JPH05267744A - Polarization of piezoelectric ceramic - Google Patents

Polarization of piezoelectric ceramic

Info

Publication number
JPH05267744A
JPH05267744A JP6024292A JP6024292A JPH05267744A JP H05267744 A JPH05267744 A JP H05267744A JP 6024292 A JP6024292 A JP 6024292A JP 6024292 A JP6024292 A JP 6024292A JP H05267744 A JPH05267744 A JP H05267744A
Authority
JP
Japan
Prior art keywords
polarization
aggregate
piezoelectric ceramic
thickness direction
ceramic materials
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP6024292A
Other languages
Japanese (ja)
Inventor
Kenji Kusakabe
健治 日下部
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP6024292A priority Critical patent/JPH05267744A/en
Publication of JPH05267744A publication Critical patent/JPH05267744A/en
Pending legal-status Critical Current

Links

Landscapes

  • Piezo-Electric Or Mechanical Vibrators, Or Delay Or Filter Circuits (AREA)

Abstract

PURPOSE:To contrive the simplification of the manufacturing process of a piezoelectric ceramic and a reduction of an electrode material by a method wherein a plurality of pieces of thin plate-shaped piezoelectric ceramic materials are superposed on each other in the thickness direction of the ceramic materials to form an aggregate, conductive members are respectively pressed on both surfaces, which oppose to each other in parallel to the thickness direction of the aggregate, of the aggregate and a high voltage is applied to the conductive members. CONSTITUTION:A plurality of sheets of thin plate-shaped piezoelectric ceramic materials 1 are superposed on each other in the thickness direction of the ceramic materials to form an aggregate, conductive rubbers 2, which are used as conductive members and are made of silicon, are respectively applied to both surfaces, which correspond to the end surfaces to oppose to each other of the ceramic material of one sheet of the ceramic materials, of the aggregate to install one pair of copper plates 3 on the rubbers and the copper plates 3 are pressed by a spring 4. The plates 3 are made to closely adhere to the rubbers 2 by the spring 4 and the rubbers 2 are made to closely adhere to the ceramic materials 1 and discharge a role to work as electrodes for polarization. This aggregate is put in a silicone oil and a high voltage of 15kV, for example, is applied to the conductive rubbers 2 to polarize. Thereby, the conventional process for the formation of the electrodes for polarization use and the removal of the electrodes becomes unnecessary, a shortening of the manufacturing process of the piezoelectric ceramic aggregate is contrived and a reduction of a high-cost noble metal electrode material is also contrived.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、セラミックフィルタ、
セラミック発振子等に厚みすべり振動を利用する圧電振
動子として使用される圧電セラミックスの分極方法に関
する。
The present invention relates to a ceramic filter,
The present invention relates to a method for polarizing a piezoelectric ceramic used as a piezoelectric vibrator that utilizes thickness shear vibration in a ceramic oscillator or the like.

【0002】[0002]

【従来の技術】圧電セラミックスは独特の電気−機械エ
ネルギー変換の機能を利用して、その性能の多様さ、応
用の多彩さから各種の応用デバイスが開発され、順調な
発展をし続けている。
2. Description of the Related Art Piezoelectric ceramics have been developed steadily by utilizing various unique electric-mechanical energy conversion functions and various kinds of applied devices have been developed due to the variety of performances and variety of applications.

【0003】圧電セラミックスは通常のセラミックスと
基本的には同じ製造方法により製造されるが、圧電活性
を与えるための「分極」と呼ばれる重要な工程がある点
が他のセラミックスとは異なる。
Piezoelectric ceramics are basically manufactured by the same manufacturing method as ordinary ceramics, but differ from other ceramics in that there is an important step called "polarization" for imparting piezoelectric activity.

