. It is widely used for filters and the like by combining both functions.

【0003】圧電材料、特に多結晶体から構成される圧
電セラミックス材料に圧電効果を発現させるには、高電
圧(圧電材料の抗電圧以上の電圧)を印加して圧電セラ
ミックスを構成する微細粒子中の自発分極の向きを分極
方向に揃えるという工程が必要である。この分極処理
は、通常、圧電材料からなる部材に、導電性を有する被
膜(銀厚膜焼き付け電極など)を形成し、これに高電圧
を印加する方法で行っている。
In order to produce a piezoelectric effect on a piezoelectric material, especially a piezoelectric ceramic material composed of a polycrystalline material, a high voltage (a voltage higher than the coercive voltage of the piezoelectric material) is applied to the fine particles forming the piezoelectric ceramic. A step of aligning the direction of the spontaneous polarization with the polarization direction is required. This polarization treatment is generally performed by forming a conductive film (such as a thick silver film-baked electrode) on a member made of a piezoelectric material and applying a high voltage to the film.

【0004】ところで、圧電セラミックスを用いた素子
には、様々な構造のものがあるが、その代表的な例は電
界誘起歪みの縦効果及び横効果を利用する圧電素子であ
る。この種の圧電素子では、分極方向に対して垂直な両
面に駆動用電極あるいは検知用電極を設置する。従っ
て、分極方向に対して垂直な両面に形成した分極用の導
電性被膜を、そのまま駆動用電極あるいは検知用電極と
して使用することができる。
There are various types of devices using piezoelectric ceramics, and a typical example thereof is a piezoelectric device utilizing a longitudinal effect and a lateral effect of electric field induced strain. In this type of piezoelectric element, driving electrodes or detection electrodes are provided on both surfaces perpendicular to the polarization direction. Therefore, the conductive film for polarization formed on both surfaces perpendicular to the polarization direction can be used as it is as a drive electrode or a detection electrode.

【0005】圧電セラミックスを用いた素子としては、
その他、面に沿って滑り振動する剪断型圧電素子があ
る。これは、圧電素子の分極方向と両方の駆動用電極又
は検知用電極を結ぶ方向(電界を印加する方向又は電界
を検出する方向)が直交する特殊な構造である。この剪
断型圧電素子を模式的に図3に示す。圧電体10は、矢
印方向に分極処理が施されており、表裏両面全面に電極
12を設ける。両電極間に電圧を印加すると、圧電体1
0は点線で示すような剪断歪みが生じる。逆に分極方向
に外力が加わって剪断歪みが生じると、表裏両面の電極
間に電圧が発生する。
Devices using piezoelectric ceramics include:
In addition, there is a shear-type piezoelectric element that slides and vibrates along a surface. This is a special structure in which the direction of polarization of the piezoelectric element and the direction connecting both driving electrodes or detection electrodes (the direction of applying an electric field or the direction of detecting an electric field) are orthogonal to each other. This shear type piezoelectric element is schematically shown in FIG. The piezoelectric body 10 is polarized in the direction of the arrow, and the electrodes 12 are provided on the entire front and back surfaces. When a voltage is applied between both electrodes, the piezoelectric body 1
A value of 0 causes a shear strain as shown by a dotted line. Conversely, when an external force is applied in the polarization direction to generate shear strain, a voltage is generated between the electrodes on the front and back surfaces.

【0006】このような剪断型圧電素子においては、上
記のように、分極方向と駆動電界方向が直交関係にある
ために、分極処理の際に使用した電極は、駆動用の電極
としては使用できない。そこで、薄板状の剪断型圧電素
子は、図4に示すような方法で分極処理していた。圧電
材料からなる薄板14の片面に、もしくは表裏両面の同
じ位置に、間隔をおいて帯状の分極用電極16を形成
し、高電圧を印加して分極する方法である。圧電素子1
個分ずつ分極処理する方法もあるが、圧電素子が小さい
場合には、複数個分の大きさの薄板に帯状に分極用電極
を形成し、分極した後に1個1個の圧電素子に切断分離
する方法もある。
In such a shear-type piezoelectric element, as described above, since the polarization direction and the driving electric field direction are orthogonal to each other, the electrode used for polarization processing cannot be used as a driving electrode. . Therefore, the thin plate type shearing type piezoelectric element has been subjected to a polarization treatment by a method as shown in FIG. This is a method in which a band-like polarization electrode 16 is formed on one surface of a thin plate 14 made of a piezoelectric material or at the same position on both front and back surfaces at intervals and a high voltage is applied to perform polarization. Piezoelectric element 1
There is also a method of performing polarization processing on individual piezoelectric elements. If the piezoelectric elements are small, a polarization electrode is formed in a strip shape on a thin plate of a plurality of pieces, and after polarization, cut and separated into individual piezoelectric elements. There is also a way to do it.

