JPS6365898B2 - - Google Patents

Info

Publication number
JPS6365898B2
JPS6365898B2 JP6796182A JP6796182A JPS6365898B2 JP S6365898 B2 JPS6365898 B2 JP S6365898B2 JP 6796182 A JP6796182 A JP 6796182A JP 6796182 A JP6796182 A JP 6796182A JP S6365898 B2 JPS6365898 B2 JP S6365898B2
Authority
JP
Japan
Prior art keywords
transducer
ultrasonic
time
focal length
detection circuit
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP6796182A
Other languages
Japanese (ja)
Other versions
JPS58184524A (en
Inventor
Tokiaki Yamamoto
Yasuhiko Endo
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Furuno Electric Co Ltd
Original Assignee
Furuno Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Furuno Electric Co Ltd filed Critical Furuno Electric Co Ltd
Priority to JP6796182A priority Critical patent/JPS58184524A/en
Publication of JPS58184524A publication Critical patent/JPS58184524A/en
Publication of JPS6365898B2 publication Critical patent/JPS6365898B2/ja
Granted legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01KMEASURING TEMPERATURE; MEASURING QUANTITY OF HEAT; THERMALLY-SENSITIVE ELEMENTS NOT OTHERWISE PROVIDED FOR
    • G01K11/00Measuring temperature based upon physical or chemical changes not covered by groups G01K3/00, G01K5/00, G01K7/00 or G01K9/00
    • G01K11/22Measuring temperature based upon physical or chemical changes not covered by groups G01K3/00, G01K5/00, G01K7/00 or G01K9/00 using measurement of acoustic effects
    • G01K11/24Measuring temperature based upon physical or chemical changes not covered by groups G01K3/00, G01K5/00, G01K7/00 or G01K9/00 using measurement of acoustic effects of the velocity of propagation of sound

Description

【発明の詳細な説明】 本発明は、超音波を用いて水中所定深度域の水
温を測定する装置に関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to an apparatus for measuring water temperature in a predetermined depth underwater using ultrasonic waves.

この発明は水中に放射された超音波ビームがそ
の点における音波強度に比例した体積残響エコー
を発生するという現象を利用する。すなわち、超
音波を所定の焦点に集中させてその点に強レベル
体積残響エコーを発生させ受波するものである。
This invention utilizes the phenomenon that an ultrasonic beam emitted into water generates a volume reverberant echo proportional to the sound wave intensity at that point. That is, the ultrasonic wave is focused on a predetermined focal point, and a strong level volumetric reverberant echo is generated and received at that point.

以下、図面を参照して説明する。 This will be explained below with reference to the drawings.

第1図において、1は振動子3及び焦点距離が
l1に設定された超音波レンズ4から成る超音波送
受波器である。2は振動子5及び焦点距離がl2
(l1)に設定された超音波レンズ6から成る超
音波送受波器である。そして、上記超音波送受波
器1及び2は、例えば適当な間隔を有して船底の
同一水平位置に取り付けられる。互いに異周波の
超音波を使用する場合は同一場所で良いが、同一
周波の場合は干渉の影響を考慮して若干離した方
が良い。
In Figure 1, 1 is the transducer 3 and the focal length is
This is an ultrasonic transducer consisting of an ultrasonic lens 4 set at l 1 . 2 has a vibrator 5 and a focal length of l 2
This is an ultrasonic transducer consisting of an ultrasonic lens 6 set at (l 1 ). The ultrasonic transducers 1 and 2 are mounted, for example, at the same horizontal position on the bottom of the ship with an appropriate interval between them. If ultrasonic waves of different frequencies are used, they may be placed at the same location, but if they are of the same frequency, it is better to space them slightly apart to prevent interference.

