WO1996024053A1 - Acoustic probing apparatus - Google Patents

Acoustic probing apparatus Download PDF

Info

Publication number
WO1996024053A1
WO1996024053A1 PCT/JP1995/000144 JP9500144W WO9624053A1 WO 1996024053 A1 WO1996024053 A1 WO 1996024053A1 JP 9500144 W JP9500144 W JP 9500144W WO 9624053 A1 WO9624053 A1 WO 9624053A1
Authority
WO
WIPO (PCT)
Prior art keywords
reception
transmission
ultrasonic
waves
signal
Prior art date
Application number
PCT/JP1995/000144
Other languages
French (fr)
Japanese (ja)
Inventor
Yoshihiro Michiguchi
Masahiro Koike
Yoshinori Musha
Yoshiaki Nagashima
Original Assignee
Hitachi, Ltd.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi, Ltd. filed Critical Hitachi, Ltd.
Priority to JP52339896A priority Critical patent/JP3279572B2/en
Priority to PCT/JP1995/000144 priority patent/WO1996024053A1/en
Publication of WO1996024053A1 publication Critical patent/WO1996024053A1/en

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N29/00Investigating or analysing materials by the use of ultrasonic, sonic or infrasonic waves; Visualisation of the interior of objects by transmitting ultrasonic or sonic waves through the object
    • G01N29/36Detecting the response signal, e.g. electronic circuits specially adapted therefor
    • G01N29/40Detecting the response signal, e.g. electronic circuits specially adapted therefor by amplitude filtering, e.g. by applying a threshold or by gain control
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N29/00Investigating or analysing materials by the use of ultrasonic, sonic or infrasonic waves; Visualisation of the interior of objects by transmitting ultrasonic or sonic waves through the object
    • G01N29/36Detecting the response signal, e.g. electronic circuits specially adapted therefor
    • G01N29/38Detecting the response signal, e.g. electronic circuits specially adapted therefor by time filtering, e.g. using time gates
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N2291/00Indexing codes associated with group G01N29/00
    • G01N2291/10Number of transducers
    • G01N2291/106Number of transducers one or more transducer arrays
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S7/00Details of systems according to groups G01S13/00, G01S15/00, G01S17/00
    • G01S7/52Details of systems according to groups G01S13/00, G01S15/00, G01S17/00 of systems according to group G01S15/00
    • G01S7/52017Details of systems according to groups G01S13/00, G01S15/00, G01S17/00 of systems according to group G01S15/00 particularly adapted to short-range imaging

Definitions

  • the present invention relates to an exploration device using a reflection result of a wave.
  • the timing of transmission to each element is controlled, and at the time of reception, the reception signal of each element is given an appropriate delay, and the reception signals from many elements are given. to add.
  • a tapped delay line has been used as a signal delay element.
  • the delay line itself has a large volume, and if a delay line is used for a large number of transmission / reception elements such as an array in which transmission / reception elements are arranged in a two-dimensional plane, this part becomes large and practicality is impaired.
  • a CCD Charge Coupled Device
  • a CCD has a configuration in which a plurality of charge storage elements are arranged, and charges are sequentially transferred from an end by a clock signal supplied to the CCD.
  • the waveform is first captured in CCD, and after a set time, called with the same clock as the capture.
  • CCD is used to store waveforms, and the read start time of the stored waveform is changed to provide an equivalent delay effect.
  • none of the conventional examples considers a method for controlling whether or not each ultrasonic transmitting / receiving element is used.
  • An object of the present invention is to reduce the size of a delay control portion of an exploration apparatus using a wave and to reduce waveform distortion.
  • the above object is to provide a transmitter that transmits a wave with a different delay time for each transmitter from a plurality of transmitters, a plurality of receivers that receive a reflected wave of the wave and convert the reflected wave into an electric signal, A plurality of analog shift registers corresponding to the respective receivers to which respective signals from the respective receivers are input, and means for changing a shift speed of data in each of the charge transfer elements based on a shift speed command signal And an adder for adding outputs from the charge transfer elements, and a display for visualizing the reflected wave based on the outputs from the adders. Is achieved by the exploration equipment.
  • the main axis of the wave energy can be directed in a desired direction by a combination of delay time elements given to each wave energy.
  • the wave energy is reflected by the object to be searched and returned as a plurality of reflected waves to each receiver with a time delay corresponding to the reflection distance of each reflected wave.
  • the shift speed is shifted to the output side, the shift speed is changed on the way based on the shift speed command signal, and the shift operation is controlled so that the shift operation does not stop until reaching the output.
  • the transfer element removes the time delay element of each reflected wave, matches the time axis, and outputs.
  • the output signal from each charge transfer element is added by a calculator, and an effect of being visually displayed on a display is obtained.
  • FIG. 1 is a block diagram showing the basic configuration of an ultrasonic flaw detector according to a first embodiment of the present invention
  • FIG. 2 is a block diagram showing the detailed configuration of the control device 2 in FIG. 1
  • FIG. Fig. 4 is a block diagram showing the detailed configuration of the transmission / reception circuit 3.
  • FIG. 5 is an explanatory diagram of the delay amount for each ultrasonic reflection path in the embodiment of the present invention
  • FIG. 5 is an explanatory diagram of the operation of the CCD employed in the embodiment of the present invention
  • FIG. 7 is an explanatory diagram of a delay amount for each ultrasonic reflection path in the second embodiment of the present invention
  • FIG. 8 is each block diagram in the third embodiment of the present invention.
  • FIG. 9 is a block diagram showing a detailed configuration of three transmission / reception circuits of FIG. 1 according to a fourth embodiment of the present invention, and
  • FIG. 10 is a fifth embodiment of the present invention.
  • Fig. 11 is an overall block diagram of the device according to the example.
  • Fig. 11 is a flowchart of the control data setting process of the microcomputer 201 shown in Fig. 2.
  • Fig. 12 is an inspection of the microcomputer 201 shown in Fig. 2. It is a process flow figure in a process. BEST MODE FOR CARRYING OUT THE INVENTION
  • the first embodiment of the present invention is an example of a so-called one-dimensional array probe in which ultrasonic transmitting and receiving elements are arranged in a straight line.
  • FIG. 1 shows a schematic configuration thereof.
  • 1 is an ultrasonic image display device
  • 2 is a transmission / reception control device
  • FIG. 2 shows a detailed configuration of the control device 2
  • FIG. 3 shows a detailed configuration of the transmission / reception circuit 3 (subscripts are omitted in the following description unless otherwise specified).
  • reference numeral 201 denotes a microcomputer
  • reference numeral 202 denotes a data memory
  • reference numeral 203 denotes a selector
  • Reference numeral 204 denotes a trigger generator which receives a signal from the display device 1 via the terminal 27 1.
  • Reference numeral 205 denotes a clock generator
  • reference numeral 206 denotes an adder
  • 35 i is a transmitting / receiving element, and the piezoelectric element Is emitted and detected.
  • 302 is a gate circuit
  • 303 is a counter circuit
  • 304 is a pulse generator
  • 305 is a transmission / reception switch.
  • the electric pulse signal generated in 304 passes through the transmission / reception switch 305, reaches the transmission / reception element 35i, and is emitted as an ultrasonic pulse.
  • the reflected ultrasonic wave that has reached 35 i becomes an electric signal, passes through 30 5 and reaches the amplifier 30 6.
  • Reference numeral 307 denotes a charge transfer element (eg, CCD, Chagc Coupled Device, charge-coupled element), which is a clock control circuit 310 controlled by two counters 308 and 309. change.
  • CCD Charge transfer element
  • Chagc Coupled Device charge-coupled element
  • the delayed signal is led to the control device 2 through the switch circuit 3 1 1.
  • Reference numeral 312 denotes a memory element for storing count data of the counters 303 and 309, and data for determining whether the gate 302 and the switch circuit 311 are turned on and off. I do.
  • Reference numeral 313 denotes a gate circuit for setting whether or not to transfer data to the memory element 312.
  • the mutual connection state of the display device 1, the control device 2, and the transmission / reception circuit 3 is described, but only the signal line is described, and the power supply line and the like are omitted.
  • control information to be described later is sent to the control device 2 (terminal 271 in FIG. 2), and the reflected signal is sent from 1 to 1 for display (terminal 272 in FIG. 2).
  • the display device 1 a known device can be used.
  • the control information sent from the display device 1 to the control device 2 includes the range of the focal position of the ultrasonic wave to be set and the set interval, the spatial position of each transmitting / receiving element 35 i, The sound velocity of the seed medium, etc., will be described in detail later.
  • One type is connected from the control device 2 for each transmission / reception circuit, and the other type is a connection common to the entire transmission / reception circuit.
  • the signal is transferred from the selector 203 to each transmission / reception circuit via the terminals 281 to 28M, and the signal is transmitted from the transmission / reception circuit via the terminals 291 to 29M. It is connected to the container 206.
  • the latter common connection is a signal line which is transferred from the control device 2 to the transmission / reception circuit, and four terminals 273 to 276 are used.
  • 2 7 3 is the terminal of the data line such as the count value of the counter
  • 2 7 4 is the terminal of the transfer line for the timing of starting the reception operation
  • 2 7 5 is the terminal of the trigger line
  • 2 7 6 is the terminal. Terminal for the transfer line.
  • the four signal lines are connected to each of the M transmission / reception circuits from 31 to 3M.
  • the positions from 35 1 to 35 M are XI to XM.
  • the radiated wavefront from each ultrasonic transmission element needs to coincide at the focal position F (XF, YF).
  • the distance between each ultrasonic transmitting / receiving element and the focal point F can be obtained by Expression (1).
  • the signal serving as a reference for the delay amount ⁇ T i is a signal from the trigger generator 204.
  • the delay amount of the ultrasonic transmitting / receiving element 35M is 0, and the other ultrasonic transmitting / receiving elements are set to have the delay represented by the equation (3) as compared with 35M.
  • the ultrasonic waves generated from F are detected by each ultrasonic receiving element at the same time even at the time of reception, so a delay of ⁇ ⁇ i is necessary for 35 i as in transmission.
  • the arc C2 in FIG. 4 is based on the element from which the ultrasonic wave from the focal point F is detected earliest during reception, which will be described later. So far, the necessary delay amount of each transmitting / receiving element has been described. The actual operation will be described below.
  • the clock generator 205 generates a clock signal of D for one cycle.
  • data on the amount of delay at the time of transmission is stored as the number of clock pulses.
  • K i ⁇ T i ZD Equation (4) is stored.
  • the data of the delay amount at the time of reception is also stored in 202, and the specific value will be described in detail in the control of the receiving section described later.
  • the stored data is transferred to the memory element 312 provided for each transmitting / receiving circuit.
  • This transfer is under the control of the microcomputer 201.
  • the microcomputer 201 controls the selector 203 and outputs it to a specific one of the output lines from 203.
  • gate circuit 313 can be turned on through 28i and terminal 38i.
  • the microcomputer 201 sends the data of the solid data memory 202 to a signal line common to the transmitting / receiving circuits via the terminal 273, and the gate 3 of the transmitting / receiving circuits Data is sent to the memory element 3 1 2 only when 13 is conductive.
  • the data of 3 1 2 is a count corresponding to the amount of delay during transmission.
  • the control data includes the number K i, the number of counts obtained from the delay amount at the time of reception described later, and whether the i-th ultrasonic transmission / reception element is used for transmission or not.
  • the gate 302 is turned on, and if it is used for reception, the switch circuit 311 is turned on.
  • the i-th ultrasonic transmission / reception element can be used for either transmission only or reception only, and can be controlled to be used for both transmission and reception.
  • the delay K i stored in the memory element 3 12 is loaded into the counter 303 and is sequentially reduced from K i by the clock signal via the terminal 276. .
  • This pulse signal is guided to the ultrasonic transmission / reception element 35i through the well-known transmission / reception tandem device 305, and is emitted as an ultrasonic signal.