【0007】[0007]

【発明が解決しようとする課題】このような従来方法で
は、1枚ずつ薄板の表面に、位置を合わせて分極用電極
を形成しなければならず、電極形成に手間と時間を要
し、しかも薄板を1枚ずつ分極処理しなければならな
い。1枚の薄板から複数個の圧電素子を切り出すとして
も、分極作業の煩瑣さは多少解消されても、製造工程全
体としては、さほど効率は向上しない。
In such a conventional method, the electrodes for polarization must be formed one by one on the surface of the thin plate in alignment with each other, and it takes time and effort to form the electrodes. The thin plates must be polarized one by one. Even if a plurality of piezoelectric elements are cut out from one thin plate, the efficiency of the whole manufacturing process is not significantly improved even though the complexity of the polarization operation is somewhat reduced.

【0008】また、薄板表面に形成した分極用電極は、
分極処理後は製品としては不要であるので、その分極用
電極を形成した部分は切断除去しなければならない。そ
のため、圧電材料のロスが非常に大きい。
[0008] The polarization electrode formed on the surface of the thin plate,
After the polarization treatment, it is unnecessary as a product, and therefore, the portion on which the polarization electrode is formed must be cut and removed. Therefore, the loss of the piezoelectric material is very large.

【0009】本発明の目的は、圧電材料からなる多数の
薄板を、加工ロスを少なく、効率よく且つ容易に分極処
理できる方法を提供することである。本発明の他の目的
は、圧電材料からなる多数の薄板を、分極用の導電性被
膜を形成することなく、簡便に分極処理できる方法を提
供することである。
An object of the present invention is to provide a method capable of efficiently and easily polarizing a large number of thin plates made of a piezoelectric material with little processing loss. Another object of the present invention is to provide a method for easily polarizing a large number of thin plates made of a piezoelectric material without forming a conductive film for polarization.

【0010】[0010]

【課題を解決するための手段】本発明は、圧電材料から
なる薄板を、その面内方向(板の厚み方向に対して垂直
な方向)に分極処理する方法である。本発明では、圧電
材料からなる薄板を複数枚積み重ねた状態とし、その積
み重ね体の相対向する両側面間に高電圧を印加して、積
み重ねられている圧電材料からなる薄板を一括して分極
処理する。ここで、圧電材料からなる薄板は、例えばチ
タン酸ジルコン酸鉛などの圧電セラミックスからなる薄
板状の焼結体であり、ばねを利用した治具で挾持する方
法などで保持される。分極処理の際に印加する高電圧と
は、その圧電材料の抗電圧以上の電圧をいう。分極処理
後、薄板の表裏両面に電極を形成することにより、厚み
滑り振動を行う剪断型の圧電素子が得られる。
SUMMARY OF THE INVENTION The present invention is a method for polarizing a thin plate made of a piezoelectric material in an in-plane direction (a direction perpendicular to the thickness direction of the plate). In the present invention, a plurality of thin plates made of a piezoelectric material are stacked, and a high voltage is applied between opposing side surfaces of the stacked body to collectively polarize the thin plates made of the piezoelectric material. I do. Here, the thin plate made of a piezoelectric material is a thin plate-shaped sintered body made of a piezoelectric ceramic such as lead zirconate titanate, and is held by a method of clamping with a jig using a spring. The high voltage applied during the polarization process refers to a voltage equal to or higher than the coercive voltage of the piezoelectric material. By forming electrodes on both the front and back surfaces of the thin plate after the polarization treatment, a shear-type piezoelectric element that performs thickness-shear vibration can be obtained.

【0011】本発明としては、圧電材料からなる薄板に
直接導電性被膜を形成し、その導電性被膜を利用して分
極処理を施す方法と、導電性被膜を形成せずに導電性部
材を利用して分極処理する方法とがある。
According to the present invention, there is provided a method of forming a conductive film directly on a thin plate made of a piezoelectric material and performing a polarization treatment using the conductive film, and a method of using a conductive member without forming the conductive film. And a polarization treatment.