【0004】分極の方法としては、泉弘志著「電子セラ
ミックス」72〜73頁(誠文堂新光社(株)1990年
発行)に述べられているように、圧電セラミックスに銀
のような導電性の電極材料を付与し、絶縁油中でたとえ
ば100℃で3kV/mmのような高電圧を電極に印加す
ることによりなされる。図3にその分極工程の一例を示
す。図3において、11は圧電セラミックブロック、1
2は圧電セラミックブロック11の両面に設けた電極、
13は台板となる銅板、14はリード線、15は恒温油
槽、16は絶縁油としてのシリコン油、17は高電圧印
加用の高圧電源、18は保護抵抗である。
As a method of polarization, as described in Hiroshi Izumi, "Electronic Ceramics", pages 72-73 (published by Seibundou Shinkosha Co., Ltd. in 1990), piezoelectric ceramics are made to have conductivity such as silver. Of the electrode material and applying a high voltage such as 3 kV / mm at 100 ° C. to the electrode in insulating oil. FIG. 3 shows an example of the polarization process. In FIG. 3, 11 is a piezoelectric ceramic block, 1
2 is an electrode provided on both sides of the piezoelectric ceramic block 11,
Reference numeral 13 is a copper plate serving as a base plate, 14 is a lead wire, 15 is a constant temperature oil tank, 16 is silicon oil as insulating oil, 17 is a high voltage power source for applying a high voltage, and 18 is a protective resistor.

【0005】従来の厚みすべり振動を利用する圧電振動
子(以下、厚みすべり振動子と記す)は、次に示すよう
な分極工程を経て製造されていた。図3において、まず
対向する両平面に銀等の電極材料の塗布焼付により電極
12を形成した圧電セラミックブロック11を銅板13
上に電極12の一方を密着させて配置する。次に電極1
2の他方および銅板13にリード線14を接続し、圧電
セラミックブロック11および銅板13を恒温油槽15
のシリコン油16中に浸し、リード線14の一方を保護
抵抗18を介して、他方を直接高圧電源17に接続す
る。そして、たとえば100℃中で高電圧を印加して分
極する。
A conventional piezoelectric vibrator utilizing thickness-shear vibration (hereinafter referred to as a thickness-shear vibrator) has been manufactured through the following polarization process. In FIG. 3, first, a piezoelectric ceramic block 11 having electrodes 12 formed by coating and baking an electrode material such as silver on both opposing planes is attached to a copper plate
One of the electrodes 12 is placed in close contact therewith. Next electrode 1
The lead wire 14 is connected to the other of the two and the copper plate 13, and the piezoelectric ceramic block 11 and the copper plate 13 are connected to the constant temperature oil tank 15
Of the lead wire 14 is directly connected to the high-voltage power supply 17 through the protective resistor 18. Then, for example, a high voltage is applied at 100 ° C. for polarization.

【0006】次に、このようにして分極した圧電セラミ
ックブロック11を、その電極12を除去した後、図4
の切断工程を示す斜視図に示すように、分極方向Aと平
行な方向にスライス加工法等により薄板状に加工する。
そして、この薄板状の圧電セラミックスの分極方向Aに
平行な面に銀等の電極材料を真空蒸着法等の温度を上げ
ない方法で励振用電極を形成し、厚みすべり振動子を製
造していた。
Next, after the electrodes 12 of the piezoelectric ceramic block 11 thus polarized are removed, the piezoelectric ceramic block 11 shown in FIG.
As shown in the perspective view showing the cutting step, the thin plate is processed in a direction parallel to the polarization direction A by a slice processing method or the like.
Then, an electrode for excitation such as silver is formed on a surface parallel to the polarization direction A of the thin plate-shaped piezoelectric ceramics by a method such as a vacuum vapor deposition method that does not raise the temperature to form a thickness sliding oscillator. .

【0007】[0007]

【発明が解決しようとする課題】しかしながら、厚みす
べり振動子の場合には、分極後さらに分極に使用した電
極を取り除いた後、図4に示すように、機械加工により
薄板にしてから励振用電極を付与するために工程が長く
なり、また分極後は不要となる高価な銀のような電極材
料や圧電セラミックスを研磨やスライス加工により捨て
ており、無駄が多かった。
However, in the case of the thickness sliding oscillator, after the polarization, the electrode used for the polarization is removed, and then, as shown in FIG. However, the electrode material such as silver and the piezoelectric ceramic, which are expensive after polarization, are discarded by polishing or slicing, which is wasteful.

