JP2001330500A - Interface measuring device - Google Patents

Interface measuring device

Info

Publication number
JP2001330500A
JP2001330500A JP2000150811A JP2000150811A JP2001330500A JP 2001330500 A JP2001330500 A JP 2001330500A JP 2000150811 A JP2000150811 A JP 2000150811A JP 2000150811 A JP2000150811 A JP 2000150811A JP 2001330500 A JP2001330500 A JP 2001330500A
Authority
JP
Japan
Prior art keywords
interface
ultrasonic
circuit
digital data
memory
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2000150811A
Other languages
Japanese (ja)
Inventor
Akira Morita
晃 森田
Hiroyuki Yoshimura
弘幸 吉村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fuji Electric Co Ltd
Original Assignee
Fuji Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fuji Electric Co Ltd filed Critical Fuji Electric Co Ltd
Priority to JP2000150811A priority Critical patent/JP2001330500A/en
Publication of JP2001330500A publication Critical patent/JP2001330500A/en
Pending legal-status Critical Current

Links

Landscapes

  • Measurement Of Levels Of Liquids Or Fluent Solid Materials (AREA)
  • Investigating Or Analyzing Materials By The Use Of Ultrasonic Waves (AREA)

Abstract

PROBLEM TO BE SOLVED: To detect the interface between a liquid and foreign matter while avoiding the effects of floating sludge by a simple and inexpensive constitution. SOLUTION: It is impossible to detect the interface 5 through the use of one ultrasonic oscillator when there is the floating sludge 2a, etc., in a refection path from the foreign matter such as sludge 2, etc. A plurality of ultrasonic oscillators (ultrasonic transmitters/receivers 81-85) are used to transmit ultrasonic waves via a timing circuit 11, drive circuit 12, etc. By receiving and processing the reflected waves from the interface 5 at a signal processing part 15 via a clamp circuit 13 and amplifier 14, it is possible to receive the reflected waves also from the passes which do not pass through the floating sludge 2a to improve accuracy.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】この発明は、排水処理,下水
処理などの沈澱槽、その他液中に界面をなして沈澱する
異物との界面を測定する界面測定装置に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a sedimentation tank for drainage treatment, sewage treatment and the like, and an interface measuring device for measuring an interface with a foreign substance which forms an interface in a liquid and precipitates.

【0002】[0002]

【従来の技術】汚泥を含む液の浄化のために、例えば図
8のように、汚泥処理槽1内において汚泥を含む液を汚
泥2と上澄液3とに分離した後、沈澱汚泥2を処理槽1
の下部から排出して処理することが行なわれる。この場
合に適切な沈澱汚泥の排出時期を知るためには、液面4
から上澄液3と沈澱汚泥2との界面5までの深さH1、
または界面5から槽底1aまでの深さH2等を知ること
が必要である。そこで、その手段として超音波を利用し
た方法が広く使われている。
2. Description of the Related Art In order to purify a liquid containing sludge, for example, as shown in FIG. 8, a liquid containing sludge is separated into a sludge 2 and a supernatant liquid 3 in a sludge treatment tank 1, and then the precipitated sludge 2 is removed. Processing tank 1
Is discharged from the lower part of the container for processing. In this case, in order to know an appropriate settling sludge discharge time,
From the depth H1 to the interface 5 between the supernatant 3 and the settled sludge 2,
Alternatively, it is necessary to know the depth H2 from the interface 5 to the tank bottom 1a. Therefore, a method using an ultrasonic wave is widely used as a means.

【0003】例えば、液面4の近傍に送受波面を液中に
侵漬し、超音波送信器6と超音波受信器7を設けて(ま
たは送受信兼用振動子を設けて)、タイミング回路11
から駆動回路12を通り、超音波送信器6へ駆動パルス
(駆動タイミング信号D)を印加し、槽底1aへ向けて
超音波Sを送信する。そして、界面5や槽底1aからの
反射波Bを受信し、これを増幅回路14で増幅して信号
処理部15で所定の信号処理を行ない、受信信号の強度
を表示回路16の画面(表示装置)17に表示する。こ
の表示により、界面や槽底の位置を目視により判別する
ことができるようになる。さらに、目視による判定では
なく、受信強度の変化がある位置を界面と認識する判定
アルゴリズムを信号処理部15にて実行することによ
り、界面を検知することが可能である。こうして検出さ
れた界面情報をもとに、汚泥処理槽下部に設けられた排
出弁を開いて堆積汚泥を自動的に排出する。
For example, a wave transmitting / receiving surface is immersed in a liquid in the vicinity of a liquid surface 4, and an ultrasonic transmitter 6 and an ultrasonic receiver 7 are provided (or a transmitting / receiving vibrator is provided), and a timing circuit 11 is provided.
The driving pulse (driving timing signal D) is applied to the ultrasonic transmitter 6 through the driving circuit 12 to transmit the ultrasonic wave S toward the tank bottom 1a. Then, the reflected wave B from the interface 5 and the tank bottom 1a is received, amplified by the amplifier circuit 14, and subjected to predetermined signal processing by the signal processing unit 15, and the intensity of the received signal is displayed on the screen of the display circuit 16 (display). (Device) 17. With this display, the position of the interface or the bottom of the tank can be visually determined. Further, the interface can be detected by executing a determination algorithm in the signal processing unit 15 for recognizing a position where there is a change in reception intensity as an interface, instead of performing a visual determination. Based on the detected interface information, the discharge valve provided at the lower part of the sludge treatment tank is opened to automatically discharge the accumulated sludge.