さて、上記送受波器1より超音波パルスを送波
し、その直後より受波状態に入ると、順次得られ
る各点の体積残響エコーレベルに較べ一段とレベ
ルの高い焦点F1からの体積残響エコーが受波さ
れ(第2図a参照)、該受波信号により送波から
受波までの時間t1が求まる。すなわち、海水中、
T℃における音速vは実験式により、 v(T)=1448.6+4.618T であるから、 2l1=(1448.6+4.618T)t1 ……(1) となる。
Now, when an ultrasonic pulse is transmitted from the above-mentioned transducer 1, and immediately after that it enters the reception state, a volume reverberation echo from the focal point F1 , which has a higher level than the volume reverberation echo level of each point sequentially obtained, is generated. is received (see FIG. 2a), and the time t 1 from transmission to reception is determined from the received signal. That is, in seawater,
The speed of sound v at T°C is determined by the experimental formula as v(T)=1448.6+4.618T, so 2l 1 =(1448.6+4.618T)t 1 ...(1).

同様に、送受波器2より超音波パルス送波し、
焦点F2からの体積残響エコーが受波される(第
2図b参照)までの時間をt2とすれば、 2l2=(1448.6+4.618T)t2 ……(2) と求まり、上記(1)、(2)式より 2(l2−l1)=(1448.6+4.618T)(t2−t1) これをTについて整理すれば、 T=1/4.618{2(l2−l1)/t2−t1−1448.6}…
…(3) となり、又、この時の深度は L=1/2(l1+l2) ……(4) となる。
Similarly, ultrasonic pulses are transmitted from the transducer 2,
If t 2 is the time until the volume reverberation echo is received from focal point F 2 (see Figure 2 b), then 2l 2 = (1448.6 + 4.618T) t 2 ...(2), and the above From equations (1) and (2), 2(l 2 - l 1 ) = (1448.6 + 4.618T) (t 2 - t 1 ) If we rearrange this regarding T, we get T = 1/4.618 {2(l 2 - l 1 )/t 2 −t 1 −1448.6}…
...(3), and the depth at this time is L=1/2 (l 1 + l 2 ) ...(4).

第3図は、上記水温測定方法を具現する一回路
例を示すもので、図において、7は送受波器1,
2を励振するための送信トリガパルスを送出する
送信トリガ発生回路、8及び9は送受切換回路で
ある。10及び11は各送受波器1及び2で受波
される体積残響エコーを増幅検波する増幅検波回
路である。12及び13は上記増幅検波回路10
及び11で得られた信号の内、レベルの高い各焦
点F1及びF2からの体積残響エコーに基づく信号
を、例えばスライスして検出し、整形等する検出
回路である。14及び15は送信トリガ発生回路
7からの送信トリガパルス発生時から各検出回路
12及び13で得られる整形信号の抽出時までの
時間(第2図中t1,t2)を計測するタイマーであ
る。16は上記タイマー14及び15で得られる
各計測時間データt1,t2及び予め設定された焦点
距離データl1,l2に基づいて(3)式、(4)式を演算し
て、水温T及び深度Lを算出する演算回路であ
る。上記において、水温Tは、l2−l1が微小距離
であることから、その微小間隔内においては水温
が一定、すなわち音速が一定と見做せることによ
り導かれるものである。
FIG. 3 shows an example of a circuit that embodies the water temperature measuring method described above. In the figure, 7 is a transducer 1,
2 is a transmission trigger generation circuit which sends out a transmission trigger pulse to excite signal 2, and 8 and 9 are transmission/reception switching circuits. Reference numerals 10 and 11 are amplification and detection circuits that amplify and detect the volume reverberation echoes received by the transducers 1 and 2, respectively. 12 and 13 are the amplification and detection circuits 10
This is a detection circuit that slices, detects, and shapes signals based on volume reverberation echoes from each of the high-level focal points F 1 and F 2 among the signals obtained in steps F 1 and F 2 . 14 and 15 are timers that measure the time (t 1 , t 2 in FIG. 2) from the generation of the transmission trigger pulse from the transmission trigger generation circuit 7 to the extraction of the shaped signal obtained by each detection circuit 12 and 13. be. 16 calculates the water temperature by calculating equations (3) and (4) based on the measurement time data t 1 , t 2 obtained by the timers 14 and 15 and the preset focal length data l 1 , l 2 . This is an arithmetic circuit that calculates T and depth L. In the above, the water temperature T is derived from the fact that since l 2 - l 1 is a very small distance, the water temperature is considered to be constant, that is, the speed of sound is constant within that very small distance.