【0008】本発明は分極後は不要となる電極を形成す
ることなく分極できる薄板状の圧電セラミックスの分極
方法を提供することを目的とする。
It is an object of the present invention to provide a thin plate-shaped piezoelectric ceramics polarization method capable of performing polarization without forming unnecessary electrodes after polarization.

【0009】[0009]

【課題を解決するための手段】この目的を達成するため
に本発明の第一の発明の分極方法は、複数個の薄板状の
圧電セラミックスをその厚み方向に整列して重ねた後、
厚み方向に平行な対向する両面に可塑性を有する導電性
部材を押しあてて、無電極のまま高電圧を印加し分極を
することにある。
In order to achieve this object, the polarization method of the first invention of the present invention is a method in which a plurality of thin plate-shaped piezoelectric ceramics are aligned in the thickness direction and stacked.
A conductive member having plasticity is pressed against both opposing surfaces parallel to the thickness direction, and a high voltage is applied and polarization is performed without electrodes.

【0010】また本発明の第二の発明の分極方法は、複
数個の薄板状の圧電セラミックスをその厚み方向に整列
して重ねた後その両側を圧電セラミックスと同材質のダ
ミーブロックで挟み、第一の発明と同様に可塑性を有す
る導電性部材を押しあてて、無電極のまま高電圧を印加
することにより分極をする。
According to the second aspect of the polarization method of the present invention, a plurality of thin plate-shaped piezoelectric ceramics are aligned and stacked in the thickness direction, and then sandwiched on both sides by dummy blocks made of the same material as the piezoelectric ceramics. As in the first aspect of the invention, a conductive member having plasticity is pressed against the electrode, and a high voltage is applied with no electrode to perform polarization.

【0011】[0011]

【作用】本発明の第一の発明において、可塑性を有する
導電性部材を薄板状の圧電セラミックスを複数個整列し
たものの端面に密着させ、その導電性部材の比抵抗を圧
電セラミックスに比べ充分に小さくとることにより、加
えた電界はすべてセラミックスに印加され充分に分極さ
れる。また、この分極方法によると分極用の電極は不要
になり、電極形成のための工程が省略できる。また電極
のコストの分安価に製造できる。
In the first aspect of the present invention, the conductive member having plasticity is brought into close contact with the end face of a plurality of thin plate-shaped piezoelectric ceramics arranged, and the specific resistance of the conductive member is sufficiently smaller than that of the piezoelectric ceramics. By taking all, the applied electric field is all applied to the ceramic and is sufficiently polarized. Further, according to this polarization method, the electrode for polarization is not necessary, and the step for forming the electrode can be omitted. Further, the cost of the electrode can be reduced, and thus the manufacturing cost can be reduced.

【0012】本発明の第二の発明において、機械加工に
より一定寸法に仕上げられた薄板状の圧電セラミックス
を厚み方向に整列して積み重ね、両端に同材質よりなる
ダミーブロックを置いて押し固める。そして第一の発明
と同様に、可塑性を有する導電性材質を押しあてて高電
圧を印加し分極をすることにより、両端のダミーブロッ
クは薄板状の圧電セラミックスと同材質であるため、整
列された薄板状の圧電セラミックスの両端においても電
界の乱れがなく、すべての薄板状の圧電セラミックスに
均等に電界がかかるため圧電特性のばらつきが小さくな
る。
In the second aspect of the present invention, thin plate-shaped piezoelectric ceramics finished to a certain size by machining are aligned and stacked in the thickness direction, and dummy blocks made of the same material are placed at both ends and pressed. Then, as in the first invention, by pressing a conductive material having plasticity and applying a high voltage for polarization, the dummy blocks at both ends are made of the same material as the thin plate piezoelectric ceramics, so that the dummy blocks are aligned. The electric field is not disturbed even at both ends of the thin plate-shaped piezoelectric ceramics, and the electric field is evenly applied to all the thin plate-shaped piezoelectric ceramics, so that the variation in the piezoelectric characteristics is reduced.