  • the timing of this radiation is delayed by ⁇ T i from the radiation time of the reference transmitting / receiving element (35 M in the example in Fig. 4).
  • the other ultrasonic transmitting / receiving elements are also delayed for each element, so that the ultrasonic waves are focused at the position of the focal point F.
  • the reflected waveform detected by the ultrasonic transmitting / receiving element 35 i passes through the transmission / reception switch 305, is amplified by the amplifier 306, and reaches a charge transfer element, for example, a CCD 307. In the delay control during transmission, a pulse was finally generated after the delay in the counter 303.
  • the CCD 307 has a structure in which N elements from 1 to N are arranged as shown in FIG.
  • a CCD requires a clock signal, and the clock sequentially transfers the signal input from the extreme end (1 in FIG. 5) to the opposite side (N in FIG. 5). ) Side.
  • the first n clocks from the CCD operation start time are one cycle D clocks, and the (N ⁇ n ⁇ 1) data from (n + 1) to (N ⁇ 1) is p D (p> l).
  • a clock with a certain cycle, and the last one is operated with the D clock. ⁇ By using a clock controlled in this way, the time T i that passes through the CCD is ⁇
  • T i ⁇ N D D (N ⁇ n ⁇ l) (p ⁇ 1) Equation (7).
  • the reception delay amount is changed by changing n. It can be controlled by the formula (7).
  • n The value of n is transferred to the counter 309 via the memory element 312.
  • Constant data (N-1) is always supplied to the counter 308.
  • a clock having a period D is supplied to the two counters 308 and 309 via the terminal 276.
  • the receiving operation start timing signal provided via the terminal 274 causes the transfer data to start counting from the transfer data.
  • a timing signal is sent to the clock control circuit 310.
  • FIG. 6 shows the configuration of the clock control circuit 310.
  • 3101 is a memory element
  • 3102 is a selector
  • 3103 is a frequency dividing circuit
  • 3104 is a gate.
  • the frequency divider 3103 receives a clock having a period D from the terminal 276, and multiplies the period D by p.
  • a flip-flop element can be used, and other known frequency dividers can be used.
  • the memory element 3101 is set by the output of the counter 309 and reset by the output of the counter 308.
  • the selector 3102 selects either the clock with the period D or the clock with pD in the state of the memory 3101.
  • the selector 3102 When the memory 3101 is in the reset state, the selector 3102 outputs a clock signal having a period D, and when the memory 3101 is in the set state, it outputs a frequency-divided pD clock.
  • n can be transferred with a clock with period D, the next (N_n-1) with pD, and the last one with D.
  • the desired delay amount ⁇ ⁇ i can be obtained.
  • the gate 3104 performs a gate operation to determine whether or not to add the clock signal from the selector 3102 to the CCD of the switch 3107.
  • the gate is turned off by the trigger signal from the switch 275, and the gate is turned on by the reception start timing signal from the switch 274.
  • the clock signal is sent from the clock control circuit 310 to the CCD 307 after the reception start timing signal from the terminal 274 is input to the CCD 307.
  • the reception operation start timing signal is output from the microcomputer 2-1 in FIG.
  • the ultrasonic transmission / reception element (35 M in FIG. 4) having the largest distance from the focal point F was selected as a reference for delay.
  • the delay from the trigger was set to 0 at 35 M, and appropriate delays were given to the other transmitting and receiving elements.
  • ⁇ S is the time from the trigger
  • Ls is the distance from the focal point F to the nearest ultrasonic transmitting / receiving element.
  • A is a value that determines from how close to the focal point the reflected waveform is sampled.
  • Equation (10) The propagation velocity V of the ultrasonic wave is known, and if a is set in advance, equation (10) can be calculated.
  • the delayed reflected signal is output from the CCD 307.
  • the switch circuit 311 is conductive, the delayed reflected signal is guided to the adder 20-6 through the terminal 39i.
  • the adder 206 functions to add the delayed reflected wave of the switch circuit of each receiving circuit that is conductive.
  • the output of the adder 206 becomes a reflected wave from the focal point F, that is, a reflected signal in which the observation position is set to F.
  • the focal point F (XF, YF) is changed, for example, if YF is fixed and XF is changed, the focal point will be scanned at a constant depth. It is possible to display a reflection image. Also, if both XF and YF are changed, an ultrasonic reflection image in the X-axis and y-axis cross sections can be obtained.
  • the operation of the microcomputer 201 is roughly divided into receiving control information, calculating transmission / reception control data of each element, storing the data in the data memory, and inspecting while reading the control data of the element from the data memory. .
  • the former is prior to the transmission and reception of ultrasonic waves, and is shown in FIG.
  • the latter is an operation of performing inspection while repeating transmission and reception, and the flow is shown in FIG.
  • the control information sent from the display device to the microcomputer 201 is basically a parameter necessary for the calculation from the equations (1) to (10).
  • the setting range of the focal position F (XF, YF), the setting interval, the position of the ultrasonic transmitting / receiving element and information on which element is used for transmission and reception, the ultrasonic wave propagation speed V, the clock interval D , The number of CCD elements N, and the value a, which determines how close the reflected wave should be sampled from the focal point.
  • This operation corresponds to 401 in FIG.
  • the coefficient for multiplying one clock cycle in equations (5) to (9) is determined in advance by hardware.
  • the control information is transferred from the display device 1 to the microcomputer 20 ⁇ , the length n of the CCD using the clock of the period D is calculated for each transmitting / receiving element.
  • the first focus position to be calculated is set, and the time ⁇ S from the trigger in equation (10) is calculated and stored in the data memory 202 (see FIG. 1 1 4 3).
  • the number of counts K i is calculated from equations (1) and (4) and stored in temporary memory (406).
  • Step 407 is processing for determining whether the element is used for reception.
  • Equation (9) When used for reception, after calculating ⁇ T i by using Equations (1) to (3) in 408, n is calculated by Equation (9) and temporarily stored in memory.
  • the on / off signal indicating whether the element is used for transmission and reception and the values of Ki and n temporarily stored in the memory are transferred to the data memory.
  • an initial focus position is set (45 1), and control data of each element corresponding to the position is transmitted from the data memory to each transmitting / receiving circuit (45 2).
  • i is selected by the selector 203, the gate 31 3 in the transmission / reception circuit is made conductive by the output, and data is transmitted through the terminal 273. . jg
  • the focal position set on the display device 1 is output (4553), but the focus setting order and the like are known in advance, and if there is data on the display device 1, there is no need to transfer the data. That is clear.
  • a transmission trigger signal is sent via the terminal 275 (4554), and the time ⁇ S already calculated is waited for (4556).
  • each transmitting / receiving circuit performs a transmitting operation according to the given delay amount. The details have already been described.
  • a reception operation start signal is transmitted to each transmission / reception circuit via the terminal 274 (457), and the reception operation is started.
  • An oscillation trigger and a reception operation start signal are sent to the display device 1 via the terminal 271, as necessary.
  • a reflected signal delayed by the set delay is output from the terminal 29 i, added at 206, and sent to the display device 1 via the terminal 27 2.
  • This operation is performed at all the preset focal positions (458, 549), and the inspection is completed.
  • the amount of transmission / reception delay divided by the use / non-use of transmission / reception was determined based on the data stored in the memory 2 2.
  • Transmission / reception delay data and transmission / reception element usage data can be calculated in advance and stored in memory, transferred from the display device 1, or controlled by a microcomputer 201 while calculating. A modified embodiment is given.
  • the transmission standard is the one that has passed through CCD the earliest.
  • the portion excluding the 35 i ultrasonic transmission / reception element of the transmission / reception circuit of 3 and the control device of 2 can all be manufactured by integrated circuits.
  • the part of the transmission / reception circuit 3 excluding 35 i is formed by an integrated circuit for each ultrasonic transmission / reception element, and is electrically connected to 35 i.
  • control device 2 is also made of an integrated circuit and the transmission / reception circuit 3 and the control device 2 have an integrated structure can be given as a modification of this embodiment.
  • one-dimensional ultrasonic transmitting / receiving elements are arranged in a line.
  • This embodiment is characterized in that the one-dimensional ultrasonic transmission / reception elements are arranged with a curvature, but the configurations shown in FIGS. 1 to 3 and FIG. The data transferred from the microcomputer 1 to the memory 312 in Fig. 3 is different.
  • M ultrasonic transmission / reception elements from 351 to 35M are installed at arbitrary positions with one-dimensional curvature, and the intervals between them are different.
  • Equation (1 2) (where V is the propagation speed of the ultrasonic wave), and the number of counts corresponding to the delay amount at this time is the same as Equation (4) .
  • the method and configuration of the first embodiment for determining the delay amount of each transmitting / receiving element based on the ultrasonic transmitting / receiving element farthest from the focal point F can be used as it is.
  • the distance L s (the radius of the circle C 2) between the transmitting / receiving element and F which is close to F in FIG. 7 is determined, and the reception operation start timing according to equation (10) is determined from this.
  • the second embodiment by changing the data given to the memory 312 of the first embodiment, it is possible to focus the ultrasonic transmitting / receiving elements arranged in an arbitrary dimension.
  • the third embodiment is a two-dimensional extension of the one-dimensional arrangement of the ultrasonic transmission / reception elements according to the second embodiment.
  • the position of the transmitting / receiving element is (Xi, Yi, Zi).
  • the distance between the focal point F and each ultrasonic transmitting / receiving element is expressed by the following equation.
  • L i (XF—X i) 2 + (YF ⁇ Y i) 2 + (ZF—Z i) '.
  • a spherical surface C 3 having a radius L j is formed.
  • the distance between 35 1 and 0 1 is the delay amount ⁇ L i described above. From this, the delay amount ⁇ ⁇ i and the count value K i force are obtained from equations (3) and (4), respectively. Also, at the time of reception, it is possible to determine the receiving operation start timing according to equation (10) with the transmitting / receiving element close to the focal point F and determine the CCD length n for switching the clock by equation (9). .
  • the transmission / reception delay amount can be controlled even with the ultrasonic transmission / reception elements arranged in a two-dimensional state, whereby the observation position of the ultrasonic beam can be three-dimensionally changed.
  • the inspection target can be inspected with high resolution using the focused ultrasonic beam.
  • the display device 1 or one of the microcomputers may be used as the center, and the focus F and the delay amount for that position may be calculated. 2 .
  • the fourth embodiment is an example in which each transmission / reception circuit 3 i is changed.
  • the present embodiment is characterized in that, in 3 i, amplifier 30 6 is changed to gain control type amplifier 3 26, and further, gain control data is given to memory 3 12. .
  • ultrasonic transmitting / receiving elements have directional characteristics. For this reason, the transmission and reception sensitivities may differ depending on the transmitting and receiving directions of the element.
  • the difference in sensitivity is corrected by controlling the amplification on the receiving side.
  • the amplification degree can be determined based on the characteristics of each ultrasonic transmitting / receiving element and the relative position between the element and the focal point, and is transferred to the memory 312.
  • the fifth embodiment is an embodiment applied to visualization of the inside of a human body, an industrial structure, or the like.
  • the display device 1, the control device 2, and the transmission / reception circuit 3 shown in FIG. 10 have the same configurations as those of the previous embodiments.
  • the control device 2 and the transmission / reception circuit 3 are configured as IC circuits, and are small.
  • the ultrasonic transmission / reception surface of the transmission / reception circuit in (3) is placed near the surface to be inspected, such as a human body or a structure, in (4), and ultrasonic waves are introduced into the interior of (4) through an ultrasonic coupling (5) such as water / glycerin. Transmits and receives reflected waves.
  • the transmission and reception control method is described in detail in the first to fourth embodiments.
  • Defects inside structures can also be detected.
  • the characteristics of the ultrasonic beam can be controlled extremely flexibly.
  • the present invention can be applied to oblique flaw detection in which an ultrasonic beam is obliquely applied to a structure.
  • the sixth embodiment is an example in which the present invention is applied to imaging of an object in water or an opaque liquid.