このように本発明によれば、極めて簡単な方法
並びに構成で、従来測定することの出来なかつた
水中所定深度の水温を遠隔的に測定することがで
きる。
As described above, according to the present invention, the water temperature at a predetermined depth underwater, which could not be measured conventionally, can be remotely measured using an extremely simple method and configuration.

尚、音速は深度100m当り1.75m/s増加する
ことが知られているから、上記深度Lの音速とし
て上記増加分を加味すればより正確な水温測定が
可能となる。
It is known that the speed of sound increases by 1.75 m/s per 100 m of depth, so if the above increase is taken into account as the speed of sound at the depth L, more accurate water temperature measurement becomes possible.

又、超音波を一点に集中させる方法として超音
波レンズのみならず、例えば振動子を多数個並べ
て各々の遅延量を調整することによつても達成可
能である。第4図はその一例を示す構成図であ
る。図において、17は相隣接する振動子により
設定される指向方向が全て一点(焦点)で交叉す
る如く各振動子19(1)乃至19(n)の遅延
位相量が設定された位相設定回路である。そし
て、その設定量は可変的で、その変更により焦点
距離が変更できるようになされている。18は該
位相設定回路17の設定量に基づいて各振動子に
所定の遅延を与える遅延回路である。19(1)
至19(n)は一列に配列された振動子群であ
る。
Further, as a method of concentrating the ultrasonic waves at one point, it is possible to achieve this not only by using an ultrasonic lens but also by arranging a large number of transducers and adjusting the delay amount of each one, for example. FIG. 4 is a configuration diagram showing an example thereof. In the figure, 17 is a phase setting circuit in which the amount of delay phase of each vibrator 19(1) to 19(n) is set so that the directivity directions set by adjacent vibrators all intersect at one point (focal point). be. The setting amount is variable, and the focal length can be changed by changing the setting amount. A delay circuit 18 provides a predetermined delay to each vibrator based on the amount set by the phase setting circuit 17. 19(1)
to 19(n) is a group of vibrators arranged in a line.

又、他の実施例として、上記遅延量に相当する
超音波伝搬距離分だけ予め振動子の配置位置を調
整しておけば(例えば円弧状)上記遅延手段は不
要である。
In another embodiment, the delay means is not necessary if the arrangement position of the transducer is adjusted in advance by the ultrasonic propagation distance corresponding to the delay amount (for example, in an arc shape).

【図面の簡単な説明】[Brief explanation of drawings]

第1図は、本発明に使用される送受波器を示す
ものである。第2図は、上記第1図に示す送受波
器による送受信の状態を示す信号波形図である。
第3図は、本発明の一実施例を示す回路図であ
る。第4図は、送受波器の他の実施例を示すもの
である。
FIG. 1 shows a transducer used in the present invention. FIG. 2 is a signal waveform diagram showing the state of transmission and reception by the transducer shown in FIG. 1 above.
FIG. 3 is a circuit diagram showing one embodiment of the present invention. FIG. 4 shows another embodiment of the transducer.

Claims (1)