【0013】さらに、薄板状の圧電セラミックスの製造
方法として、ドクターブレード法によるシート成形工法
をとれば、分極後もスライス加工の必要がないため厚み
すべり振動子の製造コストが大幅に安くなる。
Further, if a sheet forming method by a doctor blade method is adopted as a method for manufacturing a thin plate piezoelectric ceramic, the manufacturing cost of the thickness-sliding vibrator is significantly reduced because slice processing is not required even after polarization.

【0014】[0014]

【実施例】以下、本発明の実施例における厚みすべり振
動子の製造方法について分極工程を中心に図面を参照し
て説明する。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS A method of manufacturing a thickness sliding oscillator according to an embodiment of the present invention will be described below with reference to the drawings, focusing on a polarization process.

【0015】(実施例1)図1に本発明の第1の実施例
における圧電セラミックスの分極工程を示す。図1にお
いて、1は電極を形成していない複数個の薄板状の圧電
セラミックス、2は圧電セラミックス1に密着するよう
に設置された導電性ゴム、3は導電性ゴム2を圧電セラ
ミックス1に密着させて導電性をとる目的の銅板、そし
て4は導電性ゴム2を圧電セラミックス1に密着させる
ため、銅板3を押圧するためのスプリングである。な
お、分極に用いる上記以外のリード線等の部材は、図3
に示す符号14〜18のものと同じものを用いた。
(Embodiment 1) FIG. 1 shows a polarization process of piezoelectric ceramics in a first embodiment of the present invention. In FIG. 1, 1 is a plurality of thin plate-shaped piezoelectric ceramics without electrodes, 2 is a conductive rubber installed so as to be in close contact with the piezoelectric ceramics, 3 is a conductive rubber 2 is in close contact with the piezoelectric ceramics 1. A copper plate is provided for the purpose of achieving conductivity, and a reference numeral 4 is a spring for pressing the copper plate 3 in order to bring the conductive rubber 2 into close contact with the piezoelectric ceramics 1. It should be noted that members other than the above-mentioned lead wires used for polarization are shown in FIG.
The same thing as the thing of the code | symbol 14-18 shown in was used.

【0016】まず、Pb(Zn1/3Nb2/3xTiyZr
Z3−MnO2系の圧電セラミックス粉末をバインダと
ともにスラリーにし、ドクターブレード方式のシート成
形機で0.37mmの厚みのグリーンシートを成形した。
これを32×38mmの寸法にトリミングし、このトリミ
ング後のグリーンシート間にジルコニアの敷粉を散布し
て15枚積み重ね、その上下をジルコニア製のセッター
ではさんでアルミナ製のさやに入れて焼成した。
First, Pb (Zn 1/3 Nb 2/3 ) x Ti y Zr
The Z O 3 -MnO 2 based piezoelectric ceramic powder of the slurry together with a binder and molding the green sheet having a thickness of 0.37mm in the sheet forming machine of the doctor blade method.
This was trimmed to a size of 32 × 38 mm, 15 sheets of zirconia spread powder were piled up between the trimmed green sheets, and the top and bottom were sandwiched by a setter made of zirconia and put in an alumina sheath and baked. .