【0004】[0004]

【発明が解決しようとする課題】汚泥の浄化槽では、汚
泥は堆積するまでの間、浮遊汚泥(図8の符号2a参
照)という形で界面上部を沈降する。界面を測定するた
めに送信した超音波は、この汚泥からも反射されて超音
波受信器に戻ってくる。この反射波は界面からの反射に
対するノイズとなるため、界面が正確に検知できないと
いう問題がある。また、超音波は指向性に従って音波が
拡散するため、遠方へ行くほど音圧が減衰してしまう。
そのため、遠方に位置する界面からの反射波を確実に受
信することが困難となる。一般的に、受信強度を増大さ
せるためには送信パワーを増大させればよいが、その場
合には電源回路を大きくしなければならない、という問
題が発生する。したがって、この発明の課題は、簡単か
つ安価な構成で浮遊汚泥の影響を回避し得るようにする
ことにある。
In the sludge purification tank, the sludge settles at the upper part of the interface in the form of suspended sludge (see reference numeral 2a in FIG. 8) until it is deposited. The ultrasonic wave transmitted to measure the interface is also reflected from the sludge and returns to the ultrasonic receiver. Since this reflected wave becomes noise for reflection from the interface, there is a problem that the interface cannot be detected accurately. Further, since the ultrasonic waves are diffused according to the directivity, the sound pressure is attenuated farther away.
Therefore, it is difficult to reliably receive a reflected wave from an interface located far away. In general, to increase the reception strength, it is sufficient to increase the transmission power, but in that case, there arises a problem that the power supply circuit must be increased. Therefore, an object of the present invention is to make it possible to avoid the influence of suspended sludge with a simple and inexpensive configuration.

【0005】[0005]

【課題を解決するための手段】このような課題を解決す
るため、請求項1の発明では、液中に界面をなして沈殿
する異物との界面を測定するため、液面近傍の液中から
界面へと超音波送信器より超音波パルスを放射してその
反射パルスを超音波受信器により受信し、その受信信号
にもとづき界面を測定する界面測定装置において、前記
超音波送信器および超音波受信器をそれぞれ複数個設け
るとともに、各超音波送信器からの超音波パルスを所定
位置に同時に到着させるよう、その相対的設置位置と媒
質の音速と焦点深度とに基づき送信タイミングを決定し
て送信することを特徴とする。この請求項1の発明にお
いては、前記超音波送信器の送信方向を音波を集束させ
る方向に向けることができ(請求項2の発明)、また
は、前記超音波送信器と超音波受信器とを兼用すること
ができ(請求項3の発明)、もしくは、前記複数の超音
波送信器に対し超音波パルスの送信タイミング信号を発
生するタイミング回路と、そのタイミング信号を受けて
各超音波送信器を順次駆動する駆動回路と、前記各超音
波受信器からの出力を同時に受信して所定の処理を行な
う信号処理部とを設けることができる(請求項4の発
明)。
In order to solve such a problem, according to the first aspect of the present invention, in order to measure an interface with a foreign substance which forms an interface in a liquid and precipitates, the liquid in the vicinity of the liquid surface is measured. In an interface measuring apparatus for emitting an ultrasonic pulse from an ultrasonic transmitter to an interface and receiving the reflected pulse by an ultrasonic receiver and measuring the interface based on the received signal, the ultrasonic transmitter and the ultrasonic receiver A plurality of devices are provided, and the transmission timing is determined based on the relative installation position, the sound speed of the medium, and the depth of focus so that the ultrasonic pulse from each ultrasonic transmitter simultaneously arrives at a predetermined position, and is transmitted. It is characterized by the following. According to the first aspect of the present invention, the transmission direction of the ultrasonic transmitter can be directed to a direction in which a sound wave is focused (the invention of the second aspect), or the ultrasonic transmitter and the ultrasonic receiver can be connected to each other. A timing circuit for generating an ultrasonic pulse transmission timing signal for the plurality of ultrasonic transmitters, and receiving each of the ultrasonic transmitters by receiving the timing signal. It is possible to provide a drive circuit for sequentially driving and a signal processing unit for simultaneously receiving outputs from the respective ultrasonic receivers and performing predetermined processing (invention of claim 4).