【0012】導電性被膜を形成する方法では、圧電材料
からなる薄板は、それぞれ両端面に予め分極用の導電性
被膜を形成したものを用意し、それを複数枚積み重ねて
もよいし、あるいは圧電材料からなる長さを揃えた複数
枚の薄板を積み重ねた状態とし、その積み重ね体の相対
向する両側面に分極用の導電性被膜を一括して形成して
もよい。いずれにしても、分極用導電性被膜間に高電圧
を印加して、積み重ねられている圧電材料からなる薄板
を一括して分極処理する。形成する分極用の導電性被膜
は、例えば銀ペーストを塗布し、焼き付けた厚膜銀電極
である。勿論、導電性材料のスパッタ膜や蒸着膜などで
もよい。
In the method of forming a conductive film, a thin plate made of a piezoelectric material is prepared by forming a conductive film for polarization on both end surfaces thereof in advance, and a plurality of such films may be stacked. A plurality of thin plates made of a material having a uniform length may be stacked, and a conductive film for polarization may be formed on both sides of the stacked body facing each other. In any case, a high voltage is applied between the conductive films for polarization to collectively polarize the stacked thin plates made of the piezoelectric material. The conductive film for polarization to be formed is, for example, a thick-film silver electrode coated with a silver paste and baked. Of course, a sputtered film or a deposited film of a conductive material may be used.

【0013】より好ましくは、複数枚の圧電材料からな
る薄板を積み重ねた状態で保持し、その積み重ね体の相
対向する両側面を研削して長さを揃え面出しを行い、面
出しした両側面に分極用導電性被膜を形成し、該導電性
被膜間に高電圧を印加して、積み重ねられている圧電材
料からなる薄板を一括して分極処理する方法がある。面
出しすることで、きれいな導電性被膜を形成できるし、
次に述べる電圧印加用金属板との接触状態も良好とな
る。
[0013] More preferably, a plurality of thin plates made of piezoelectric material are held in a stacked state, and opposing side surfaces of the stacked body are ground to make the length uniform and surfaced. There is a method in which a conductive film for polarization is formed on a thin film, and a high voltage is applied between the conductive films to collectively polarize the stacked thin sheets of piezoelectric material. By exposing it, a beautiful conductive film can be formed,
The contact state with the metal plate for voltage application described below is also improved.

【0014】これらにおいて、積み重ねられている圧電
材料からなる薄板の両方の分極用導電性被膜に、それぞ
れ電圧印加用金属板を当接して、その電圧印加用金属板
にリード線を接続し、高電圧を印加して分極処理するの
が好ましい。
In these methods, a metal plate for applying a voltage is brought into contact with both of the polarizing conductive films of the stacked thin plates made of a piezoelectric material, and a lead wire is connected to the metal plate for applying a voltage. It is preferable to perform polarization processing by applying a voltage.

【0015】分極処理済みの圧電薄板は、積み重ねた状
態のまま両側面を研削することにより分極用の導電性被
膜を一括して除去することができる。
The conductive films for polarization can be removed at a time by grinding both side surfaces of the piezoelectric thin plates that have been subjected to the polarization treatment in a stacked state.

【0016】導電性被膜を形成すること無く分極処理す
る方法では、圧電材料からなる長さを揃えた複数枚の薄
板を積み重ねた状態とし、その積み重ね体の相対向する
両側面に、弾力性を有し柔軟な導電性部材を配置し、該
導電性部材を外側から電圧印加用金属板で圧接し、該電
圧印加用金属板間に高電圧を印加して、積み重ねられて
いる圧電材料からなる薄板を一括して分極処理する。
In the method of performing a polarization treatment without forming a conductive film, a plurality of thin plates made of a piezoelectric material and having a uniform length are stacked, and elasticity is applied to opposing side surfaces of the stack. A flexible conductive member is disposed, the conductive member is pressed from outside with a metal plate for voltage application, and a high voltage is applied between the metal plates for voltage application to form a stack of piezoelectric materials. The thin plate is collectively polarized.

【0017】ここで、導電性被膜を形成する場合と同
様、複数枚の圧電材料からなる薄板を積み重ねた状態
で、その積み重ね体の相対向する両側面を研削して長さ
を揃え面出しを行い、面出しした両側面に、弾力性を有
し柔軟な導電性シートをそれぞれ配置するのが望まし
い。弾力性を有し柔軟な導電性シートとしては、例えば
導電性ゴムシートがある。
Here, as in the case of forming the conductive film, in a state where a plurality of thin plates made of a piezoelectric material are stacked, opposing both side surfaces of the stacked body are ground to make the lengths uniform and surface-projected. It is preferable that flexible conductive sheets having elasticity are arranged on both sides of the exposed and exposed surfaces. An example of a flexible conductive sheet having elasticity is a conductive rubber sheet.