【0017】これを25×5mmの寸法にダイシング機で
切断して薄板状の圧電セラミックス1を作製した。これ
を厚み方向に(焼成後約0.31mmになる)80枚重
ね、その1枚の対向する端面に相当する両面に導電性部
材としてのシリコン製の導電性ゴム2を当ててその上に
4mmの厚みの一対の銅板3を設置し、スプリング4で押
えた。銅板3はスプリング4により導電性ゴム2に密着
し、また導電性ゴム2は圧電セラミックスに密着して分
極のための電極としての役目を果たしている。なおここ
で用いたシリコン製の導電性ゴム2は耐熱温度150
℃、比抵抗1×10 -2Ω・cmのものである。これをシリ
コン油中に入れ、100℃で15kVの電圧を30分間
印加して分極した。
Using a dicing machine to measure this into a size of 25 × 5 mm
By cutting, a thin plate-shaped piezoelectric ceramic 1 was produced. this
80 sheets in the thickness direction (after firing about 0.31 mm)
Hey, conductive parts on both sides corresponding to one of the facing end faces.
Apply the conductive rubber 2 made of silicon as the material
Install a pair of copper plates 3 with a thickness of 4 mm, and push with the spring 4.
I got it. Copper plate 3 is attached to conductive rubber 2 by spring 4.
In addition, the conductive rubber 2 adheres to the piezoelectric ceramics
It serves as an electrode for the pole. Here
The conductive rubber 2 made of silicon used in Step 2 has a heat resistant temperature of 150.
℃, specific resistance 1 × 10 -2Ω · cm. Siri this
Put it in a mixture oil and apply a voltage of 15kV at 100 ° C for 30 minutes.
It was applied and polarized.

【0018】分極後洗浄し、精密研磨機で厚み方向に研
磨して周波数調整を行なった後、真空蒸着法により分極
方向と平行な面に励振用電極を形成し、厚みすべり振動
子としての性能を測定した。なお、従来例として次に述
べる厚みすべり振動子を作製し、その性能も測定した。
After polarization, cleaning, and polishing in the thickness direction with a precision grinder to adjust the frequency, an excitation electrode is formed on a surface parallel to the polarization direction by a vacuum deposition method, and the performance as a thickness-sliding oscillator is obtained. Was measured. As a conventional example, a thickness sliding oscillator described below was manufactured and its performance was also measured.

【0019】まず、本実施例と同様の組成の25×30
×5mmの圧電セラミックスブロックの25×30mm角の
両主面に分極用の電極として銀ペーストをスクリーン印
刷法により塗布し、700℃で5分焼き付けた。そし
て、図3に示す従来の分極方法で分極した後分極用の電
極を除去し、さらにこれをスライシング機で0.27mm
の厚みにスライス加工をし、本実施例と同様に周波数調
整と励振用電極形成を行なった後、厚みすべり振動子と
しての性能を測定した。その結果、従来例と本実施例と
の間で、電気的性能や周波数ばらつきには差はみられな
かった。ただし両者ともに分極時に両端から0.6mmま
でに位置していた薄板(二枚相当)のみが電気機械結合
係数が3〜7%低かった。
First, 25 × 30 having the same composition as that of this embodiment.
Silver paste was applied as a polarization electrode to both main surfaces of a 25 × 30 mm square of a 5 × 5 mm piezoelectric ceramic block by a screen printing method, and baked at 700 ° C. for 5 minutes. Then, after polarization was performed by the conventional polarization method shown in FIG. 3, the electrode for polarization was removed, and this was 0.27 mm with a slicing machine.
Slicing was performed to the thickness of, and frequency adjustment and excitation electrode formation were performed in the same manner as in this example, and then the performance as a thickness slip oscillator was measured. As a result, there was no difference in electrical performance or frequency variation between the conventional example and this example. However, in both cases, the electromechanical coupling coefficient was 3 to 7% lower only in the thin plates (corresponding to two sheets) positioned 0.6 mm from both ends during polarization.

【0020】このように本実施例の分極方法を用いた場
合は、従来の分極用の電極形成およびその除去の工程が
省略できるとともに、その電極材料である銀が不要とな
る。また、本実施例では薄板状の圧電セラミックス1に
グリーンシートを用いているため、従来の圧電セラミッ
クブロックをスライス加工する工程が不要となり、圧電
セラミック材料のスライス加工による材料ロスも発生し
ない。
As described above, when the polarization method of this embodiment is used, the conventional steps of forming and removing the electrode for polarization can be omitted, and the electrode material silver is not required. Further, in the present embodiment, since the green sheet is used for the piezoelectric ceramic 1 having a thin plate shape, the conventional step of slicing the piezoelectric ceramic block becomes unnecessary, and material loss due to the slicing of the piezoelectric ceramic material does not occur.