【0006】上記請求項4の発明においては、前記信号
処理部は前記各超音波受信器からの出力をそれぞれ遅延
させる複数の遅延回路と、その各遅延回路出力を加算す
る加算回路とを含むことができ(請求項5の発明)、ま
たは、前記信号処理部は前記各超音波受信器からの出力
をそれぞれディジタルデータに変換する複数のAD変換
器と、各AD変換器からのディジタルデータを記憶する
メモリと、このメモリからの出力データにもとづき所定
の演算を行なう演算回路とを含むことができる(請求項
6の発明)。この請求項6の発明においては、前記メモ
リには各AD変換器からのディジタルデータを互いに遅
延させて記憶し、前記演算回路はこのメモリからの出力
データを順次加算することができ(請求項7の発明)、
または、前記メモリには各AD変換器からのディジタル
データを記憶し、前記演算回路はこのメモリからの出力
データを互いに遅延させて加算することができる(請求
項8の発明)。
In the above invention, the signal processing unit may include a plurality of delay circuits for delaying the outputs from the respective ultrasonic receivers, and an adder circuit for adding the outputs of the respective delay circuits. Alternatively, the signal processing section stores a plurality of AD converters for converting outputs from the respective ultrasonic receivers into digital data, and stores digital data from the respective AD converters. And an arithmetic circuit for performing a predetermined operation based on output data from the memory (the invention according to claim 6). According to the sixth aspect of the present invention, the memory stores the digital data from the respective AD converters with a delay therebetween, and the arithmetic circuit can sequentially add the output data from the memory. Invention),
Alternatively, digital data from each AD converter is stored in the memory, and the arithmetic circuit can delay and add output data from the memory to each other (the invention of claim 8).

【0007】また上記請求項1の発明においては、前記
複数の超音波送信器に対し超音波パルスの送信タイミン
グ信号を発生するタイミング回路と、そのタイミング信
号を受けて各超音波送信器を順次駆動する駆動回路と、
前記各超音波受信器からの出力を順次選択する選択回路
と、この選択回路からの出力を受けて所定の処理を行な
う信号処理部とを設けることができ(請求項9の発
明)、この請求項9の発明においては、前記信号処理部
は前記各超音波受信器からの出力をそれぞれディジタル
データに変換する複数のAD変換器と、各AD変換器か
らのディジタルデータを記憶するメモリと、このメモリ
からの出力データにもとづき所定の演算を行なう演算回
路とを含むことができ(請求項10の発明)、この請求
項10の発明においては、前記前記メモリには各AD変
換器からのディジタルデータを記憶し、前記演算回路は
このメモリからの出力データを互いに遅延させて加算す
ることができる(請求項11の発明)。
According to the first aspect of the present invention, a timing circuit for generating a transmission timing signal of an ultrasonic pulse to the plurality of ultrasonic transmitters, and sequentially driving each ultrasonic transmitter in response to the timing signal A driving circuit,
A selection circuit for sequentially selecting the output from each of the ultrasonic receivers and a signal processing unit for receiving the output from the selection circuit and performing a predetermined process can be provided (the invention of claim 9). In the invention of Item 9, the signal processing unit includes a plurality of A / D converters for converting outputs from the respective ultrasonic receivers into digital data, a memory for storing digital data from the respective A / D converters, An arithmetic circuit for performing a predetermined operation based on output data from the memory (the tenth aspect of the present invention). In the tenth aspect, the memory stores digital data from each AD converter. And the arithmetic circuit can add the output data from the memory while delaying each other (the invention of claim 11).

【0008】[0008]

【発明の実施の形態】図1はこの発明の第1の実施の形
態を示す構成図である。図1と図8に示す従来例との相
違は振動子を複数にしたことであり(超音波送受信器8
1〜85参照)、これにより、駆動回路12,増幅回路
14が複数になったことと、これらをコントロールする
タイミング回路11が各タイミング信号を出力するもの
に変更されていることなどである。また、図1では送信
と受信素子を同一として利用する場合の例であるため、
大振幅の送信信号が増幅回路14に供給されないよう
に、クランプ回路13が設けられている。従って、送受
信器を別々にするなら、クランプ回路13は不要であ
る。
FIG. 1 is a configuration diagram showing a first embodiment of the present invention. The difference between the conventional example shown in FIGS. 1 and 8 is that a plurality of transducers are provided (the ultrasonic transceiver 8).
1 to 85), whereby the number of drive circuits 12 and the number of amplifier circuits 14 are increased, and the timing circuit 11 for controlling these circuits is changed to output each timing signal. Also, since FIG. 1 shows an example in which the transmission and reception elements are used as the same,
The clamp circuit 13 is provided so that a transmission signal having a large amplitude is not supplied to the amplifier circuit 14. Therefore, if the transmitter and the receiver are separated, the clamp circuit 13 is unnecessary.