  • Transmitter / receiver circuit 3 is placed in a liquid, and the object is visualized by transmitting ultrasonic waves and detecting reflected waves.
  • This embodiment is effective in visualizing, for example, underwater with extremely poor visibility or in liquid metal.
  • the present invention is characterized in that a clock supplied to CCD is controlled because a charge transfer element such as CCD is used for delaying a received signal.
  • each ultrasonic transmission / reception element can be controlled to be used for both transmission and reception, used only for transmission, used only for reception, and not used.
  • control data are stored in the memory for each transmitting / receiving circuit: With these controls, flexible data such as the beam focal position and beam direction
  • the beam characteristics can be changed in various ways, and a compact beam characteristic variable type ultrasonic transceiver can be provided, which has a great engineering effect.
  • a charge transfer element such as a CCD is used for delaying a received signal, so that a clock supplied to the CCD is controlled. Can be controlled to be used for both transmission and reception, used only for transmission, used only for reception, and not used. These control data are stored in memory for each transmission and reception circuit.
  • the beam characteristics such as the beam focal position and the beam direction can be flexibly changed, and the size can be reduced, so that a small ultrasonic transmitter / receiver with variable beam characteristics can be provided.
  • Great engineering effect the beam characteristics such as the beam focal position and the beam direction can be flexibly changed, and the size can be reduced, so that a small ultrasonic transmitter / receiver with variable beam characteristics can be provided.

Landscapes

  • Physics & Mathematics (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Investigating Or Analyzing Materials By The Use Of Ultrasonic Waves (AREA)

Abstract

An acoustic probing apparatus with a delay controller of reduced size, in which the distortion of waveforms is reduced. The probing apparatus comprises a transmitter for transmitting waves from a plurality of transmission elements with mutually different delay times, a plurality of reception elements for receiving the reflected waves and converting them to electric signals, a plurality of analog shift registers corresponding to the reception elements to receive the signals, means for changing a shift speed of data inside each charge transfer device on the basis of a shift speed instruction signal, an adder for adding the output from each charge transfer device, and a display for visualizing the reflected waves on the basis of the output from the adder. The main application of the present invention is an ultrasonic flaw detector.

Description

明 細 書  Specification
波動を用いた探査装置 技術分野  Exploration equipment using waves
本発明は、 波動の反射結果を利用した探査装置にかかわるものである。 背景技術  The present invention relates to an exploration device using a reflection result of a wave. Background art
従来、 波動として超音波を用いて材料内部や人体内部の探査する検査 方法として、 超音波の送受信素子 (圧電素子) を並べたアレイ を用いる 方法があり、 例えば、 コロナ社発行の (社) 日本電子機械工業会編 「医 用超音波機器ハン ドブック」 の 1 2 9ページから 1 3 8ページ、 および、 1 4 3ページから 1 5 2ページに原理, 構成が述べられている。  Conventionally, as an inspection method for exploring the inside of a material or the inside of a human body using ultrasonic waves as a wave, there has been a method using an array in which ultrasonic transmitting / receiving elements (piezoelectric elements) are arranged. Principles and configurations are described on pages 122 to 138 and pages 144 to 152 of the “Electronic Machinery Manufacturers Association” Medical Ultrasound Equipment Handbook.
つま り、 送信時では、 各素子に与える送信のタイ ミングを制御し、 ま た、 受信時では、 各素子の受信信号 1こ適切な遅延を与えた上で、 多数の 素子からの受信信号を加算する。  In other words, at the time of transmission, the timing of transmission to each element is controlled, and at the time of reception, the reception signal of each element is given an appropriate delay, and the reception signals from many elements are given. to add.
これによ り、 探触子からの送受信方向や焦点位置を制御できる。  Thereby, the direction of transmission and reception from the probe and the focal position can be controlled.
この従来例でもわかるように、 これまで信号の遅延要素としてタ ップ 付きの遅延線が用いられる。  As can be seen from this conventional example, a tapped delay line has been used as a signal delay element.
遅延量の制御のためには、 多数のタップのどの位置に信号を入力する かを決定するスィ ツチが必要であり、 遅延量を精度よく制御するには膨 犬な数のスィッチが要求され、 装置が大型 · 複雑になる。  In order to control the amount of delay, it is necessary to have a switch that determines the position of the signal to be input to a large number of taps.To control the amount of delay accurately, a large number of switches are required. Equipment is large and complicated.
また、 遅延線自体も体積が大きく、 二次元平面状に送受信素子を並べ たアレイなど、 多数の送受信素子に遅延線を使用するとこの部分が大型 化し、 実用性が損なわれる。  In addition, the delay line itself has a large volume, and if a delay line is used for a large number of transmission / reception elements such as an array in which transmission / reception elements are arranged in a two-dimensional plane, this part becomes large and practicality is impaired.
スィッチ数の低減のため、 C C D (Charge Coupled Devi ce 、 電荷結 合素子) を使う例が、 特開昭 53— 1 15591号公報なる公開特許に見られる。 よく知られているように、 C C Dは複数個の電荷記憶素子が並んだ構 成となっており、 C C Dに与えるクロック信号によって端から順次電荷 が転送される。 An example in which a CCD (Charge Coupled Device) is used to reduce the number of switches is disclosed in Japanese Patent Application Laid-Open No. Sho 53-115591. As is well known, a CCD has a configuration in which a plurality of charge storage elements are arranged, and charges are sequentially transferred from an end by a clock signal supplied to the CCD.
この公知例では、 まず波形を C C Dに取り込んだあと、 設定時間後、 取り込みと同じクロックで呼び出す。  In this well-known example, the waveform is first captured in CCD, and after a set time, called with the same clock as the capture.
つま り、 C C Dを波形の記憶に用い、 記憶波形の読み出し開始時間を 変えて等価的に遅延の効果をもたせている。  In other words, CCD is used to store waveforms, and the read start time of the stored waveform is changed to provide an equivalent delay effect.
この方法は、 波形を記憶 · 保持している間、 C C Dのクロックを停止 する必要があり、 この間の各電荷記憶素子のリークにより、 波形の歪が 発生する問題点がある。  In this method, it is necessary to stop the CCD clock while storing and holding the waveform, and there is a problem in that waveform distortion occurs due to leakage of each charge storage element during this time.
また、 いずれの従来例でも、 各超音波送受素子を使用するか否かを制 御する手法は考慮されていない。  In addition, none of the conventional examples considers a method for controlling whether or not each ultrasonic transmitting / receiving element is used.
このため、 あらかじめ決められた超音波ビームのバターンのみしか用 いることができず、 検査対象に応じてビームの特性を制御する適応性の 高い超音波送受信装置とできない問題点がある。 発明の開示  For this reason, only a predetermined pattern of the ultrasonic beam can be used, and there is a problem that a highly adaptive ultrasonic transmitting and receiving apparatus that controls the beam characteristics according to the object to be inspected cannot be obtained. Disclosure of the invention
本発明の目的は、 波動を用いた探査装置の遅延制御部分を小型にし、 かつ、 波形の歪を低減することが目的である。  An object of the present invention is to reduce the size of a delay control portion of an exploration apparatus using a wave and to reduce waveform distortion.
上記の目的は、 複数の発信子から各発信子ごとに遅延時間を異にして 波動を発信する発信器と、 前記波動の反射波を受信して電気信号に変換 する複数の受信子と、 前記各受信子からの各信号が入力される前記各受 信子に対応した複数のアナログシフ 卜 レジスタ と、 シフ 卜速度指令信号 に基づいて前記各電荷転送素子内のデータのシフ 卜速度を変更する手段 と、 前記各電荷転送素子からの出力を加算する加算器と、 前記加算器か らの出力に基づいて前記反射波を可視化する表示器とを備えた波動を用 いた探査装置によって達成される。 The above object is to provide a transmitter that transmits a wave with a different delay time for each transmitter from a plurality of transmitters, a plurality of receivers that receive a reflected wave of the wave and convert the reflected wave into an electric signal, A plurality of analog shift registers corresponding to the respective receivers to which respective signals from the respective receivers are input, and means for changing a shift speed of data in each of the charge transfer elements based on a shift speed command signal And an adder for adding outputs from the charge transfer elements, and a display for visualizing the reflected wave based on the outputs from the adders. Is achieved by the exploration equipment.
複数の発信子から遅延時間を異にして波動エネルギーを発信すると、 各波動エネルギーに与えられた遅延時間要素の組み合わせによリ所望の 方向に波動エネルギーの主軸方向を向かわせることができる。  When wave energy is transmitted from a plurality of transmitters with different delay times, the main axis of the wave energy can be directed in a desired direction by a combination of delay time elements given to each wave energy.
その主軸方向で波動エネルギーは探査対象によリ反射して複数の反射 波として各受信子へ各反射波の反射距離に対応した時間遅れを伴って戻 リ、 各反射波は各受信子により電気信号に変換され、 それら各電気信号 は各受信子に対応した各電荷転送素子に電荷のデータとして入力される t 各電荷転送素子では、 そのデータをシフ 卜速度指令信号に基づいて各 電荷転送素子内で出力側へシフ 卜していき、 そのシフ ト速度は途中でシ フ ト速度指令信号に基づいて変更されて出力に至るまでシフ 卜動作が停 滞しないように制御された上、 各電荷転送素子で各反射波の時間遅れ要 素を取り除いて時間軸を整合させて出力する。 In the direction of the main axis, the wave energy is reflected by the object to be searched and returned as a plurality of reflected waves to each receiver with a time delay corresponding to the reflection distance of each reflected wave. is converted into a signal, in which each electrical signal t each charge transfer device, which is input as data of the charge in each charge transfer devices corresponding to each receiving terminal, the charge transfer device on the basis of the data into the shift Bok speed command signal The shift speed is shifted to the output side, the shift speed is changed on the way based on the shift speed command signal, and the shift operation is controlled so that the shift operation does not stop until reaching the output. The transfer element removes the time delay element of each reflected wave, matches the time axis, and outputs.
各電荷転送素子からの出力信号は" ΑΠ算器で加算されて表示器に可視可 表示される作用が得られる。  The output signal from each charge transfer element is added by a calculator, and an effect of being visually displayed on a display is obtained.