【特許請求の範囲】 1 第1の音波焦点距離を有する第1の送受波器
と、 第2の音波焦点距離を有する第2の送受波器
と、 第1の送受波器によつて受波される第1の音波
焦点距離で発生する体積残響エコーを検出する第
1の検出回路と、 第2の送受波器によつて受波される第2の音波
焦点距離で発生する体積残響エコーを検出する第
2の検出回路と、 第1の送受波器による超音波送波時から第1の
検出回路における検出時までの時間を計測する第
1の時計と、 第2の送受波器による超音波送波時から第2の
検出回路における検出時までの時間を計測する第
2の時計と、 上記第1、第2の時計で得られた計測時間及び
第1、第2の音波焦点距離に基づいて上記第1、
第2の音波焦点距離の中間付近距離の深度におけ
る水温を算出する演算回路とから成る超音波水温
計。 2 上記第1及び第2の送受波器が、振動子が複
数個一列に配列され各隣接する振動子により設定
される指向方向が全て一点で交叉する如く各振動
子に遅延位相量が設定され且つ該遅延位相量が可
変されることにより前記第1及び第2の音波焦点
距離が得られるようになされた送受波器であるこ
とを特徴とする特許請求の範囲第1項記載の超音
波水温計。
[Claims] 1. A first transducer having a first sonic focal length; a second transducer having a second sonic focal length; and receiving waves by the first transducer. a first detection circuit that detects a volume reverberant echo generated at a first acoustic focal length that is received by a second transducer; a second detection circuit that detects ultrasonic waves; a first clock that measures the time from when the first transducer transmits the ultrasonic wave to when the first detection circuit detects the ultrasonic wave; a second clock that measures the time from the time of sound wave transmission to the time of detection in the second detection circuit; and the measurement time obtained by the first and second clocks and the first and second sound wave focal lengths; Based on the above first,
An ultrasonic water thermometer comprising an arithmetic circuit that calculates the water temperature at a depth near the middle of the second acoustic wave focal length. 2 In the first and second transducers, a plurality of transducers are arranged in a line, and a delay phase amount is set for each transducer so that the directivity directions set by each adjacent transducer all intersect at one point. The ultrasonic water temperature according to claim 1, characterized in that the transmitter/receiver is configured such that the first and second acoustic wave focal lengths are obtained by varying the delay phase amount. Total.
JP6796182A 1982-04-21 1982-04-21 Ultrasonic water thermometer Granted JPS58184524A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP6796182A JPS58184524A (en) 1982-04-21 1982-04-21 Ultrasonic water thermometer

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP6796182A JPS58184524A (en) 1982-04-21 1982-04-21 Ultrasonic water thermometer

Publications (2)

Publication Number Publication Date
JPS58184524A JPS58184524A (en) 1983-10-28
JPS6365898B2 true JPS6365898B2 (en) 1988-12-19

Family

ID=13360063

Family Applications (1)

Application Number Title Priority Date Filing Date
JP6796182A Granted JPS58184524A (en) 1982-04-21 1982-04-21 Ultrasonic water thermometer

Country Status (1)

Country Link
JP (1) JPS58184524A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008513753A (en) * 2004-09-17 2008-05-01 シーメンス アクチエンゲゼルシヤフト How to determine the temperature of the opposite side of the object

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB8402920D0 (en) * 1984-02-03 1984-03-07 Atomic Energy Authority Uk Remote temperature measurement
JPS62187820U (en) * 1986-05-22 1987-11-30

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008513753A (en) * 2004-09-17 2008-05-01 シーメンス アクチエンゲゼルシヤフト How to determine the temperature of the opposite side of the object

Also Published As

Publication number Publication date
JPS58184524A (en) 1983-10-28

Similar Documents

Publication Publication Date Title
US4270191A (en) Doppler current meter for use at great depths
US4155258A (en) Ultrasonic imaging system
JPS6365898B2 (en)
JP3583838B2 (en) Ultrasonic underwater detector
JPS6144382A (en) Active sonar apparatus
JP2828259B2 (en) Fish finder
JP3535271B2 (en) Sonar
JPH05281211A (en) Ultrasonic apparatus
JPH0479548B2 (en)
ES336518A1 (en) Improvements in or relating to Apparatuses for Digital Measurement of Distances by Means of Ultrasonic Pulses
JPH07174843A (en) Sonic velocity correcting device in position measurement and its method
JPH01170885A (en) Sonar device
JPS60158367A (en) Active sonar
JPH07253469A (en) Instrument for measuring frequency characteristic of fish
JPH0126496B2 (en)
SU588498A1 (en) Ultrasound velocity meter
SU376737A1 (en) DEVICE FOR GEOPHYSICAL RESEARCH
JPH01187485A (en) Ultrasonic distance measuring method
FR2412853A1 (en) Sonar system in underwater vehicle - has transducers radiating and receiving acoustic signals, producing echogram and measuring depth
JPH0384488A (en) Ultrasonic distance measuring instrument
SU573071A1 (en) Device for ultrasonic quality control of materials
RU839386C (en) Method of acoustic-optical probing device for atmosphere
JP2982765B2 (en) Transmission level measurement device
JPS6365897B2 (en)
JPS57149908A (en) Sounding machine