【0009】駆動タイミングについて、図2,図3を参
照して説明する。図2では複数個の超音波振動子(超音
波送受信器81〜85)から送信される音波を、3段階
の深度に応じて収束させる例を示している。この収束さ
せる段階を何段階とするかは、使用する超音波周波数お
よび振動子の指向性などによって決定される収束領域に
より求める。また、中央部分に音波が収束しやすいよう
に、両脇に配置された超音波振動子を中央に向ける工夫
もしている。この角度は界面を探索する全領域にわたっ
て音圧が向上するよう、中央深度付近に向けることが望
ましい。さらに、超音波振動子の向きを、収束させる焦
点位置に合わせて可動とする方が理想的なのは言うまで
もない。
The drive timing will be described with reference to FIGS. FIG. 2 shows an example in which sound waves transmitted from a plurality of ultrasonic transducers (ultrasonic transceivers 81 to 85) are converged according to three levels of depth. The number of convergence steps is determined by a convergence area determined by the ultrasonic frequency to be used, the directivity of the transducer, and the like. In addition, the ultrasonic transducers arranged on both sides are devised toward the center so that the sound waves are easily converged at the center. This angle is desirably directed near the central depth so that the sound pressure is improved over the entire area where the interface is searched. Further, it is needless to say that it is ideal to make the direction of the ultrasonic transducer movable according to the focal position to be converged.

【0010】上記3段階を図2で示すように、ここでは
near,middle,far領域とし、各領域での
中心点をそれぞれCn,Cm,Cfとする。そのとき、
超音波振動子へ印加する駆動タイミングは各領域によっ
て異なり、それぞれの領域の中心Cn,Cm,Cfへ音
波が同時に到達するように考慮する。したがって、複数
の領域に同時に焦点を合致させることはできないため、
領域に分けた回数分、超音波を収束させて送信する。一
般に、汚泥界面や浮遊汚泥の移動速度は超音波の伝播速
度、および受信信号処理にかかるシステム全体の動作周
期に比べて十分に遅いため、複数回の反射信号を合成し
て全領域を再生しても特に問題は生じない。
As shown in FIG. 2, the three steps are defined as near, middle, and far areas, and the center points in the respective areas are defined as Cn, Cm, and Cf, respectively. then,
The drive timing applied to the ultrasonic vibrator differs for each region, and consideration is given to the sound waves reaching the centers Cn, Cm, and Cf of the respective regions simultaneously. Therefore, it is not possible to focus on multiple areas at the same time,
The ultrasound is converged and transmitted for the number of times divided into regions. In general, the moving speed of the sludge interface and suspended sludge is sufficiently slower than the ultrasonic wave propagation speed and the operation cycle of the entire system related to the received signal processing. However, no particular problem arises.

【0011】或る1つの領域での駆動タイミングの求め
方について、図3により説明する。同図(a)に示す焦
点Cに各振動子からの音波が同時刻に到達するように、
振動子の相対位置関係よりL1〜L5の距離差を調整す
る。そのために、例えば距離差L1〜L5を音速vで割
った時間分だけ駆動タイミングをずらし、同図(b)〜
(f)のように超音波送受信器83を基準とした場合
は、81,82,84,85等は駆動タイミングの分
(L1/v,L2/v,L4/v,L5/v)だけ早め
に送信するようにして実現する。なお、この駆動タイミ
ングのずれ量は、振動子の相対位置関係の他に焦点深
度,音速に依存する。
A method for obtaining the drive timing in a certain area will be described with reference to FIG. (A) so that sound waves from the transducers reach the focal point C at the same time.
The distance difference between L1 and L5 is adjusted based on the relative positional relationship between the transducers. For this purpose, the drive timing is shifted by, for example, the time obtained by dividing the distance differences L1 to L5 by the sound speed v, and the driving timing is shifted as shown in FIG.
When the ultrasonic transceiver 83 is used as a reference as shown in (f), 81, 82, 84, 85, etc. are advanced by the drive timing (L1 / v, L2 / v, L4 / v, L5 / v). To be transmitted. The shift amount of the drive timing depends on the depth of focus and the speed of sound in addition to the relative positional relationship between the transducers.

【0012】図1の送信音波に対する受信信号の信号処
理部15は、受信信号の反射源が送信時の焦点位置にあ
るものとして、反射源から各振動子までの距離の差に相
当する時間差をもって互いに加算する。この受信信号の
処理方式としては、図4のように遅延回路151と加算
回路152を用いた遅延合成方式や、図5のように各振
動子からの受信波形を、AD(アナログ・ディジタル)
変換器154により個別にAD変換してディジタルデー
タにした後にメモリ155に記憶し、その出力を読み出
し演算装置156で互いに加算する方式などがある。い
ずれの方式も、ずらすべき時間が振動子の相対位置関係
の他に焦点深度,音速によって決定されるのは上記のと
おりである。なお、AD変換を行なう図5の方式では、
データをメモリへ取り込む際に格納領域を互いにずらし
て後の処理を容易にしたり、メモリへ取り込んだ後の加
算時にずらし量を考慮する等、いずれによっても実現可
能である。
The signal processing unit 15 for the received signal with respect to the transmitted sound wave shown in FIG. 1 assumes that the reflection source of the reception signal is at the focal position at the time of transmission and has a time difference corresponding to the difference in the distance from the reflection source to each transducer. Add to each other. As a method of processing the received signal, a delay synthesizing method using a delay circuit 151 and an adding circuit 152 as shown in FIG. 4 or a receiving waveform from each transducer as shown in FIG.
There is a method in which the data is individually converted into digital data by the converter 154, stored in the memory 155, and the output is read out and added to each other by the arithmetic unit 156. As described above, in any method, the time to be shifted is determined by the depth of focus and the speed of sound in addition to the relative positional relationship of the transducers. In the method of FIG. 5 for performing AD conversion,
This can be realized by any method such as shifting storage areas from one another when data is taken into the memory to facilitate subsequent processing, or considering the amount of shift at the time of addition after taking into the memory.