この作用によ り、 各電荷転送素子内で波形の電荷データの時間軸が整 合して出力される迄各電荷転送素子内でのシフ 卜動作が停滞しないから 各電荷転送素子内で波形の電荷データを記憶保持する間に波形の電荷デ ータのリークによる歪がなく、 且つ電荷転送素子を採用するので遅延線 とタップとスィ ッチを多用するものに比べて小型の探査装置が提供出来 るという効果が得られる。 図面の簡単な説明  By this action, the shift operation in each charge transfer element does not stagnate until the time axis of the charge data of the waveform is output and aligned in each charge transfer element. There is no distortion due to leakage of charge data in the waveform while storing and holding charge data, and the use of charge transfer elements provides a smaller exploration device than one that uses many delay lines, taps and switches The effect that it can be obtained is obtained. BRIEF DESCRIPTION OF THE FIGURES
第 1 図は本発明の第 1 実施例による超音波探傷装置の基本構成を示す ブロック図, 第 2図は第 1 図の制御装置 2の詳細構成を示すプロック図, 第 3図は第 1 図の送受信回路 3の詳細構成を示すブロック図, 第 4図は 本発明の実施例における各超音波反射経路ごとの遅延量の解説図、 第 5 図は本発明の実施例に採用された C C Dの動作説明図、 第 6図は第 3図 のクロック制御回路 3 1 0の詳細構成を示すブロック図、 第 7図は本発 明の第 2実施例における各超音波反射経路ごとの遅延量の解説図、 第 8 図は本発明の第 3実施例における各超音波反射経路ごとの遅延量の解説 図、 第 9図は本発明による第 4実施例による第 1 図の送受信回路 3部分 の詳細構成を示すブロック図、 第 1 0図は本発明の第 5実施例による装 置の全体ブロック図、 第 1 1 図は第 2図のマイクロコンピュータ 2 0 1 の制御データ設定過程での処理フロー図, 第 1 2図は第 2図のマイクロ コンピュータ 2 0 1 の検査過程での処理フロー図である。 発明を実施するための最良の形態 FIG. 1 is a block diagram showing the basic configuration of an ultrasonic flaw detector according to a first embodiment of the present invention, FIG. 2 is a block diagram showing the detailed configuration of the control device 2 in FIG. 1, and FIG. Fig. 4 is a block diagram showing the detailed configuration of the transmission / reception circuit 3. FIG. 5 is an explanatory diagram of the delay amount for each ultrasonic reflection path in the embodiment of the present invention, FIG. 5 is an explanatory diagram of the operation of the CCD employed in the embodiment of the present invention, and FIG. 6 is a clock control circuit of FIG. 10 is a block diagram showing a detailed configuration of FIG. 10, FIG. 7 is an explanatory diagram of a delay amount for each ultrasonic reflection path in the second embodiment of the present invention, and FIG. 8 is each block diagram in the third embodiment of the present invention. FIG. 9 is a block diagram showing a detailed configuration of three transmission / reception circuits of FIG. 1 according to a fourth embodiment of the present invention, and FIG. 10 is a fifth embodiment of the present invention. Fig. 11 is an overall block diagram of the device according to the example. Fig. 11 is a flowchart of the control data setting process of the microcomputer 201 shown in Fig. 2. Fig. 12 is an inspection of the microcomputer 201 shown in Fig. 2. It is a process flow figure in a process. BEST MODE FOR CARRYING OUT THE INVENTION
本発明の第 1 実施例は、 超音波送受信素子を直線状に並べた、 いわゆ る 1 次元ァレイ探触子の例であり、 —その概略構成を第 1 図に示す。  The first embodiment of the present invention is an example of a so-called one-dimensional array probe in which ultrasonic transmitting and receiving elements are arranged in a straight line. FIG. 1 shows a schematic configuration thereof.
第 1 図で、 1 は超音波像の表示装置であり、 2は送受信の制御装置で ある。  In FIG. 1, 1 is an ultrasonic image display device, and 2 is a transmission / reception control device.
3 i ( i = 1 , …, M ) は、 ひとつひとつの超音波送受信素子ごとに 設けられた送受信回路である。  3 i (i = 1,..., M) is a transmission / reception circuit provided for each ultrasonic transmission / reception element.
制御装置 2の詳細構成を第 2図に、 送受信回路 3 (以下の説明では、 とくに断らない限り添字を省略) の詳細構成を第 3図に示す。  FIG. 2 shows a detailed configuration of the control device 2, and FIG. 3 shows a detailed configuration of the transmission / reception circuit 3 (subscripts are omitted in the following description unless otherwise specified).
第 2図において、 2 0 1 はマイクロコンピュータ、 2 0 2はデータメ モリ、 2 0 3はセレクタである。  In FIG. 2, reference numeral 201 denotes a microcomputer, reference numeral 202 denotes a data memory, and reference numeral 203 denotes a selector.
2 0 4はト リガ発生器であり、 端子 2 7 1 を介して表示装置 1 から信 号を受け取る。  Reference numeral 204 denotes a trigger generator which receives a signal from the display device 1 via the terminal 27 1.
2 0 5はクロック発生器、 2 0 6は加算器である。  Reference numeral 205 denotes a clock generator, and reference numeral 206 denotes an adder.
第 3図において、 3 5 i が送受信素子であり、 この圧電素子で超音波 を放射, 検出する。 In FIG. 3, 35 i is a transmitting / receiving element, and the piezoelectric element Is emitted and detected.
3 0 2はゲー ト回路、 3 0 3はカウンタ回路、 3 0 4はパルス発生器、 3 0 5は送受信の切り換え器である。  302 is a gate circuit, 303 is a counter circuit, 304 is a pulse generator, and 305 is a transmission / reception switch.
送信時、 3 0 4で発生した電気的なパルス信号は、 送受切り換え器 3 0 5 を通って送受信素子 3 5 i に達し、 超音波パルスとなって放射さ れる。  At the time of transmission, the electric pulse signal generated in 304 passes through the transmission / reception switch 305, reaches the transmission / reception element 35i, and is emitted as an ultrasonic pulse.
受信時では、 3 5 i に達した反射超音波は電気信号になり、 3 0 5 を 通って増幅器 3 0 6に至る。  At the time of reception, the reflected ultrasonic wave that has reached 35 i becomes an electric signal, passes through 30 5 and reaches the amplifier 30 6.
3 0 7は電荷転送素子 (例えば C C D、 Chagc Coupl ed Dev ice , 電荷 結合素子) であり、 ふたつのカウンタ 3 0 8 と 3 0 9によって制御され るクロック制御回路 3 1 0で、 その受信遅延量を変える。  Reference numeral 307 denotes a charge transfer element (eg, CCD, Chagc Coupled Device, charge-coupled element), which is a clock control circuit 310 controlled by two counters 308 and 309. change.
遅延を受けた信号は、 スィ ッチ回路 3 1 1 をとおって制御装置 2に導 かれる。  The delayed signal is led to the control device 2 through the switch circuit 3 1 1.
また、 3 1 2はメモリ素子であり-、 カウンタ 3 0 3, 3 0 9の計数デ ータと、 ゲ一 卜 3 0 2 , スィッチ回路 3 1 1 をオン Zオフするかのデー タを記憶する。  Reference numeral 312 denotes a memory element for storing count data of the counters 303 and 309, and data for determining whether the gate 302 and the switch circuit 311 are turned on and off. I do.
3 1 3は、 メモリ素子 3 1 2にデータを転送するか否かを設定するゲ 一卜回路である。  Reference numeral 313 denotes a gate circuit for setting whether or not to transfer data to the memory element 312.
以下、 3 0 7の電荷転送素子を C C Dと して説明する。  Hereinafter, the 307 charge transfer elements will be described as CCD.
ここで、 表示装置 1 , 制御装置 2, 送受信回路 3の相互の結線状態を 述べるが、 信号線のみを述べ、 電源供給線などは省略する。  Here, the mutual connection state of the display device 1, the control device 2, and the transmission / reception circuit 3 is described, but only the signal line is described, and the power supply line and the like are omitted.
表示装置 1 からは、 制御装置 2に向け後述の制御情報を送り (第 2図 端子 2 7 1 ) 、 2から反射信号を 1 に送って表示する(第 2図端子 272)。 表示装置 1 は、 公知の装置を使用できる。  From the display device 1, control information to be described later is sent to the control device 2 (terminal 271 in FIG. 2), and the reflected signal is sent from 1 to 1 for display (terminal 272 in FIG. 2). As the display device 1, a known device can be used.
表示装置 1 から制御装置 2に送られる制御情報は、 設定する超音波の 焦点位置の範囲と設定間隔, 各送受信素子 3 5 i の空間位置, 超音波伝 播媒質の音速、 などであるが、 これらについては、 後で詳しく述べる。 制御装置 2と送受信回路 3との結線は 2種類ある。 The control information sent from the display device 1 to the control device 2 includes the range of the focal position of the ultrasonic wave to be set and the set interval, the spatial position of each transmitting / receiving element 35 i, The sound velocity of the seed medium, etc., will be described in detail later. There are two types of connection between the control device 2 and the transmission / reception circuit 3.
一種類は制御装置 2から各送受信回路ごとに結線されるものであり、 もう一種類は送受信回路全体に共通な結線である。  One type is connected from the control device 2 for each transmission / reception circuit, and the other type is a connection common to the entire transmission / reception circuit.
前者は、 セレクタ 2 0 3から各送受信回路に 2 8 1から 2 8 Mまでの 端子を介して信号転送するものと、 各送受信回路から逆に 2 9 1から 2 9 Mの端子を介して加算器 2 0 6に結線されるものである。  In the former case, the signal is transferred from the selector 203 to each transmission / reception circuit via the terminals 281 to 28M, and the signal is transmitted from the transmission / reception circuit via the terminals 291 to 29M. It is connected to the container 206.
後者の共通結線は、 いずれも制御装置 2から送受信回路に転送される 信号線であり、 2 7 3から 2 7 6の 4ケの端子が使われる。  The latter common connection is a signal line which is transferred from the control device 2 to the transmission / reception circuit, and four terminals 273 to 276 are used.
2 7 3はカウンタの計数値などのデータ線の端子、 2 7 4は受信の動 作開始タイ ミングの転送線の端子、 2 7 5は卜リガ線の端子、 2 7 6は ク口ック転送線の端子である。  2 7 3 is the terminal of the data line such as the count value of the counter, 2 7 4 is the terminal of the transfer line for the timing of starting the reception operation, 2 7 5 is the terminal of the trigger line, and 2 7 6 is the terminal. Terminal for the transfer line.
端子 2 7 3から 2 7 6 を介して、 4本の信号線は 3 1から 3 Mまでの Mケの送受信回路の各々に連結され-ている。  Through the terminals 273 to 276, the four signal lines are connected to each of the M transmission / reception circuits from 31 to 3M.
以上、 第 1 図から第 3図までを用いて、 構成と結線状態を説明した。 次に、 本発明の動作について詳しく説 する。  The configuration and the connection state have been described above with reference to FIGS. Next, the operation of the present invention will be described in detail.
説明は送信時と受信時に分け、 第 1 図から第 3図のほか、 第 4図の遅 延量の説明図を用いる。  The explanation is divided into transmission time and reception time, and the explanatory diagram of the delay amount in Fig. 4 is used in addition to Figs.
第 4図に示すように、 3 5 1 から 3 5 Mまでの超音波送受信素子を X 軸上に配置した場合を考える。  As shown in FIG. 4, let us consider a case where ultrasonic transmitting / receiving elements from 35 1 to 35 M are arranged on the X axis.
3 5 1 から 3 5 Mの位置は、 X Iから XMとする。  The positions from 35 1 to 35 M are XI to XM.
X軸に垂直に y軸を取る。  Take the y axis perpendicular to the x axis.
送信時、 座標 F (X F, Y F) に対して超音波ビームを集束させるこ とを考える。  At the time of transmission, consider focusing the ultrasonic beam on the coordinates F (X F, Y F).
集束のためには、 各超音波送信素子からの放射波面が焦点位置 F (XF, Y F) で一致する必要がある。 各超音波送受信素子と焦点 Fの距離は、 式 ( 1 ) で求まる。 For focusing, the radiated wavefront from each ultrasonic transmission element needs to coincide at the focal position F (XF, YF). The distance between each ultrasonic transmitting / receiving element and the focal point F can be obtained by Expression (1).
L i =f (XF - X i ) 2 + Y F2 式 ( 1 ) 各超音波送受信素子から焦点 Fまでの距離がいちばん大きいもの (第 4図の例では 3 5 M) を基準にすると、 焦点 Fを中心とする円 C 1上か ら発生させた超音波が Fに同時に到達すれば Fで焦点を結ぶ。 L i = f (XF-X i) 2 + YF 2 Equation (1) If the distance from each ultrasonic transmitting / receiving element to the focal point F is the largest (35 M in the example of FIG. 4), the focal point If the ultrasonic wave generated from the circle C 1 centered on F reaches F at the same time, it focuses on F.
この例では、 円弧 C 1の半径は、 LMであるから、 3 5 iでは、 35M より Δ L i分の距離の超音波伝搬時間だけ送信タイ ミングを遅らせる必 要がある。  In this example, since the radius of the circular arc C1 is LM, it is necessary to delay the transmission timing for 35i by the ultrasonic propagation time of a distance of ΔLi from 35M.
△ L i は、 式 ( 2 ) で求まる。  ΔL i is obtained by equation (2).
Δ L i = L M - L i 式 ( 2 ) この遅延時間 Δ T i は、  Δ L i = L M-L i Equation (2) This delay time Δ T i is
Δ T i = Δ L i / V 式 ( 3 ) である (Vは超音波の伝搬速度) 。  ΔT i = ΔL i / V Equation (3) (V is the propagation speed of the ultrasonic wave).