【0018】[0018]

【発明の実施の形態】圧電材料(例えばチタン酸ジルコ
ン酸鉛系の圧電セラミックス材料)の粉体と有機バイン
ダと溶媒等を混練してスラリーとし、ドクターブレード
法などにより薄いシート状に成形する。そして、所定の
薄板寸法に切断し、多数枚積み重ねた状態で焼成する。
このようにして、圧電材料からなる焼結薄板を得る。こ
こで薄板形状は、例えば長さ20mm、幅10mm、厚さ約
0.2〜0.3mm程度である。
BEST MODE FOR CARRYING OUT THE INVENTION Powder of a piezoelectric material (for example, a lead zirconate-based piezoelectric ceramic material), an organic binder and a solvent are kneaded to form a slurry, which is formed into a thin sheet by a doctor blade method or the like. Then, it is cut into a predetermined thin plate size and fired in a state where many sheets are stacked.
Thus, a sintered thin plate made of a piezoelectric material is obtained. Here, the shape of the thin plate is, for example, about 20 mm in length, 10 mm in width, and about 0.2 to 0.3 mm in thickness.

【0019】図1は本発明方法の一実施例を示す説明図
であり、分極用の導電性被膜を設ける場合を示してい
る。上記のようにして焼成した圧電材料からなる薄板2
0を多数枚(数十〜数百枚)積み重ねて保持する(図1
のA参照)。保持は、治具(図示せず)を用いて、バネ
の弾撥力あるいはネジの締付け力などを利用して挾持す
るような方式でもよい。そして、分極方向に対して垂直
な両側面(図面では上下面)を研削し、長さの調整及び
面出しする。
FIG. 1 is an explanatory view showing one embodiment of the method of the present invention, in which a conductive film for polarization is provided. Thin plate 2 made of piezoelectric material fired as described above
0 (several tens to several hundreds) are stacked and held (FIG. 1)
A). The holding may be performed by using a jig (not shown) and using a spring or spring tightening force or the like to hold the jig. Then, both side surfaces (upper and lower surfaces in the drawing) perpendicular to the polarization direction are ground, and the length is adjusted and surfaced.

【0020】次に、図1のBに示すように、圧電材料か
らなる薄板20を多数枚積み重ねて保持したまま、面出
しした両側面に分極用の導電性被膜22を設ける。この
導電性被膜22は、例えば銀ペースト等をスクリーン印
刷法などにより塗布し、焼き付けることで形成する。勿
論、スパッタ法や蒸着法などで導電性被膜を形成しても
よい。
Next, as shown in FIG. 1B, while a plurality of thin plates 20 made of a piezoelectric material are stacked and held, conductive films 22 for polarization are provided on both exposed side surfaces. The conductive film 22 is formed by, for example, applying a silver paste or the like by a screen printing method and baking. Of course, the conductive film may be formed by a sputtering method, an evaporation method, or the like.

【0021】そして、図1のCに示すように、圧電材料
からなる薄板20を多数枚積み重ねたまま、導電性被膜
22の外側に電圧印加用の金属板24を配置し、両金属
板間に高電圧を印加して分極処理する。この分極操作
は、通常、分極に必要な負荷電圧を下げるため、及びコ
ロナ放電などによる絶縁破壊を防止するために、80〜
120℃に加熱したシリコーンオイルなどの絶縁油中に
浸漬して行う。分極の際に印加する高電圧は、圧電材料
に応じて予め求めておいた抗電圧以上の電圧であり、そ
れが圧電材料に印加されるようにする。例えば、20k
V/幅10mm程度である。この高電圧の印加は、通常、
数分間〜1時間程度行う。
Then, as shown in FIG. 1C, a metal plate 24 for applying a voltage is arranged outside the conductive coating 22 while a plurality of thin plates 20 made of a piezoelectric material are stacked, and between the two metal plates. Polarization is performed by applying a high voltage. This polarization operation is usually performed in order to reduce the load voltage required for polarization and to prevent dielectric breakdown due to corona discharge or the like.
The immersion is performed by dipping in insulating oil such as silicone oil heated to 120 ° C. The high voltage applied at the time of polarization is a voltage equal to or higher than a coercive voltage previously determined according to the piezoelectric material, and is applied to the piezoelectric material. For example, 20k
V / width is about 10 mm. The application of this high voltage is usually
Perform for several minutes to one hour.