【0013】図6はこの発明の第2の実施の形態を示す
構成図である。これは、汚泥界面や浮遊汚泥の動作速度
が超音波の伝播速度に比べて非常に遅く、送受信に要す
る周期が早いことに着目し、複数個の振動子からの受信
信号を同時に受信するのではなく、切換回路(選択回
路)18により1つずつ順次選択して受信し、振動子個
数分の送信音波に対する受信信号から受信波形を再生す
るものである。受信波形の再生方法は図5と同じく、A
D変換してディジタルデータにした後に、時間差をずら
して加算する。こうすることで受信回路を1系統にで
き、回路構成を簡略化することができる。
FIG. 6 is a block diagram showing a second embodiment of the present invention. Focusing on the fact that the operating speed of the sludge interface and suspended sludge is very slow compared to the propagation speed of ultrasonic waves, and the period required for transmission and reception is fast, it is not possible to receive signals from multiple transducers simultaneously. Instead, the switching circuit (selection circuit) 18 sequentially selects and receives the signals one by one, and reproduces the received waveform from the received signals corresponding to the transmitted sound waves for the number of transducers. The method of reproducing the received waveform is the same as in FIG.
After D-converted into digital data, the data is added with the time difference shifted. By doing so, the receiving circuit can be integrated into one system, and the circuit configuration can be simplified.

【0014】図7に図6の場合の処理フローを示す。こ
こでは、焦点領域を3つとし振動子を5個(i=5)使
用する例を示している。まず、naerの領域につい
て、Cnの焦点位置に収束するように送信し(参
照)、その反射波である受信信号を第1の振動子で受信
する(,参照)。次に、送信タイミングは同じで振
動子を第2から第5まで順に切換えながら、受信信号を
取得する(,参照)。naer領域分の5つのデー
タについて、それぞれの振動子位置と焦点位置までの距
離差に対応する時間差を考慮して、互いに加算する(
参照)。この操作をmiddle領域,far領域につ
いても同様に行ない、最終的に全領域のデータを得る
(,参照)。こうして得られた全領域のデータをも
とに、従来と同様CRT等の表示装置17へ受信信号の
強度を表示したり、界面の位置を推定するための演算を
実行して排出の制御に利用したりする。
FIG. 7 shows a processing flow in the case of FIG. Here, an example is shown in which three focus areas are used and five vibrators (i = 5) are used. First, for the area of naer, the signal is transmitted so as to converge to the focal position of Cn (see), and a received signal as a reflected wave is received by the first transducer (see,). Next, a reception signal is acquired while switching the vibrator in order from the second to the fifth at the same transmission timing (see,). The five data of the naer area are added to each other in consideration of the time difference corresponding to the distance difference between each transducer position and the focus position (
reference). This operation is similarly performed for the middle area and the far area, and finally, data of the entire area is obtained (see,). Based on the data of all the regions obtained in this way, the intensity of the received signal is displayed on the display device 17 such as a CRT or the like, and the operation for estimating the position of the interface is executed to control the emission, as in the past. Or

【0015】[0015]

【発明の効果】1つの振動子を利用するものでは、超音
波伝播経路上にある浮遊汚泥による影響を受けるが、こ
の発明によれば、複数の超音波振動子による音波の経路
を利用できるので、浮遊汚泥位置を含む経路を回避する
ことができ、信頼性の高い測定が可能となる利点がもた
らされる。また、複数の振動子は設置位置に応じて送信
タイミングをずらすようにしているため、同時刻に送信
しなくても済む。これにより、電源回路容量を増大させ
ることなく、目標の界面探索深度にて音圧を向上させる
ことができる。さらに、複数の受信信号を同時にではな
く順次切り換えて受信するようにすれば、受信回路系を
1系統にすることができ、回路規模の増大化を防ぐこと
が可能となる。
According to the present invention, a single vibrator is affected by suspended sludge on the ultrasonic wave propagation path. However, according to the present invention, a path of sound waves by a plurality of ultrasonic vibrators can be used. In addition, it is possible to avoid a path including the position of suspended sludge, thereby providing an advantage that highly reliable measurement can be performed. Further, since the transmission timings of the plurality of vibrators are shifted in accordance with the installation positions, it is not necessary to transmit at the same time. As a result, the sound pressure can be improved at the target interface search depth without increasing the power supply circuit capacity. Furthermore, if a plurality of reception signals are sequentially switched instead of being received simultaneously, a single reception circuit system can be used, and an increase in circuit scale can be prevented.