【0021】(実施例2)次に、本発明の第2の実施例
について図面により説明する。図2は本実施例における
分極工程を説明する図で、実施例1と異なるのは、実施
例1と同じようにして作製した圧電セラミックス1を整
列したものの両側を、同材質の圧電セラミックスよりな
る厚み5mmのダミーブロック5ではさみ、分極した点で
ある。
(Embodiment 2) Next, a second embodiment of the present invention will be described with reference to the drawings. FIG. 2 is a diagram for explaining the polarization process in the present embodiment. The difference from the first embodiment is that the piezoelectric ceramics 1 produced in the same manner as in the first embodiment are aligned, but both sides are made of piezoelectric ceramics of the same material. This is a point that is pinched and polarized in the dummy block 5 having a thickness of 5 mm.

【0022】本実施例の厚みすべり振動子としての性能
を測定し、実施例1に記載の従来例と比較した。その結
果、この場合にも従来例のものと比較して、電気的性能
や周波数ばらつきには差はみられなかった。また実施例
1でみられた両端部における電気機械結合係数の低下は
みられず、実施例1の場合よりも材料歩留りが向上し
た。
The performance of this embodiment as a thickness sliding oscillator was measured and compared with the conventional example described in the first embodiment. As a result, in this case as well, there was no difference in electrical performance or frequency variation compared to the conventional example. Further, the decrease in the electromechanical coupling coefficient at both ends observed in Example 1 was not seen, and the material yield was improved as compared with Example 1.

【0023】[0023]

【発明の効果】以上の説明から明らかなように本発明
は、薄板状の圧電セラミックスを複数個重ねて整列させ
たものに導電性部材を密着させて分極するため、従来の
分極用の電極形成およびその除去の工程が不要となって
製造工程の短縮が図れ、また高価な貴金属電極材料の節
減も図れて厚みすべり振動子を安価に製造することがで
き、経済的価値の大なるものである。
As is clear from the above description, according to the present invention, a plurality of thin plate-shaped piezoelectric ceramics are stacked and aligned, and a conductive member is closely adhered to polarize the piezoelectric ceramics. And the step of removing the same are not required, the manufacturing process can be shortened, the expensive precious metal electrode material can be saved, and the thickness sliding oscillator can be manufactured at low cost, which is of great economic value. .

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の第1の実施例における分極工程を説明
する図
FIG. 1 is a diagram illustrating a polarization process in a first embodiment of the present invention.

【図2】同第2の実施例における分極工程を説明する図FIG. 2 is a diagram illustrating a polarization step in the second embodiment.

【図3】従来の分極工程を説明する図FIG. 3 is a diagram illustrating a conventional polarization process.

【図4】従来の圧電セラミックスの切断工程を説明する
FIG. 4 is a diagram for explaining a conventional piezoelectric ceramic cutting process.

【符号の説明】[Explanation of symbols]

1 圧電セラミックス 2 導電性ゴム(導電性部材) 3 銅板 4 スプリング 5 ダミーブロック 1 Piezoelectric ceramics 2 Conductive rubber (conductive member) 3 Copper plate 4 Spring 5 Dummy block

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】複数個の薄板状の圧電セラミックスをその
厚みの方向に重ね合わせて集合体を形成し、その集合体
の前記厚み方向に平行な対向する両面に導電性部材を押
し当ててその導電性部材に高電圧を印加する圧電セラミ
ックスの分極方法。
1. A plurality of thin plate-shaped piezoelectric ceramics are stacked in the thickness direction to form an assembly, and conductive members are pressed against opposite surfaces of the assembly parallel to the thickness direction. A piezoelectric ceramics polarization method for applying a high voltage to a conductive member.
【請求項2】複数個の薄板状の圧電セラミックスをその
厚み方向に重ね合せた後その厚み方向の両側を前記圧電
セラミックスと同材質のダミーブロックで挟んで集合体
を形成し、その集合体の前記厚み方向に平行な対向する
両面に導電性部材を押し当ててその導電性部材に高電圧
を印加する圧電セラミックスの分極方法。
2. A plurality of thin plate-shaped piezoelectric ceramics are stacked in the thickness direction thereof, and then both sides in the thickness direction are sandwiched by dummy blocks made of the same material as the piezoelectric ceramics to form an assembly. A method for polarizing a piezoelectric ceramics, wherein a conductive member is pressed against opposite surfaces parallel to the thickness direction and a high voltage is applied to the conductive member.
JP6024292A 1992-03-17 1992-03-17 Polarization of piezoelectric ceramic Pending JPH05267744A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP6024292A JPH05267744A (en) 1992-03-17 1992-03-17 Polarization of piezoelectric ceramic