【0022】分極処理後、積み重ねられているままの薄
板を取り出し、付着しているシリコーンオイルを洗浄す
る。そして、研削することにより分極用の導電性被膜を
除去する。後工程で分極の向きを把握する必要がある場
合には、積み重ねられているまま薄板の一隅を研削で面
取りすればよい。これがマーキングとなり、1枚1枚ば
らばらになっても、面取りされた角部の位置で分極方向
を判別することが可能となる。
After the polarization treatment, the stacked thin plates are taken out and the attached silicone oil is washed. Then, the conductive film for polarization is removed by grinding. When it is necessary to grasp the direction of polarization in a later step, one corner of the thin plate may be chamfered by grinding while being stacked. This becomes a marking, and even if the sheets are separated one by one, it is possible to determine the polarization direction at the position of the chamfered corner.

【0023】剪断型圧電素子とするには、上記のように
製作した分極済みの薄板の表裏両面に駆動用の電極を形
成する。駆動用の電極は、圧電体がキュリー温度以上の
温度に加熱されて高電圧印加方向に揃った自発分極が再
び任意の方向を向いてしまうこと(脱分極)が生じない
ように、スパッタ法や蒸着法により形成する。薄板が素
子寸法より大きい場合には、1枚ずつ、あるいは積み重
ねた状態で一括して切断する。
In order to form a shear-type piezoelectric element, driving electrodes are formed on both front and back surfaces of the polarized thin plate manufactured as described above. The driving electrode is formed by a sputtering method or the like so that the piezoelectric body is heated to a temperature equal to or higher than the Curie temperature and spontaneous polarization aligned with the high voltage application direction does not turn to an arbitrary direction again (depolarization). It is formed by an evaporation method. If the thin plates are larger than the element size, they are cut one by one or collectively in a stacked state.

【0024】図2は本発明方法の他の実施例を示す説明
図であり、分極用の導電性被膜を設けない場合を示して
いる。焼成した圧電材料からなる薄板20を多数枚(数
十〜数百枚)、図2のAに示すように積み重ねて保持す
る。
FIG. 2 is an explanatory view showing another embodiment of the method of the present invention, in which a conductive film for polarization is not provided. A large number (several tens to several hundreds) of thin plates 20 made of fired piezoelectric material are stacked and held as shown in FIG.

【0025】そして、図2のBに示すように、圧電材料
からなる薄板20を多数枚積み重ねたまま、分極方向に
対して垂直な両側面に、弾力性を有し柔軟な導電性シー
ト30を設置する。前述のように、分極操作は、通常、
分極に必要な負荷電圧を下げるため、及びコロナ放電な
どによる絶縁破壊を防止するために、80〜120℃に
加熱したシリコーンオイルなどの絶縁油中に浸漬して行
う。このため、高電圧を印加するための導電性シート3
0には耐熱性の良好な材料を用いる。導電性シートの基
材としては、シリコーンゴムなど高温によっても劣化、
硬化しない材料が適切である。また、分極する薄板寸法
にばらつきがあるような場合には、ゲル状にしたシリコ
ーン樹脂のような柔軟性に優れた材料が望ましい。導電
性の付与は、金属粉、金属繊維、カーボン粉末などを基
材中に分散させたり、イオン導電性の物体、例えば塩化
リチウムなどの粉末を添加する方法などがある。
Then, as shown in FIG. 2B, while a large number of thin plates 20 made of a piezoelectric material are stacked, elastic and flexible conductive sheets 30 are provided on both sides perpendicular to the polarization direction. Install. As mentioned above, the polarization operation is usually
In order to lower the load voltage required for polarization and to prevent dielectric breakdown due to corona discharge or the like, immersion is performed in an insulating oil such as silicone oil heated to 80 to 120 ° C. Therefore, the conductive sheet 3 for applying a high voltage
For 0, a material having good heat resistance is used. Degraded by high temperature such as silicone rubber as base material of conductive sheet,
Materials that do not cure are suitable. In addition, when there is a variation in the dimensions of the polarizing thin plate, a material having excellent flexibility such as a gelled silicone resin is desirable. The conductivity may be imparted by dispersing a metal powder, a metal fiber, a carbon powder, or the like in a base material, or by adding an ion-conductive substance, for example, a powder such as lithium chloride.

【0026】そして、図2のCに示すように、導電性シ
ート30の外側に電圧印加用の金属板32を配置し、両
金属板間32に高電圧を印加して分極処理する。この分
極操作は、分極に必要な負荷電圧を下げるため、及びコ
ロナ放電などによる絶縁破壊を防止するため、80〜1
20℃に加熱したシリコーンオイルなどの絶縁油中に浸
漬して、数分間〜1時間程度行う。
Then, as shown in FIG. 2C, a metal plate 32 for applying a voltage is disposed outside the conductive sheet 30, and a high voltage is applied between the two metal plates 32 to perform a polarization process. This polarization operation is performed to reduce the load voltage required for polarization and to prevent dielectric breakdown due to corona discharge or the like.
It is immersed in insulating oil such as silicone oil heated to 20 ° C., and is performed for several minutes to one hour.