【図面の簡単な説明】[Brief description of the drawings]

【図1】この発明の第1の実施の形態を示す構成図であ
る。
FIG. 1 is a configuration diagram showing a first embodiment of the present invention.

【図2】図1における音波ビーム説明図である。FIG. 2 is an explanatory diagram of a sound beam in FIG.

【図3】図1における超音波振動子の相対的設置位置と
駆動タイミング説明図である。
FIG. 3 is a diagram illustrating a relative installation position and driving timing of the ultrasonic transducer in FIG. 1;

【図4】図1における受信信号処理方式説明図である。FIG. 4 is an explanatory diagram of a received signal processing method in FIG. 1;

【図5】図1における別の受信信号処理方式説明図であ
る。
FIG. 5 is an explanatory diagram of another reception signal processing method in FIG. 1;

【図6】この発明の第2の実施の形態を示す構成図であ
る。
FIG. 6 is a configuration diagram showing a second embodiment of the present invention.

【図7】図6における信号処理動作を説明するためのフ
ローチャートである。
FIG. 7 is a flowchart illustrating a signal processing operation in FIG. 6;

【図8】従来例を示す構成図である。FIG. 8 is a configuration diagram showing a conventional example.

【符号の説明】[Explanation of symbols]

1…汚泥処理槽、2…沈澱汚泥、3…上澄液、4…液
面、5…界面、6…超音波送信器、7…超音波受信器、
81〜85…超音波送受信器、11…タイミング回路、
12…駆動回路、13…クランプ回路、14…増幅回
路、15…信号処理部、16…表示回路、17…表示装
置、18…切換回路(選択回路)、151…遅延回路、
152…加算回路、153…信号処理回路、154…A
D変換器、155…メモリ、156…演算回路。
DESCRIPTION OF SYMBOLS 1 ... Sludge treatment tank, 2 ... Settled sludge, 3 ... Supernatant, 4 ... Liquid surface, 5 ... Interface, 6 ... Ultrasonic transmitter, 7 ... Ultrasonic receiver,
81 to 85: ultrasonic transceiver, 11: timing circuit,
Reference numeral 12: drive circuit, 13: clamp circuit, 14: amplifier circuit, 15: signal processing unit, 16: display circuit, 17: display device, 18: switching circuit (selection circuit), 151: delay circuit,
152 ... addition circuit, 153 ... signal processing circuit, 154 ... A
D converter, 155 ... memory, 156 ... operation circuit.

Claims (11)