遅延量 Δ T i の基準となる信号はト リガ発生器 2 04からの信号であ る。  The signal serving as a reference for the delay amount ΔT i is a signal from the trigger generator 204.
このため、 本実施例では超音波送受信素子 3 5 Mの遅延量は 0であり、 ほかの超音波送受信素子は 3 5 Mに比べて式 ( 3 ) で示される遅延が設 定される。  For this reason, in the present embodiment, the delay amount of the ultrasonic transmitting / receiving element 35M is 0, and the other ultrasonic transmitting / receiving elements are set to have the delay represented by the equation (3) as compared with 35M.
一方、 送信と逆の伝搬を考えると、 受信時においても Fから発生した 超音波を同じ時刻に各超音波受信素子で検出するから、 送信と同様に 3 5 i では Δ Τ i なる遅延を必要とする。  On the other hand, considering the reverse propagation, the ultrasonic waves generated from F are detected by each ultrasonic receiving element at the same time even at the time of reception, so a delay of Δ Τ i is necessary for 35 i as in transmission. And
第 4図における円弧 C 2は、 受信時焦点 Fからの超音波が最も早く検 出される素子を基準としたものであり、 これに関しては後で述べる。 ここまで、 送受信の各送受信素子の必要遅延量について説明した。 以下、 実際の動作について述べる。  The arc C2 in FIG. 4 is based on the element from which the ultrasonic wave from the focal point F is detected earliest during reception, which will be described later. So far, the necessary delay amount of each transmitting / receiving element has been described. The actual operation will be described below.
一例として、 F (X F, Y F) に超音波ビームを絞って観測する場合 を考える。 As an example, when observing an ultrasonic beam focused on F (XF, YF) think of.
クロック発生器 2 0 5は、 1周期が Dのクロック信号を発生している t デ一タメモリ 2 0 2には、 送信時の遅延量のデータがクロックのカウ ン 卜数として記憶されている。 The clock generator 205 generates a clock signal of D for one cycle. In the t data memory 202, data on the amount of delay at the time of transmission is stored as the number of clock pulses.
つま り、 各超音波送受信素子 3 5 1から 3 5 Mまでの必要遅延量 ΔΠ ( i = l, …, M) を Dで割ったカウン 卜数である式 (4 ) の  That is, the equation (4), which is the number of counts obtained by dividing the required delay amount ΔΠ (i = l,…, M) from each ultrasonic transmitting / receiving element 35 1 to 35 M by D,
K i = Δ T i ZD 式 ( 4 ) が格納されている。  K i = ΔT i ZD Equation (4) is stored.
また、 2 0 2には受信時の遅延量のデータも格納されているが、 この 具体的な値は後述の受信部制御のところで詳しくのべる。  Further, the data of the delay amount at the time of reception is also stored in 202, and the specific value will be described in detail in the control of the receiving section described later.
さらに、 2 0 2には送信遅延量と受信遅延量に対応するカウン ト数の ほか、 該当する超音波送受信素子を送信に使うか否か、 受信に使うか否 かのデータも格納されている。  Further, in 202, in addition to the number of counts corresponding to the transmission delay amount and the reception delay amount, data indicating whether the corresponding ultrasonic transmitting / receiving element is used for transmission or not is also stored. .
この格納データを、 各送受信回路-ごとに設けたメモリ素子 3 1 2に転 送する。  The stored data is transferred to the memory element 312 provided for each transmitting / receiving circuit.
この転送は、 マイクロコンピュータ 2 0 1の制御による。  This transfer is under the control of the microcomputer 201.
マイクロコンピュータ 2 0 1 は、 セレクタ 2 0 3を制御し、 2 0 3か らの出力線のうち特定のものに出力する。  The microcomputer 201 controls the selector 203 and outputs it to a specific one of the output lines from 203.
もし、 2 0 3が端子 2 8 i を選んだとすると、 2 8 i と端子 3 8 i を 通って、 ゲー ト回路 3 1 3をオンにできる。  If 203 selects terminal 28i, gate circuit 313 can be turned on through 28i and terminal 38i.
この結果、 メモリ素子 3 1 2へデータが転送可能となる。  As a result, data can be transferred to the memory element 312.
マイクロコンピュータ 2 0 1 は、 先にのベたデータメモリ 2 0 2のデ ータ を、 端子 2 7 3を介して各送受信回路に共通な信号線におく り、 各 送受信回路のうちゲー ト 3 1 3が導通のもののみメモリ素子 3 1 2にデ ータが送られる。  The microcomputer 201 sends the data of the solid data memory 202 to a signal line common to the transmitting / receiving circuits via the terminal 273, and the gate 3 of the transmitting / receiving circuits Data is sent to the memory element 3 1 2 only when 13 is conductive.
先述のように、 3 1 2のデータは送信時の遅延量に対応したカウン 卜 数 K i と、 後述する受信時の遅延量から求まるカウン ト数、 及び、 i番 目の超音波送受信素子を送信に使うか否か、 受信に使うか否かの制御デ ータである。 As described above, the data of 3 1 2 is a count corresponding to the amount of delay during transmission. The control data includes the number K i, the number of counts obtained from the delay amount at the time of reception described later, and whether the i-th ultrasonic transmission / reception element is used for transmission or not.
もし、 i番目の送受信素子を送信に使う場合、 ゲー ト 3 0 2はオン状 態になり、 また、 受信に使う場合、 スィッチ回路 3 1 1 が導通状態にな る。  If the i-th transmitting / receiving element is used for transmission, the gate 302 is turned on, and if it is used for reception, the switch circuit 311 is turned on.
このため、 i 番目の超音波送受信素子を、 送信のみ、 または、 受信の みの片方に使用できるほか、 送受信の両方にも使うよう制御できる。 送信時の遅延量制御では、 メモリ素子 3 1 2に格納された遅延量 K i がカウンタ 3 0 3にロー ドされ、 端子 2 7 6 を介したクロック信号によ つて順次 K i から減数される。  For this reason, the i-th ultrasonic transmission / reception element can be used for either transmission only or reception only, and can be controlled to be used for both transmission and reception. In the transmission delay control, the delay K i stored in the memory element 3 12 is loaded into the counter 303 and is sequentially reduced from K i by the clock signal via the terminal 276. .
係数値が 0になると、 パルス発生機 3 0 4に出力し、 このタイ ミング でパルス信号が 3 0 4で発生する。  When the coefficient value becomes 0, it is output to the pulse generator 304, and a pulse signal is generated at 304 at this timing.
このパルス信号は公知の送受切り寸奐ぇ器 3 0 5 を通って超音波送受信 素子 3 5 i に導かれ、 超音波信号となって放射される。  This pulse signal is guided to the ultrasonic transmission / reception element 35i through the well-known transmission / reception tandem device 305, and is emitted as an ultrasonic signal.
この放射のタイ ミ ングは、 基準となる送受信素子 (第 4図の例では 3 5 M )の放射時刻から Δ T i だけ遅れている。  The timing of this radiation is delayed by ΔT i from the radiation time of the reference transmitting / receiving element (35 M in the example in Fig. 4).
ほかの超音波送受信素子も各素子ごと遅延されており、 焦点 Fの位置 に超音波が集束することになる。  The other ultrasonic transmitting / receiving elements are also delayed for each element, so that the ultrasonic waves are focused at the position of the focal point F.
次に受信時の遅延制御について述べる。  Next, the delay control at the time of reception will be described.
超音波送受信素子 3 5 i で検出した反射波形は、 送受切り換え器 305 を通って増幅器 3 0 6で増幅後、 電荷転送素子、 例えば CCD307に至る。 送信時の遅延制御では、 カウンタ 3 0 3での遅延後、 最終的にパルス 発生をさせることができた。  The reflected waveform detected by the ultrasonic transmitting / receiving element 35 i passes through the transmission / reception switch 305, is amplified by the amplifier 306, and reaches a charge transfer element, for example, a CCD 307. In the delay control during transmission, a pulse was finally generated after the delay in the counter 303.
これに対して、 受信時では検出した波形そのものを歪させることなく 遅延させる必要があり、 送信時の遅延手法をそのまま使えない。 このため、 CCD307とふたつのカウンタ 3 0 8 , 3 0 9、 および、 クロ ック制御回路 3 1 0で構成される遅延回路を考案した。 On the other hand, at the time of reception, the detected waveform itself must be delayed without being distorted, and the delay method at the time of transmission cannot be used as it is. For this reason, a delay circuit composed of the CCD 307, two counters 308, 309, and a clock control circuit 310 has been devised.
CCD307は、 第 5図に示すように 1から Nまでの Nケの素子が並んでい る構造である。  The CCD 307 has a structure in which N elements from 1 to N are arranged as shown in FIG.
良く知られているように、 C C Dにはクロック信号が必要であり、 こ のクロックによって一番端 (第 5図では 1 ) から入力された信号が順次 転送されて反対側 (第 5図では N) 側から出力される。  As is well known, a CCD requires a clock signal, and the clock sequentially transfers the signal input from the extreme end (1 in FIG. 5) to the opposite side (N in FIG. 5). ) Side.
このクロックの 1周期を、 送信側と同じ Dとすると C C Dを通り抜け るには、 N Dなる時間を必要とする。  Assuming that one cycle of this clock is D, which is the same as that of the transmitting side, it takes ND time to pass through CCD.
ここで、 C C Dの動作開始時刻から最初の nケを 1周期 Dのクロック で、 ( n + 1 ) から (N— 1 ) までの (N— n— 1 ) ケを p D(p〉 l ) なる周期のクロックで、 さらに最後の 1 ケを Dのクロックで動作させる < このように制御されたクロックを用いることにより、 C C Dを通り抜 ける時間 T i は、 ―  Here, the first n clocks from the CCD operation start time are one cycle D clocks, and the (N−n−1) data from (n + 1) to (N−1) is p D (p> l). A clock with a certain cycle, and the last one is operated with the D clock. <By using a clock controlled in this way, the time T i that passes through the CCD is −
T i = n D + p ( N - n - 1 ) D. + D 式 ( 5 ) T i = n D + p (N-n-1) D. + D equation (5)
= DN p - D (n + l )( p - l ) 式 ( 6 ) となる (ただし、 p〉 1 ) 。 = DN p-D (n + l) (p-l) Equation (6) (where p> 1).
C C Dすべてを、 周期 Dなるクロックで動作させた場合の C C D通過 時間と、 上記クロック制御を行った場合の通過時間 T i との差は、  The difference between the CCD transit time when all the CCDs are operated with a clock having a period D and the transit time Ti when the above clock control is performed is:
T i - N D = D (N- n - l )( p - 1 ) 式 ( 7 ) である。  T i −N D = D (N−n−l) (p−1) Equation (7).
ここで、 クロック周波数、 つま り、 クロックの周期 Dと、 C C Dの長 さ N、 クロック周期の変更割合 (分周率) カ 設定されているとすれ ば、 nを変えることによって受信の遅延量を制御できることが式 ( 7 ) カゝらゎカヽる。  Here, if the clock frequency, that is, the clock period D, the CCD length N, and the change ratio (division ratio) of the clock period, are set, the reception delay amount is changed by changing n. It can be controlled by the formula (7).
反射波の検出時刻がもつとも遅い超音波送受信素子を基準に取ると (第 4図では 3 5 M) 、 3 5 iの必要遅延量は式 ( 7 ) から Taking the ultrasonic transmission / reception element as a reference even when the reflected wave detection time is slow, (35 M in Fig. 4), the required delay of 35 i is calculated from equation (7).
Δ T i = T i - N D 式 ( 8 ) である。  Δ Ti = Ti-ND Equation (8).