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP6024292A JPH05267744A (en) 1992-03-17 1992-03-17 Polarization of piezoelectric ceramic

Publications (1)

Publication Number Publication Date
JPH05267744A true JPH05267744A (en) 1993-10-15

Family

ID=13136517

Family Applications (1)

Application Number Title Priority Date Filing Date
JP6024292A Pending JPH05267744A (en) 1992-03-17 1992-03-17 Polarization of piezoelectric ceramic

Country Status (1)

Country Link
JP (1) JPH05267744A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001308406A (en) * 2000-04-21 2001-11-02 Seiko Instruments Inc Piezoelectric function component manufacturing jig and method of manufacturing the same
CN100394099C (en) * 2006-05-29 2008-06-11 重庆灵鉴检测仪器有限公司 Pipeline leakage signal sensing device
CN106402620A (en) * 2016-11-25 2017-02-15 哈尔滨工业大学 Patting-type piezoelectric driving micro-jet lubrication device

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001308406A (en) * 2000-04-21 2001-11-02 Seiko Instruments Inc Piezoelectric function component manufacturing jig and method of manufacturing the same
CN100394099C (en) * 2006-05-29 2008-06-11 重庆灵鉴检测仪器有限公司 Pipeline leakage signal sensing device
CN106402620A (en) * 2016-11-25 2017-02-15 哈尔滨工业大学 Patting-type piezoelectric driving micro-jet lubrication device

Similar Documents

Publication Publication Date Title
EP0176805B1 (en) Trapped-energy mode resonator and method of manufacturing the same
JP3733860B2 (en) Piezoelectric element and manufacturing method thereof
JP3492421B2 (en) Manufacturing method of multilayer ceramic electronic component
JP2986706B2 (en) Piezoelectric element and piezoelectric actuator using the same
JP2006295418A (en) Resonator
JPH05267744A (en) Polarization of piezoelectric ceramic
JP2671871B2 (en) Piezoelectric transformer and manufacturing method thereof
JPH06252469A (en) Manufacture of laminated piezoelectric actuator
JPH06120579A (en) Laminated piezoelectric actuator
JP2508964B2 (en) Piezoelectric transformer and driving method thereof
JP4605879B2 (en) Piezoelectric vibrator
JPH0763129B2 (en) Method for manufacturing piezoelectric ceramic resonator
US2768421A (en) Method of making circuit connections to a transducer unit
JP2555985B2 (en) Piezoelectric transformer and its driving method
JP3404512B2 (en) Piezoelectric transformer, method of manufacturing the same, and method of driving the same
JP2001332778A (en) Method of polarizing piezoelectric element
JP3639994B2 (en) Energy confinement type piezoelectric vibrator of thickness longitudinal vibration fundamental wave and manufacturing method thereof
KR920006146Y1 (en) Vibrator for piezo buzzer
JP2000124764A (en) Strip-shaped piezoelectric resonator for frequency filter
JPH04336928A (en) Piezoelectric stage
JPS61182311A (en) Ceramic tuning fork vibrator
JP2655450B2 (en) Thickness longitudinal vibration piezoelectric transformer, manufacturing method and driving method thereof
JPH0211007A (en) Manufacture of piezoelectric ceramic resonator
JPH11154768A (en) Piezoelectric ceramic transformer
JPH0211006A (en) Manufacture of piezoelectric ceramic resonator