【特許請求の範囲】[Claims] 【請求項1】 液中に界面をなして沈殿する異物との界
面を測定するため、液面近傍の液中から界面へと超音波
送信器より超音波パルスを放射してその反射パルスを超
音波受信器により受信し、その受信信号にもとづき界面
を測定する界面測定装置において、 前記超音波送信器および超音波受信器をそれぞれ複数個
設けるとともに、各超音波送信器からの超音波パルスを
所定位置に同時に到着させるよう、その相対的設置位置
と媒質の音速と焦点深度とに基づき送信タイミングを決
定して送信することを特徴とする界面測定装置。
An ultrasonic transmitter emits an ultrasonic pulse from the liquid near the liquid surface to the interface and measures the reflected pulse to measure an interface with a foreign substance that forms an interface and precipitates in the liquid. An interface measuring device that receives an ultrasonic wave and measures an interface based on the received signal, wherein a plurality of ultrasonic transmitters and ultrasonic receivers are provided, and an ultrasonic pulse from each ultrasonic transmitter is predetermined. An interface measuring apparatus characterized in that a transmission timing is determined based on a relative installation position, a sound speed of a medium, and a depth of focus so as to arrive at a position at the same time, and transmission is performed.
【請求項2】 前記超音波送信器の送信方向を音波を集
束させる方向に向けることを特徴とする請求項1に記載
の界面測定装置。
2. The interface measuring apparatus according to claim 1, wherein a transmission direction of the ultrasonic transmitter is directed to a direction in which a sound wave is focused.
【請求項3】 前記超音波送信器と超音波受信器とを兼
用することを特徴とする請求項1に記載の界面測定装
置。
3. The interface measuring apparatus according to claim 1, wherein the ultrasonic transmitter and the ultrasonic receiver are shared.
【請求項4】 前記複数の超音波送信器に対し超音波パ
ルスの送信タイミング信号を発生するタイミング回路
と、そのタイミング信号を受けて各超音波送信器を順次
駆動する駆動回路と、前記各超音波受信器からの出力を
同時に受信して所定の処理を行なう信号処理部とを設け
たことを特徴とする請求項1に記載の界面測定装置。
4. A timing circuit for generating a transmission timing signal of an ultrasonic pulse to the plurality of ultrasonic transmitters, a driving circuit for receiving the timing signal and sequentially driving each ultrasonic transmitter, The interface measuring apparatus according to claim 1, further comprising: a signal processing unit that receives an output from the acoustic wave receiver at the same time and performs a predetermined process.
【請求項5】 前記信号処理部は前記各超音波受信器か
らの出力をそれぞれ遅延させる複数の遅延回路と、その
各遅延回路出力を加算する加算回路とを含むことを特徴
とする請求項4に記載の界面測定装置。
5. The signal processing unit according to claim 4, further comprising: a plurality of delay circuits for delaying outputs from the respective ultrasonic receivers; and an adding circuit for adding outputs of the respective delay circuits. 2. The interface measuring device according to item 1.
【請求項6】 前記信号処理部は前記各超音波受信器か
らの出力をそれぞれディジタルデータに変換する複数の
AD変換器と、各AD変換器からのディジタルデータを
記憶するメモリと、このメモリからの出力データにもと
づき所定の演算を行なう演算回路とを含むことを特徴と
する請求項4に記載の界面測定装置。
6. A signal processing unit comprising: a plurality of A / D converters for respectively converting outputs from the respective ultrasonic receivers into digital data; a memory for storing digital data from the respective A / D converters; 5. An interface measuring apparatus according to claim 4, further comprising an arithmetic circuit for performing a predetermined operation based on the output data of the interface.
【請求項7】 前記メモリには各AD変換器からのディ
ジタルデータを互いに遅延させて記憶し、前記演算回路
はこのメモリからの出力データを順次加算することを特
徴とする請求項6に記載の界面測定装置。
7. The memory according to claim 6, wherein the memory stores the digital data from each AD converter with a delay with respect to each other, and the arithmetic circuit sequentially adds the output data from the memory. Interface measurement device.
【請求項8】 前記メモリには各AD変換器からのディ
ジタルデータを記憶し、前記演算回路はこのメモリから
の出力データを互いに遅延させて加算することを特徴と
する請求項6に記載の界面測定装置。
8. The interface according to claim 6, wherein the memory stores digital data from each AD converter, and the arithmetic circuit delays and adds output data from the memories to each other. measuring device.
【請求項9】 前記複数の超音波送信器に対し超音波パ
ルスの送信タイミング信号を発生するタイミング回路
と、そのタイミング信号を受けて各超音波送信器を順次
駆動する駆動回路と、前記各超音波受信器からの出力を
順次選択する選択回路と、この選択回路からの出力を受
けて所定の処理を行なう信号処理部とを設けたことを特
徴とする請求項1に記載の界面測定装置。
9. A timing circuit for generating a transmission timing signal of an ultrasonic pulse to the plurality of ultrasonic transmitters, a driving circuit for receiving the timing signal and sequentially driving each ultrasonic transmitter, 2. The interface measuring apparatus according to claim 1, further comprising a selection circuit for sequentially selecting an output from the acoustic wave receiver, and a signal processing unit for receiving the output from the selection circuit and performing a predetermined process.
【請求項10】 前記信号処理部は前記各超音波受信器
からの出力をそれぞれディジタルデータに変換する複数
のAD変換器と、各AD変換器からのディジタルデータ
を記憶するメモリと、このメモリからの出力データにも
とづき所定の演算を行なう演算回路とを含むことを特徴
とする請求項9に記載の界面測定装置。
10. A signal processing unit comprising: a plurality of A / D converters for converting outputs from the respective ultrasonic receivers into digital data; a memory for storing digital data from the respective A / D converters; 10. An interface measuring apparatus according to claim 9, further comprising an arithmetic circuit for performing a predetermined operation based on the output data of the interface.
【請求項11】 前記前記メモリには各AD変換器から
のディジタルデータを記憶し、前記演算回路はこのメモ
リからの出力データを互いに遅延させて加算することを
特徴とする請求項10に記載の界面測定装置。
11. The memory according to claim 10, wherein the memory stores digital data from each AD converter, and the arithmetic circuit delays and adds output data from the memories to each other. Interface measurement device.
JP2000150811A 2000-05-23 2000-05-23 Interface measuring device Pending JP2001330500A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2000150811A JP2001330500A (en) 2000-05-23 2000-05-23 Interface measuring device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2000150811A JP2001330500A (en) 2000-05-23 2000-05-23 Interface measuring device

Publications (1)

Publication Number Publication Date
JP2001330500A true JP2001330500A (en) 2001-11-30

Family

ID=18656452

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000150811A Pending JP2001330500A (en) 2000-05-23 2000-05-23 Interface measuring device

Country Status (1)