よって、 N, D, pが設定されていれば、 必要遅延量 Δ Τ ί を得るた めには、 周期 Dのクロックを用いる C C Dの長さ ηを、  Therefore, if N, D, and p are set, in order to obtain the required amount of delay Δ Τ C, the length η of C C D using a clock with period D is
n =N- l - A T i /D (p - 1 ) 式 ( 9 ) とすることになる。  n = N−l−A Ti / D (p−1) Equation (9)
この nの値が、 メモリ素子 3 1 2を介してカウンタ 3 0 9に転送され る。  The value of n is transferred to the counter 309 via the memory element 312.
カウンタ 3 0 8には、 常に一定のデータ (N— 1 ) が与えられている, ふたつのカウンタ 3 0 8, 3 0 9には、 端子 2 7 6 を介して周期 Dの クロックが供給されており、 端子 2 7 4 を介して与えられる受信の動作 開始タイ ミ ング信号によって前記の転送デ一タから滅数が開始される。 カウンタ 3 0 9が転送データ nから減数されて 0になると、 タイ ミン グ信号がクロック制御回路 3 1 0に送られる。  Constant data (N-1) is always supplied to the counter 308. A clock having a period D is supplied to the two counters 308 and 309 via the terminal 276. The receiving operation start timing signal provided via the terminal 274 causes the transfer data to start counting from the transfer data. When the count of the counter 309 is reduced to 0 from the transfer data n, a timing signal is sent to the clock control circuit 310.
同様に、 カウンタ 3 0 8ではデータ ( N— 1 ) から減数されて 0にな るとタイ ミング信号が 3 1 0に送られる。  Similarly, in the counter 308, when the data (N-1) is decremented to 0, a timing signal is sent to 310.
クロック制御回路 3 1 0の構成を第 6図に示す。  FIG. 6 shows the configuration of the clock control circuit 310.
第 6図において、 3 1 0 1はメモリ素子、 3 1 0 2はセレクタ、 3103 は分周回路、 3 1 04はゲー トである。  In FIG. 6, 3101 is a memory element, 3102 is a selector, 3103 is a frequency dividing circuit, and 3104 is a gate.
分周回路 3 1 0 3は、 端子 2 7 6から、 周期 Dなるクロックを受け、 周期 Dを p倍する。  The frequency divider 3103 receives a clock having a period D from the terminal 276, and multiplies the period D by p.
例えば、 p = 2ではフリ ップフロップ素子を使用でき、 また、 その他 の分周回路も公知のものを使用できる。  For example, when p = 2, a flip-flop element can be used, and other known frequency dividers can be used.
メモリ素子 3 1 0 1 は、 カウンタ 3 0 9の出力でセッ トされ、 カウン タ 3 0 8の出力でリセッ 卜される。 セレクタ 3 1 0 2は、 メモリ 3 1 0 1の状態で、 周期 D、 または、 p Dのクロックのいずれかを選ぶ。 The memory element 3101 is set by the output of the counter 309 and reset by the output of the counter 308. The selector 3102 selects either the clock with the period D or the clock with pD in the state of the memory 3101.
メモリ 3 1 0 1がリセッ ト状態であれば周期 Dなるクロック信号をセ レクタ 3 1 0 2は出力し、 セッ 卜状態なら分周された p Dなるクロック を出す。  When the memory 3101 is in the reset state, the selector 3102 outputs a clock signal having a period D, and when the memory 3101 is in the set state, it outputs a frequency-divided pD clock.
このようにして、 Nケある C C Dのうち、 nケを周期 Dのクロックで 次の (N _ n— 1 ) ケを p Dなるクロックで、 さらに最後の 1ケを Dで 転送することができ、 所望の遅延量 Δ Τ i を得ることができる。  In this way, of the N CCDs, n can be transferred with a clock with period D, the next (N_n-1) with pD, and the last one with D. The desired delay amount Δ 量 i can be obtained.
ここで、 第 6図のゲー ト回路 3 1 04 と、 端子 2 7 4における受信の 動作開始タィ ミング信号、 及び、 端子 2 7 5でのト リガ信号の関係につ いて説明を加える。  Here, the relationship between the gate circuit 3104 in FIG. 6, the reception operation start timing signal at the terminal 274, and the trigger signal at the terminal 275 will be described.
ゲー ト 3 1 04は、 セレクタ 3 1 0 2からのクロック信号を、 3 0 7 の C C Dに加えるか否かのゲ一 卜動作を行う。  The gate 3104 performs a gate operation to determine whether or not to add the clock signal from the selector 3102 to the CCD of the switch 3107.
この動作は、 2 7 5からの卜 リガ—信号でゲー 卜は遮断状態になり、 2 7 4からの受信の動作開始タイ ミング信号で導通状態になる。  In this operation, the gate is turned off by the trigger signal from the switch 275, and the gate is turned on by the reception start timing signal from the switch 274.
つま り、 クロック制御回路 3 1 0からクロック信号が CCD307に送られ るのは、 端子 2 7 4からの受信の動作開始タイ ミング信号が 3 1 0に入 力されてからである。  In other words, the clock signal is sent from the clock control circuit 310 to the CCD 307 after the reception start timing signal from the terminal 274 is input to the CCD 307.
受信の動作開始タイ ミ ング信号は、 第 2図のマイクロコンピュータ 2 〇 1 より出力される。  The reception operation start timing signal is output from the microcomputer 2-1 in FIG.
この出力タイ ミングについて説明する。  This output timing will be described.
第 4図において、 焦点 Fからもっとも距離が大きい超音波送受信素子 (第 4図では 3 5 M) を遅延の基準に選んだ。  In FIG. 4, the ultrasonic transmission / reception element (35 M in FIG. 4) having the largest distance from the focal point F was selected as a reference for delay.
送信時では ト リガからの遅延量を 3 5 Mでは 0とし、 その他の送受信 素子に適切な遅延を与えた。  During transmission, the delay from the trigger was set to 0 at 35 M, and appropriate delays were given to the other transmitting and receiving elements.
受信時では、 C C Dに反射データ を取り込む開始タイ ミ ングが必要で あり、 その値は式 ( 1 0 ) で示される。 At the time of reception, a start timing for acquiring reflection data to the CCD is required. Yes, and its value is given by equation (10).
A S = ( L + L s - a ) /V 式 ( 1 0 ) A S = (L + L s-a) / V formula (10)
Δ Sはト リガからの時間であり、 L sは焦点 Fからもっとも近い超音 波送受信素子までの距離である。 ΔS is the time from the trigger, and Ls is the distance from the focal point F to the nearest ultrasonic transmitting / receiving element.
また、 aは焦点からどれく らい近い位置から反射波形を採取するかを 決める値である。  A is a value that determines from how close to the focal point the reflected waveform is sampled.
焦点位置と各超音波送受信素子の位置が決まると、 L M, L sが決ま る。  When the focal position and the position of each ultrasonic transmitting / receiving element are determined, LM and Ls are determined.
超音波の伝搬速度 Vは既知であり、 a をあらかじめ設定すると式(10) は計算できる。  The propagation velocity V of the ultrasonic wave is known, and if a is set in advance, equation (10) can be calculated.
ここまで、 おもに送受信の遅延量制御に関して詳しく説明した。  Up to this point, the delay amount control for transmission and reception has been described in detail.
受信時、 遅延をうけた反射信号は、 CCD307から出力される。  Upon reception, the delayed reflected signal is output from the CCD 307.
この時、 スィ ッチ回路 3 1 1 が導通になっていれば、 遅延した反射信 号は端子 3 9 i を通って加算器 2 0-6に導かれる。  At this time, if the switch circuit 311 is conductive, the delayed reflected signal is guided to the adder 20-6 through the terminal 39i.
加算器 2 0 6は, 各受信回路のスィ ツチ回路が導通のものの遅延反射 波を加え合わせる働きをする。  The adder 206 functions to add the delayed reflected wave of the switch circuit of each receiving circuit that is conductive.
この結果、 加算器 2 0 6の出力は焦点 Fからの反射波、 つま り、 Fに 観測位置を設定した反射信号となる。  As a result, the output of the adder 206 becomes a reflected wave from the focal point F, that is, a reflected signal in which the observation position is set to F.
焦点 F (X F, Y F ) の位置を変える、 例えば、 Y Fを一定にして X Fを変えると一定深さで焦点を走査したことになり、 これを表示装置 1 で表示することで、 一定深さの反射像を表示することが可能となる。 また、 X F, Y Fの両方とも変えれば、 X軸, y軸断面での超音波反 射像を得ることができる。  If the position of the focal point F (XF, YF) is changed, for example, if YF is fixed and XF is changed, the focal point will be scanned at a constant depth. It is possible to display a reflection image. Also, if both XF and YF are changed, an ultrasonic reflection image in the X-axis and y-axis cross sections can be obtained.
これらは、 いずれも焦点、 つま り、 超音波ビームを絞った状態での観 測結果であるから、 極めて解像度の高い映像を得ることが可能となる。 以上に iポベた動作を、 マイクロコンピュータ 2 0 1 の処理フロ一とし j 4 Since these are all observation results with the focus, that is, with the ultrasound beam focused, it is possible to obtain images with extremely high resolution. The operation described above is regarded as the processing flow of the microcomputer 201. j 4
てまとめたものが第 1 1 図, 第 1 2図である。 Figures 11 and 12 summarize the results.
マイクロコンピュータ 2 0 1 の動作は、 制御情報の受信と各素子の送 受信制御データの計算 · データメモリへの格納と、 データメモリから素 子の制御データを読み込みながら検査する動作に大別される。  The operation of the microcomputer 201 is roughly divided into receiving control information, calculating transmission / reception control data of each element, storing the data in the data memory, and inspecting while reading the control data of the element from the data memory. .
前者は、 超音波の送受信に先だつものでありこれを第 1 1図に示す。 後者は、 送受信を繰り返しながら検査を行う動作であり、 フローを第 1 2図に示する。  The former is prior to the transmission and reception of ultrasonic waves, and is shown in FIG. The latter is an operation of performing inspection while repeating transmission and reception, and the flow is shown in FIG.
最初に、 第 1 1 図のフローを説明する。  First, the flow of FIG. 11 will be described.
表示装置〗 からマイクロコンピュータ 2 0 1 に送られる制御情報は、 基本的には、 式 ( 1 ) から式 ( 1 0 ) までの演算に必要なパラメータで ある。  The control information sent from the display device to the microcomputer 201 is basically a parameter necessary for the calculation from the equations (1) to (10).
具体的には、 焦点位置 F (X F, Y F) の設定範囲と、 設定間隔, 超 音波送受信素子の位置とどの素子を送信や受信に使うかの情報, 超音波 の伝播速度 V, クロック間隔 D, C-C Dの素子数 N, 焦点からどれく ら い近い位置から反射波を採取するかを決める値 a、 である。  Specifically, the setting range of the focal position F (XF, YF), the setting interval, the position of the ultrasonic transmitting / receiving element and information on which element is used for transmission and reception, the ultrasonic wave propagation speed V, the clock interval D , The number of CCD elements N, and the value a, which determines how close the reflected wave should be sampled from the focal point.
この動作が、 第 1 1 図の 4 0 1 にあたる。  This operation corresponds to 401 in FIG.
式 ( 5 ) から式 ( 9 ) にあるクロックの 1 周期を何倍にするかの係数 は、 本実施例ではハー ドウエアによってあらかじめ決められている。 制御情報が表示装置 1 からマイクロコンピュータ 2 0 〗 に転送される と、 各送受信素子に対し周期 Dのクロックを使う C C Dの長さ nを計算 する。  In this embodiment, the coefficient for multiplying one clock cycle in equations (5) to (9) is determined in advance by hardware. When the control information is transferred from the display device 1 to the microcomputer 20。, the length n of the CCD using the clock of the period D is calculated for each transmitting / receiving element.
まず、 第 1 1 図の 4 0 2で、 最初の計算すべき焦点位置を設定し、 式 ( 1 0 ) のト リガからの時間△ Sを計算してデータメモリ 2 0 2に記憶 する (第 1 1 図の 4 0 3 ) 。  First, at 402 in FIG. 11, the first focus position to be calculated is set, and the time △ S from the trigger in equation (10) is calculated and stored in the data memory 202 (see FIG. 1 1 4 3).