【0027】分極処理後、積み重ねられているままの薄
板を取り出し、付着しているシリコーンオイルを洗浄す
る。後工程で分極の向きを把握する必要がある場合に
は、積み重ねられているまま薄板の一隅を研削で面取り
すればよい。上記のように製作した分極済みの薄板の表
裏両面に、脱分極が生じないように、スパッタ法や蒸着
法により駆動用の電極を形成する。薄板の寸法によって
は、その後に、規定の素子寸法に切断し、複数の圧電素
子を切り出す。
After the polarization treatment, the stacked thin plates are taken out, and the attached silicone oil is washed. When it is necessary to grasp the direction of polarization in a later step, one corner of the thin plate may be chamfered by grinding while being stacked. Driving electrodes are formed on both sides of the polarized thin plate manufactured as described above by a sputtering method or a vapor deposition method so that depolarization does not occur. After that, depending on the size of the thin plate, the thin plate is cut into a specified element size, and a plurality of piezoelectric elements are cut out.

【0028】[0028]

【実施例】Pb(Sb1/2 Nb1/2 )O3 −PbZrO
3 −PbTiO3 系の圧電材料を用い、図1に示す導電
性被膜を設ける方法(分極方法A)により分極した時の
圧電d31値と、図2に示す導電性シートを用いる方法
(分極方法B)により分極した時の圧電d15値の比較結
果を、表1に示す。試料は、電子材料工業会の技術規格
であるEMAS−6005(圧電セラミック振動子の試
験方法−矩形板状振動子の厚み滑り振動)に従って調整
し測定を行った。試料は、長さ20mm、幅10mm、厚さ
2.5mmであり、幅方向に分極処理した。
EXAMPLES Pb (Sb 1/2 Nb 1/2 ) O 3 -PbZrO
Using a 3- PbTiO 3 -based piezoelectric material and providing a conductive coating shown in FIG. 1 (Polarization method A), the piezoelectric d 31 value when polarized and a method using a conductive sheet shown in FIG. 2 (Polarization method) Table 1 shows a comparison result of the piezoelectric d 15 value when polarized according to B). The sample was adjusted and measured in accordance with EMAS-6005 (Test method for piezoelectric ceramic vibrator-Thickness sliding vibration of rectangular plate vibrator), which is a technical standard of the Electronic Materials Industries Association. The sample had a length of 20 mm, a width of 10 mm, and a thickness of 2.5 mm, and was polarized in the width direction.

【0029】分極方法Aの導電性被膜は、銀厚膜焼き付
け電極である。分極方法Bで用いる導電性シートは、シ
リコーンゴム中に金属繊維を分散したものである。分極
は、120℃のシリコーンオイル中で、2kV/mmの電
界を印加し、1時間保持することで行った。分極方法A
では、分極処理後、研削することにより導電性被膜を除
去した。試料に金電極をスパッタ法により形成した後、
10mm×2.5mmの寸法に切断し、厚み滑り振動子と
し、圧電特性を測定した。その結果、両方法で圧電特性
は殆ど変化は見られないことが分かった。
The conductive film of the polarization method A is a silver thick film baked electrode. The conductive sheet used in the polarization method B is obtained by dispersing metal fibers in silicone rubber. Polarization was performed by applying an electric field of 2 kV / mm in silicone oil at 120 ° C. and holding for 1 hour. Polarization method A
Then, after the polarization treatment, the conductive film was removed by grinding. After forming a gold electrode on the sample by sputtering,
The sheet was cut into a size of 10 mm × 2.5 mm to obtain a thickness sliding oscillator, and the piezoelectric characteristics were measured. As a result, it was found that the piezoelectric characteristics hardly changed in both methods.

【0030】[0030]

【表1】 [Table 1]

【0031】[0031]

【発明の効果】本発明は上記のように、複数枚の圧電材
料からなる薄板を積み重ねた状態で一括して分極処理す
る方法であるから、圧電材料からなる多数の薄板を、効
率よく且つ容易に分極処理できる。また、加工ロスも殆
ど無くすことができ、圧電材料の有効利用を図ることが
できる。
As described above, the present invention is a method of performing a polarization process at a time in a state in which a plurality of thin plates made of a piezoelectric material are stacked, so that a large number of thin plates made of a piezoelectric material can be efficiently and easily formed. Can be polarized. Further, the processing loss can be almost eliminated, and the effective use of the piezoelectric material can be achieved.