Country Link
JP (1) JP2001330500A (en)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008304320A (en) * 2007-06-07 2008-12-18 Ricoh Elemex Corp Ultrasonic liquid level meter
KR100966543B1 (en) * 2002-12-24 2010-06-29 주식회사 포스코 Ultrasonic evaluation system for internal deposit layer in a pipe
JP2011104510A (en) * 2009-11-17 2011-06-02 Showa Denko Kk Automatic extraction system for surplus sludge
KR101365110B1 (en) * 2013-12-16 2014-02-20 (주)리테크 Ultrasonic water level measurement apparatus that can be controlled multi frequency band and water level control method using that
KR101373684B1 (en) * 2013-12-16 2014-03-14 (주)리테크 Ultrasonic water level measurement apparatus that can be controlled different frequency band in multi-channel and water level control method using that
WO2015052700A1 (en) * 2013-10-10 2015-04-16 A.P.M. Automation Solutions Ltd. A group of spaced apart acoustic transciver arrays and a method for measuring a content of a bin
RU2594114C1 (en) * 2015-06-04 2016-08-10 Акционерное общество "Государственный научный центр Российской Федерации - Физико-энергетический институт имени А.И. Лейпунского" Method of determining media interface border in crude oil separators and device for its implementation
US9952083B2 (en) 2013-10-10 2018-04-24 Apm Automation Solutions Ltd Movable system for measuring a content of a bin
US9952084B2 (en) 2013-10-10 2018-04-24 Apm Automation Solutions Ltd Increasing signal to noise ratio of acoustic echoes by a group of spaced apart acoustic transceiver arrays

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100966543B1 (en) * 2002-12-24 2010-06-29 주식회사 포스코 Ultrasonic evaluation system for internal deposit layer in a pipe
JP2008304320A (en) * 2007-06-07 2008-12-18 Ricoh Elemex Corp Ultrasonic liquid level meter
JP2011104510A (en) * 2009-11-17 2011-06-02 Showa Denko Kk Automatic extraction system for surplus sludge
WO2015052700A1 (en) * 2013-10-10 2015-04-16 A.P.M. Automation Solutions Ltd. A group of spaced apart acoustic transciver arrays and a method for measuring a content of a bin
US9952083B2 (en) 2013-10-10 2018-04-24 Apm Automation Solutions Ltd Movable system for measuring a content of a bin
US9952084B2 (en) 2013-10-10 2018-04-24 Apm Automation Solutions Ltd Increasing signal to noise ratio of acoustic echoes by a group of spaced apart acoustic transceiver arrays
US9952318B2 (en) 2013-10-10 2018-04-24 Apm Automation Solutions Ltd Group of spaced apart acoustic transceiver arrays and a method for measuring a content of a bin
KR101365110B1 (en) * 2013-12-16 2014-02-20 (주)리테크 Ultrasonic water level measurement apparatus that can be controlled multi frequency band and water level control method using that
KR101373684B1 (en) * 2013-12-16 2014-03-14 (주)리테크 Ultrasonic water level measurement apparatus that can be controlled different frequency band in multi-channel and water level control method using that
RU2594114C1 (en) * 2015-06-04 2016-08-10 Акционерное общество "Государственный научный центр Российской Федерации - Физико-энергетический институт имени А.И. Лейпунского" Method of determining media interface border in crude oil separators and device for its implementation

Similar Documents

Publication Publication Date Title
US6421299B1 (en) Single-transmit, dual-receive sonar
US7215599B2 (en) Ultrasonic transmitter, ultrasonic transceiver and sonar apparatus
CN102879472B (en) Adaptive steel rail ultrasonic flaw detection method and device based on frequency spectrum recognition
US5419330A (en) Ultrasonic diagnostic equipment
NO148429B (en) SONAR DEVICE.
JP2001330500A (en) Interface measuring device
WO2004073520A1 (en) Ultrasonographic device
JP2017166880A (en) Acoustic measuring device, acoustic measuring method, multi-beam acoustic measuring device, and synthetic aperture sonar
US5024094A (en) Ultrasonic imaging system of bonding zone
US4627290A (en) Method and apparatus for detecting acoustic homogeneity of object
JP7242243B2 (en) Distance/speed measuring device and distance/speed measuring program
JP3583838B2 (en) Ultrasonic underwater detector
JP5259076B2 (en) Ultrasonic transceiver and scanning sonar
JPH011993A (en) acoustic sounding instrument
WO1996024053A1 (en) Acoustic probing apparatus
JP4078577B2 (en) Interface measuring device
JP2889661B2 (en) Ultrasonic object recognition device
JP3814734B2 (en) Fish finder
SU771474A1 (en) Device for measuring vertical distribution of sound velocity in liquid media
JP2599009B2 (en) Ultrasonic transmission / reception method
JPH1062533A (en) Active signal processing circuit
JP2001141438A (en) Device for measuring thickness of bottom mud
JPS6365898B2 (en)
JPH06327670A (en) Ultrasonic diagnosis equipment
JP2650922B2 (en) Underwater detector

Legal Events

Date Code Title Description
A625 Written request for application examination (by other person)

Free format text: JAPANESE INTERMEDIATE CODE: A625

Effective date: 20040115

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20040205

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20050323

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20050728

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20050830

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20051020