次に、 4 0 4で計算する送受信素子を設定する。  Next, a transmitting / receiving element to be calculated in 404 is set.
4 0 4 で設定された素子が送信に使われるか否かを判定し、 送信に使 1 & 4 Determine whether the element set in 4 is used for transmission or not, and 1 &
われる場合、 式 ( 1 ) から (4 ) でカウン 卜数 K i を算出して一時メモ リに格納する ( 4 06 ) 。 In this case, the number of counts K i is calculated from equations (1) and (4) and stored in temporary memory (406).
その素子が送信に使われなければ、 4 0 6での計算はスキップされる, If the element is not used for transmission, the calculation at 406 is skipped,
4 0 7はその素子を受信に使うかの判定処理である。 Step 407 is processing for determining whether the element is used for reception.
受信に使う場合、 4 0 8で式 ( 1 ) から ( 3 ) を用いて Δ T i を計算 した後、 式 ( 9 ) により nを求め、 メモリに一時格納される。  When used for reception, after calculating ΔT i by using Equations (1) to (3) in 408, n is calculated by Equation (9) and temporarily stored in memory.
4 0 7でその素子が受信に使われないと判断された場合、 4 0 8の計 算処理は省略される。  If it is determined in 407 that the element is not used for reception, the calculation processing in 408 is omitted.
4 0 9では、 素子を送信, 受信に使うか否かのオン オフ信号と、 先 にメモリに一時格納した K i , nの値をデータメモリに転送する。  In 409, the on / off signal indicating whether the element is used for transmission and reception and the values of Ki and n temporarily stored in the memory are transferred to the data memory.
計算すべき素子が全部終わつたかを 4 1 0で判定し、 終わっていなけ れば、 次の素子に移り (4 1 1 ) 、 4 0 5からの処理を繰り返す。  Whether all the elements to be calculated have been completed is determined by 410, and if not completed, the process proceeds to the next element (4 1 1) and the processing from 405 is repeated.
1 0で全素子の計算が終了していれば、 焦点の設定範囲をすベて終 えたかを判定し (4 1 2 ) 、 終えて—いなければ、 次の焦点位置を設定し て (4 1 3 ) 、 4 0 3からの処理を継続する。  If the calculation of all the elements has been completed in 10, it is determined whether the entire focus setting range has been completed (4 1 2), and if not completed, the next focal position is set ( 4 1 3), continue processing from 4 0 3.
設定焦点位置がすべて終了していれば、 これで、 データメモリへの書 き込みを終える。  If all set focus positions have been completed, writing to the data memory is completed.
以上が、 検査に先立つデータの設定過程であり、 このあと、 焦点を動 かした検査動作になる。  The above is the data setting process prior to the inspection, and then the inspection operation with the focus shifted.
この検査動作の内容を第 1 2図のフローを用いて説明する。  The contents of this inspection operation will be described with reference to the flow of FIG.
検査がスター トすると、 最初の焦点位置が設定され (4 5 1 ) 、 その 位置に対応した各素子の制御データがデータメモリから各送受信回路に 送信される ( 4 5 2 ) 。  When the inspection starts, an initial focus position is set (45 1), and control data of each element corresponding to the position is transmitted from the data memory to each transmitting / receiving circuit (45 2).
より具体的に説明すると、 i番目の送受信回路ではセレクタ 2 0 3で i を選び、 その出力で送受信回路内のゲー ト 3 1 3を導通状態にして、 端子 2 7 3 を介してデータを送る。 j g More specifically, in the i-th transmission / reception circuit, i is selected by the selector 203, the gate 31 3 in the transmission / reception circuit is made conductive by the output, and data is transmitted through the terminal 273. . jg
次に、 表示装置 1 に設定された焦点位置を出力するが ( 4 5 3 ) 、 あ らかじめ焦点設定順序などがわかっており、 表示装置 1側にデータがあ れば転送の必要はないことは、 明かである。 Next, the focal position set on the display device 1 is output (4553), but the focus setting order and the like are known in advance, and if there is data on the display device 1, there is no need to transfer the data. That is clear.
この段階で、 端子 2 7 5 を介して送信卜リガ信号を送り ( 4 5 4 ) 、 すでに計算してある Δ Sなる時間待つ ( 4 5 6 ) 。  At this stage, a transmission trigger signal is sent via the terminal 275 (4554), and the time ΔS already calculated is waited for (4556).
この Δ Sの間に、 各送受信回路は与えられた遅延量に従って送信動作 を行う力 その詳細はすでに説明した。  During this ΔS, each transmitting / receiving circuit performs a transmitting operation according to the given delay amount. The details have already been described.
発振卜 リガから Δ S経過後、 端子 2 7 4 を介して各送受信回路に受信 動作開始信号を送信し ( 4 5 7 ) 、 受信動作を開始させる。  After ΔS elapses from the oscillation trigger, a reception operation start signal is transmitted to each transmission / reception circuit via the terminal 274 (457), and the reception operation is started.
必要に応じて、 端子 2 7 1 を介して発振卜リガ, 受信動作開始信号が 表示装置 1 に送られる。  An oscillation trigger and a reception operation start signal are sent to the display device 1 via the terminal 271, as necessary.
以上の動作の結果、 端子 2 9 i から設定された遅延を受けた反射信号 が出力され、 2 0 6で加算され、 端子 2 7 2 を介して表示装置 1 に送ら れる。 ―  As a result of the above operation, a reflected signal delayed by the set delay is output from the terminal 29 i, added at 206, and sent to the display device 1 via the terminal 27 2. ―
この動作を、 あらかじめ設定したすべての焦点位置で行い ( 4 5 8, 4 5 9 ) 、 検査を終了する。  This operation is performed at all the preset focal positions (458, 549), and the inspection is completed.
以上、 本発明の第 1 の実施例について詳細に説明した。  As above, the first embodiment of the present invention has been described in detail.
この実施例では、 メモリ 2 ◦ 2に格納したデータにより、 送受信の遅 延量ゃ送受信の使用, 不使用を決めた。  In this embodiment, the amount of transmission / reception delay divided by the use / non-use of transmission / reception was determined based on the data stored in the memory 2 2.
もちろん、 超音波送受信素子で送信に使わないものは送信の遅延デー タが不要であり、 受信に使用しない素子では受信のデータが必要ない。 送受信の遅延データや送受信素子の使用データは、 あらかじめ計算し てメモリに入れて置く方法のほか、 表示装置 1 から転送する方法、 マイ クロコンピュータ 2 0 1 で計算しながら制御する方法などがあり、 変形 した実施例としてあげられる。  Of course, ultrasonic transmission / reception elements that are not used for transmission do not require transmission delay data, and elements that are not used for reception do not require reception data. Transmission / reception delay data and transmission / reception element usage data can be calculated in advance and stored in memory, transferred from the display device 1, or controlled by a microcomputer 201 while calculating. A modified embodiment is given.
また、 C C Dのクロック周期を変えて受信時の遅延量を制御する本実 1 ? In addition, the actual control of the delay amount during reception by changing the clock cycle of the CCD 1 ?
施例の手法を、 送信側に適用する事も可能である。 It is also possible to apply the method of the embodiment to the transmitting side.
この時、 送信の基準となるのは、 もっとも早く C C Dを通過したもの であることは言うまでもない。  At this time, it goes without saying that the transmission standard is the one that has passed through CCD the earliest.
更に、 本発明の構成要素で、 3の送受信回路のうちの 3 5 i の超音波 送受信素子を除く部分と、 2の制御装置とはすべて集積回路で製作可能 である。  Further, among the components of the present invention, the portion excluding the 35 i ultrasonic transmission / reception element of the transmission / reception circuit of 3 and the control device of 2 can all be manufactured by integrated circuits.
また、 各送受信回路はすべて同じ構成となっている。  All the transmitting and receiving circuits have the same configuration.
このため、 各超音波送受信素子ごとに 3 5 i を除く送受信回路 3の部 分を集積回路で作成し、 3 5 i に電気的に結線させる。  For this reason, the part of the transmission / reception circuit 3 excluding 35 i is formed by an integrated circuit for each ultrasonic transmission / reception element, and is electrically connected to 35 i.
制御装置 2も集積回路で作り、 送受信回路 3 と制御装置 2 を一体構造 と した構成も本実施例の変形としてあげられる。  The configuration in which the control device 2 is also made of an integrated circuit and the transmission / reception circuit 3 and the control device 2 have an integrated structure can be given as a modification of this embodiment.
次に、 本発明の第 2実施例について説明する。  Next, a second embodiment of the present invention will be described.
第 1 実施例では、 1 次元状の超音波送受信素子を線状に並べた。  In the first embodiment, one-dimensional ultrasonic transmitting / receiving elements are arranged in a line.
本実施例は 1 次元超音波送受信素子を曲率を持った配置にすることに 特徴があるが、 第 1 図から第 3図と第 6図で示した構成は同じで、 第 2 図の 2 0 1 のマイクロコンピュータから第 3図の 3 1 2のメモリに転送 されるデータが異なる。  This embodiment is characterized in that the one-dimensional ultrasonic transmission / reception elements are arranged with a curvature, but the configurations shown in FIGS. 1 to 3 and FIG. The data transferred from the microcomputer 1 to the memory 312 in Fig. 3 is different.
第 7図に示すように、 3 5 1 から 3 5 Mまでの Mケの超音波送受信素 子は 1 次元で曲率のある任意の位置に設置されており、 相互の間隔も異 なる。  As shown in Fig. 7, M ultrasonic transmission / reception elements from 351 to 35M are installed at arbitrary positions with one-dimensional curvature, and the intervals between them are different.
各超音波送受信素子の位置は、 (X i, Y i ) である (ただし、 i = 1 , 2, ··· , M ) 。  The position of each ultrasonic transmitting / receiving element is (X i, Y i) (where i = 1, 2,..., M).
第 1 の実施例と同じく、 焦点 F ( X F , Y F ) に超音波ビームを集束 させる場合を考える。  As in the first embodiment, consider a case where an ultrasonic beam is focused on a focal point F (XF, YF).
焦点 Fと送受信素子 3 5 i との距離は、 式 ( 1 1 ) で示される。  The distance between the focal point F and the transmission / reception element 35 i is represented by Expression (11).
L i = ( X F - X i ) 2 + ( Y F - Y i ) 2 式 ( 1 1 ) g L i = (XF-X i) 2 + (YF-Y i) 2 Equation (1 1) g
焦点 Fからもっとも離れた送受信素子を 3 5 j とし、 Fとの距離を L j とする。 Let the transmitting / receiving element farthest from the focal point F be 35 j, and let the distance from F be L j.
L j は第 7図の円 C 1の半径であるから、 送受信素子 3 5 iでは、 3 5 Mより Δ L i分の距離の超音波伝搬時間だけ送信タイ ミングを遅ら せる必要がある。  Since L j is the radius of the circle C 1 in FIG. 7, it is necessary for the transmitting / receiving element 35 i to delay transmission timing by an ultrasonic propagation time of ΔL i from 35 M.
この遅延時間 Δ T i は、  This delay time Δ T i is
Δ T i = ( L j 一 L i ) /V 式 ( 1 2 ) であり (Vは超音波の伝搬速度) 、 このときの遅延量に対応するカウン 卜数は式 (4 ) と同じである。  Δ T i = (L j −L i) / V Equation (1 2) (where V is the propagation speed of the ultrasonic wave), and the number of counts corresponding to the delay amount at this time is the same as Equation (4) .
つま り、 焦点 Fからもっとも離れた超音波送受信素子を基準にとった うえで、 各送受信素子の遅延量を決定する第 1実施例の方法, 構成がそ のまま使える。  In other words, the method and configuration of the first embodiment for determining the delay amount of each transmitting / receiving element based on the ultrasonic transmitting / receiving element farthest from the focal point F can be used as it is.