【0032】更に、導電性部材を用いる方法では、分極
用の導電性被膜の形成工程、削除工程が不要となるほ
か、導電性部材は繰り返し使用が可能なため、大幅なコ
スト低減を図ることができる。
Further, in the method using a conductive member, the step of forming and removing the conductive film for polarization is not required, and the conductive member can be used repeatedly, so that the cost can be significantly reduced. it can.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明に係る分極処理方法の一例を示す説明
図。
FIG. 1 is an explanatory view showing an example of a polarization processing method according to the present invention.

【図2】本発明に係る分極処理方法の他の例を示す説明
図。
FIG. 2 is an explanatory view showing another example of the polarization processing method according to the present invention.

【図3】剪断型圧電素子の構造と動作の一例を示す説明
図。
FIG. 3 is an explanatory view showing an example of the structure and operation of a shear-type piezoelectric element.

【図4】従来の分極方法の一例を示す図。FIG. 4 is a diagram showing an example of a conventional polarization method.

【符号の説明】[Explanation of symbols]

20 圧電材料からなる薄板 22 分極用の導電性被膜 24 電圧印加用の金属板 30 導電性部材 32 電圧印加用の金属板 Reference Signs List 20 thin plate made of piezoelectric material 22 conductive coating for polarization 24 metal plate for applying voltage 30 conductive member 32 metal plate for applying voltage

Claims (7)

【特許請求の範囲】[Claims] 【請求項1】 圧電材料からなる薄板を、その面内方向
に分極処理する方法において、 圧電材料からなる薄板を複数枚積み重ねた状態とし、そ
の積み重ね体の相対向する両側面間に高電圧を印加し
て、積み重ねられている圧電材料からなる薄板を一括し
て分極処理することを特徴とする圧電素子の分極処理方
法。
1. A method for polarizing a thin plate made of a piezoelectric material in an in-plane direction, comprising: stacking a plurality of thin plates made of a piezoelectric material, and applying a high voltage between opposing side surfaces of the stacked body. A polarization processing method for a piezoelectric element, comprising applying a voltage to collectively polarize stacked thin plates made of a piezoelectric material.
【請求項2】 圧電材料からなる薄板を、その面内方向
に分極処理する方法において、 圧電材料からなる長さを揃えた複数枚の薄板を積み重ね
た状態とし、その積み重ね体の相対向する両側面に設け
られている分極用の導電性被膜間に高電圧を印加して、
積み重ねられている圧電材料からなる薄板を一括して分
極処理することを特徴とする圧電素子の分極処理方法。
2. A method for polarizing a thin plate made of a piezoelectric material in an in-plane direction, comprising: stacking a plurality of thin plates made of a piezoelectric material having a uniform length, and opposing opposite sides of the stacked body. Applying a high voltage between the conductive films for polarization provided on the surface,
A polarization processing method for a piezoelectric element, wherein a plurality of thin plates made of a piezoelectric material are subjected to polarization processing at a time.
【請求項3】 圧電材料からなる薄板を、その面内方向
に分極処理する方法において、 複数枚の圧電材料からなる薄板を積み重ねた状態で保持
し、その積み重ね体の相対向する両側面を研削して長さ
を揃え面出しを行い、面出しした両側面に分極用の導電
性被膜を形成し、該導電性被膜間に高電圧を印加して、
積み重ねられている圧電材料からなる薄板を一括して分
極処理することを特徴とする圧電素子の分極処理方法。
3. A method for polarizing a thin plate made of a piezoelectric material in an in-plane direction, wherein a plurality of thin plates made of a piezoelectric material are held in a stacked state, and opposing side surfaces of the stacked body are ground. The length is aligned and surfaced, a conductive film for polarization is formed on both sides of the surface, and a high voltage is applied between the conductive films.
A polarization processing method for a piezoelectric element, wherein a plurality of thin plates made of a piezoelectric material are subjected to polarization processing at a time.
【請求項4】 積み重ねられている圧電材料からなる薄
板の両方の分極用の導電性被膜に、それぞれ電圧印加用
金属板を当接して分極処理する請求項2又は3記載の圧
電素子の分極処理方法。
4. The polarization treatment of a piezoelectric element according to claim 2, wherein the polarization treatment is performed by contacting the voltage-applying metal plates to both the conductive films for polarization of the stacked thin plates made of the piezoelectric material. Method.
【請求項5】 分極処理済みの圧電薄板を、積み重ねた
状態のまま両側面を研削して分極用の導電性被膜を一括
除去する請求項2乃至4のいずれかに記載の圧電素子の
分極処理方法。
5. The polarization treatment of a piezoelectric element according to claim 2, wherein both sides of the polarization-treated piezoelectric thin plates are ground and the conductive film for polarization is collectively removed. Method.
【請求項6】 圧電材料からなる薄板を、その面内方向
に分極処理する方法において、 圧電材料からなる長さを揃えた複数枚の薄板を積み重ね
た状態とし、その積み重ね体の相対向する両側面に、弾
力性を有し柔軟な導電性部材を配置し、該導電性部材を
外側から電圧印加用金属板で圧接し、該電圧印加用金属
板間に高電圧を印加して、積み重ねられている圧電材料
からなる薄板を一括して分極処理することを特徴とする
圧電素子の分極処理方法。
6. A method for polarizing a thin plate made of a piezoelectric material in an in-plane direction, comprising stacking a plurality of thin plates made of a piezoelectric material having a uniform length, and opposing opposite sides of the stacked body. On the surface, a flexible conductive member having elasticity is arranged, the conductive member is pressed from outside with a metal plate for voltage application, and a high voltage is applied between the metal plates for voltage application to be stacked. Polarizing processing of a thin plate made of a piezoelectric material at a time.
【請求項7】 弾力性を有し柔軟な導電性部材が導電性
ゴムシートである請求項6記載の圧電素子の分極処理方
法。
7. The method according to claim 6, wherein the elastic and flexible conductive member is a conductive rubber sheet.
JP2000154739A 2000-05-25 2000-05-25 Method of polarizing piezoelectric element Pending JP2001332778A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2000154739A JP2001332778A (en) 2000-05-25 2000-05-25 Method of polarizing piezoelectric element

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2000154739A JP2001332778A (en) 2000-05-25 2000-05-25 Method of polarizing piezoelectric element

Publications (1)

Publication Number Publication Date
JP2001332778A true JP2001332778A (en) 2001-11-30

Family

ID=18659792

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000154739A Pending JP2001332778A (en) 2000-05-25 2000-05-25 Method of polarizing piezoelectric element

Country Status (1)

Country Link
JP (1) JP2001332778A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011199206A (en) * 2010-03-23 2011-10-06 Canon Inc Piezoelectric element to be used for vibration device, vibration device, and dust removal device having vibration device
CN109427958A (en) * 2017-09-05 2019-03-05 王开安 Membrane polarization bearing assembly and membrane polarization equipment

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011199206A (en) * 2010-03-23 2011-10-06 Canon Inc Piezoelectric element to be used for vibration device, vibration device, and dust removal device having vibration device
CN109427958A (en) * 2017-09-05 2019-03-05 王开安 Membrane polarization bearing assembly and membrane polarization equipment

Similar Documents

Publication Publication Date Title
Takahashi et al. Internal electrode piezoelectric ceramic actuator
Steel et al. The piezoelectric bimorph: An experimental and theoretical study of its quasistatic response
US5806159A (en) Piezoelectric ceramic transformer
WO1997009746A1 (en) Thermally stable, piezoelectric and pyroelectric polymeric substrates and method relating thereto
US6114798A (en) Stacked element and vibration drive device
US20060049715A1 (en) Method and appartus for driving electro-mechanical transducer
US4894580A (en) Chip-type resonator and method of manufacturing the same
WO1999063558A1 (en) Voltage variable capacitor array
JP4676286B2 (en) Manufacturing method of single plate type piezoelectric bimorph element
US5057801A (en) Filter device of piezo-electric type including divided co-planar electrodes
JP2986706B2 (en) Piezoelectric element and piezoelectric actuator using the same
JP2001291908A (en) Piezoelectric element and its manufacturing method
JP2001210884A (en) Stacked type piezoelectric actuator
TW449757B (en) Piezoelectric device
JP2001332778A (en) Method of polarizing piezoelectric element
KR102454903B1 (en) Piezoelectric composite, method of manufacturing the same, and magnetoelectric laminate structure having the same
JPS6261170B2 (en)
JP5844741B2 (en) Electrostatic induction type electromechanical transducer
JP3106603B2 (en) Piezo actuator
Kanayama et al. Gap structure multilayer piezoelectric actuator
JPH05267744A (en) Polarization of piezoelectric ceramic
JPS61182311A (en) Ceramic tuning fork vibrator
Torah Optimisation of the piezoelectric properties of thick-film piezoceramic devices
JPH0197584A (en) Piezoelectric ceramic gripper
JPS61113310A (en) Ceramic tuning fork vibrator

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20050207

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070220

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20070626