同様の議論は受信側でもできることは容易に考えられる。  It is easily conceivable that a similar argument can be made on the receiving side.
第 7図の Fにもつとも近い送受信素子と Fの距離 L s (円 C 2の半径) を求め、 これより式 ( 1 0 ) に従った受信の動作開始タイ ミングを決定 する。  The distance L s (the radius of the circle C 2) between the transmitting / receiving element and F which is close to F in FIG. 7 is determined, and the reception operation start timing according to equation (10) is determined from this.
また、 受信の遅延量 Δ T i に対応するク口ックの周期をきりかえる C C D長さ nも式 ( 9 ) から求まる。  Further, the CCD length n for switching the period of the cycle corresponding to the reception delay amount ΔT i is also obtained from the equation (9).
このように、 第 2の実施例では第 1の実施例のメモリ 3 1 2に与える データを変更する事により、 任意の 】 次元配置した超音波送受信素子の 集束等が可能となる。  As described above, in the second embodiment, by changing the data given to the memory 312 of the first embodiment, it is possible to focus the ultrasonic transmitting / receiving elements arranged in an arbitrary dimension.
第 2の実施例である超音波送受信素子の 1 次元配置を 2次元状に拡張 したものが、 第 3の実施例である。  The third embodiment is a two-dimensional extension of the one-dimensional arrangement of the ultrasonic transmission / reception elements according to the second embodiment.
第 8図に示すように X軸, y軸, z軸からなる空間に焦点 F (X F , Y F, Z F) と超音波送受信素子 3 5 i ( i = 1, 2, …, M) が配置 されている。 送受信素子の位置は、 (X i, Y i , Z i ) である。 As shown in Fig. 8, the focal point F (XF, YF, ZF) and the ultrasonic transmitting / receiving element 35i (i = 1, 2,…, M) are arranged in the space consisting of the X, y, and z axes. ing. The position of the transmitting / receiving element is (Xi, Yi, Zi).
さきの実施例と同様に、 焦点 Fと各超音波送受信素子の間の距離は、 次式  As in the previous embodiment, the distance between the focal point F and each ultrasonic transmitting / receiving element is expressed by the following equation.
L i = (XF— X i )2 + ( Y F - Y i )2 + (Z F— Z i )'で示される 送受信素子 3 5 jが距離の最大値 L j を持つとすると、 Fを中心とし た半径 L j なる球面 C 3が形成される。 L i = (XF—X i) 2 + (YF−Y i) 2 + (ZF—Z i) '. A spherical surface C 3 having a radius L j is formed.
焦点 Fから送受信素子 3 5 i を結ぶ直線を延ばすと、 この球面 C 3に ぶっかるが、 この位置を第 8図では Q i としてある。  If a straight line connecting the transmitting / receiving element 35 i from the focal point F is extended, it hits the spherical surface C 3, and this position is designated as Q i in FIG.
3 5 1 と 0 1 の距離が、 これまで述べた遅延量△ L i であり、 これよ り、 遅延量 Δ Τ i と計数値 K i 力 各々、 式 ( 3), (4 ) から求まる。 また、 受信時においても、 焦点 Fにもつとも近い送受信素子で式(10) に従った受信の動作開始タイ ミングを決定し、 式 ( 9 ) によってクロッ クを切り替える C C D長さ nを決めることができる。  The distance between 35 1 and 0 1 is the delay amount △ L i described above. From this, the delay amount Δ Τ i and the count value K i force are obtained from equations (3) and (4), respectively. Also, at the time of reception, it is possible to determine the receiving operation start timing according to equation (10) with the transmitting / receiving element close to the focal point F and determine the CCD length n for switching the clock by equation (9). .
このように、 2次元状態に配置さ-れた超音波送受信素子でも送受信の 遅延量が制御でき、 これによ り超音波の粱束観測位置を 3次元的に変更 できる。  In this way, the transmission / reception delay amount can be controlled even with the ultrasonic transmission / reception elements arranged in a two-dimensional state, whereby the observation position of the ultrasonic beam can be three-dimensionally changed.
この位 S変更制御によリ、 絞った超音波ビームで分解能よく検査対象 を検査できる。  With this S-change control, the inspection target can be inspected with high resolution using the focused ultrasonic beam.
この実施例の変形として、 すべての送受信素子のデータを 2 0 1 なる マイクロコンピュータで転送するのではなく、 特定グループに分けて、 各々にマイ クロコンピュータ を設ける方法もある。  As a modification of this embodiment, there is a method in which data of all the transmitting / receiving elements is not transferred by a microcomputer of 201, but is divided into a specific group and a microcomputer is provided for each.
これは、 2次元状に超音波送受信素子を設けると、 その数が増大しデ 一タ転送が時間的に間に合わなくなる場合に使用される。  This is used when the number of ultrasonic transmitting / receiving elements provided in a two-dimensional manner increases and data transfer cannot be performed in time.
この場合でも、 表示装置 1 、 あるいは、 マイ クロコンピュータのひと つが中心となり、 焦点 Fとその位置にたいする遅延量を計算してもよい, もちろん、 あらかじめ焦点 Fの走査バターンを決めてデータ を各グル 2In this case as well, the display device 1 or one of the microcomputers may be used as the center, and the focus F and the delay amount for that position may be calculated. 2 .
—プのメモリに格納しておき、 各グループごとのマイクロコンピュータ で読みだし、 転送する方法もある。 -There is also a method in which the data is stored in the memory of the group, read out by the microcomputer of each group, and transferred.
第 4実施例は、 各送受信回路 3 i を変えた例である。  The fourth embodiment is an example in which each transmission / reception circuit 3 i is changed.
第 9図に示すように、 本実施例では 3 i のなかで増幅器 3 0 6 を増幅 度制御型増幅器 3 2 6に変え、 さらにメモリ 3 1 2に増幅度制御データ を与える点が特徴である。  As shown in FIG. 9, the present embodiment is characterized in that, in 3 i, amplifier 30 6 is changed to gain control type amplifier 3 26, and further, gain control data is given to memory 3 12. .
よく知られているように、 超音波送受信素子には指向特性がある。 このため、 素子の送受信方向によって送信および受信の感度が異なる 場合がある。  As is well known, ultrasonic transmitting / receiving elements have directional characteristics. For this reason, the transmission and reception sensitivities may differ depending on the transmitting and receiving directions of the element.
この感度の差異を、 受信側の増幅度の制御によって補正するのが本実 施例である。  In this embodiment, the difference in sensitivity is corrected by controlling the amplification on the receiving side.
増幅度は、 各超音波送受信素子の特性と、 素子と焦点の相対位置によ つて決定でき、 メモリ 3 1 2に転送される。  The amplification degree can be determined based on the characteristics of each ultrasonic transmitting / receiving element and the relative position between the element and the focal point, and is transferred to the memory 312.
この実施例の変形として、 3 0 4—のパルス ¾生器の ¾生出力を制御す る方法や、 パルス出力と増幅度の制御の併用も考えられる。  As a modification of this embodiment, a method of controlling the regenerative output of the 304 pulse generator or a combination of controlling the pulse output and the amplification degree is also conceivable.
この実施例によ り、 送受信素子の指向性の;影響を除去し、 焦点位置に よる検出感度の差を補正できる。  According to this embodiment, it is possible to remove the influence of the directivity of the transmission / reception element and correct the difference in the detection sensitivity depending on the focal position.
第 5実施例は、 人体や工業用構造物等の内部の映像化に適用した実施 例である。  The fifth embodiment is an embodiment applied to visualization of the inside of a human body, an industrial structure, or the like.
第 1 0図に示す表示装置 1 , 制御装置 2, 送受信回路 3は、 これまで の実施例と同じ構成である。  The display device 1, the control device 2, and the transmission / reception circuit 3 shown in FIG. 10 have the same configurations as those of the previous embodiments.
制御装置 2 と送受信回路 3は、 I C回路として構成し、 小型なものと している。  The control device 2 and the transmission / reception circuit 3 are configured as IC circuits, and are small.
3の送受信回路の超音波送受信面を、 4の人体や構造物などの検査対 象の表面近傍に置き、 水ゃグリセリ ンなど超音波カップラン 卜 5 を介し て、 超音波を 4の内部に送信, 反射波を受信する。 送受信の制御方法は、 第 1 から第 4 までの実施例で詳しく述べてある, 検査対象 4の内部に超音波を集束させ、 その焦点位置を変えて反射波 の強度分布を表示させると、 人体内部の器官や病巣を精度よく識別でき る。 The ultrasonic transmission / reception surface of the transmission / reception circuit in (3) is placed near the surface to be inspected, such as a human body or a structure, in (4), and ultrasonic waves are introduced into the interior of (4) through an ultrasonic coupling (5) such as water / glycerin. Transmits and receives reflected waves. The transmission and reception control method is described in detail in the first to fourth embodiments.When the ultrasonic wave is focused inside the inspection object 4 and the focal position is changed to display the intensity distribution of the reflected wave, the human body Accurate identification of internal organs and lesions.
また、 構造物内部の欠陥も検出可能である。  Defects inside structures can also be detected.
本発明では、 超音波ビームの特性をきわめて柔軟に制御できる。  According to the present invention, the characteristics of the ultrasonic beam can be controlled extremely flexibly.
つま り、 上記のような焦点位置を変えて映像化する方法のほか、 構造 物に斜めに超音波ビームを当てる斜角探傷にも本発明を適用できる。  That is, in addition to the method of imaging by changing the focal position as described above, the present invention can be applied to oblique flaw detection in which an ultrasonic beam is obliquely applied to a structure.
また、 斜角探傷に使う超音波送受信素子を適切に切り替えることによ リ、 ある検査点を種々の方向から観測することが可能となり、 構造物内 部の状況を詳しく把握できる。  In addition, by properly switching the ultrasonic transmission / reception elements used for oblique flaw detection, it is possible to observe a certain inspection point from various directions, and to understand the situation inside the structure in detail.
第 6実施例は、 水中や不透明液体中での物体映像化に本発明を適用し た例である。  The sixth embodiment is an example in which the present invention is applied to imaging of an object in water or an opaque liquid.
その構成は、 先の実施例と同じであるので図では示していない。  The configuration is not shown in the drawing because it is the same as the previous embodiment.
送受信回路 3 を液体中に置き、 超音波を送信し反射波を検出して物体 を映像化する。  Transmitter / receiver circuit 3 is placed in a liquid, and the object is visualized by transmitting ultrasonic waves and detecting reflected waves.
送受信の制御は、 これまでの実施例で記載した方法を用いる。  For the control of transmission and reception, the method described in the above embodiments is used.
本実施例は、 例えば視界の著しく悪い水中や、 液体金属中の可視化に 効果を上げるものである。  This embodiment is effective in visualizing, for example, underwater with extremely poor visibility or in liquid metal.
以上、 本発明を実施例によって詳細に説明した。  The present invention has been described in detail with reference to the embodiments.
本発明では、 C C Dなどの電荷 云送素子を受信信号の遅延に用いるた め、 C C Dに与えるクロックを制御することに特徴がある。  The present invention is characterized in that a clock supplied to CCD is controlled because a charge transfer element such as CCD is used for delaying a received signal.
また、 各超音波送受信素子を、 送受信の両方に使用, 送信のみに使用, 受信のみに使用, 不使 fflのいずれにも制御できる。  In addition, each ultrasonic transmission / reception element can be controlled to be used for both transmission and reception, used only for transmission, used only for reception, and not used.
これらの制御データは、 各送受信回路ごとにメモリに格納される: これらの制御によ り、 ビームの焦点位置やビーム方向などフレキシブ ルにビーム特性を変えることができ、 しかも小型なビーム特性可変型超 音波送受信装置を提供でき、 工学的な効果が大きい。 These control data are stored in the memory for each transmitting / receiving circuit: With these controls, flexible data such as the beam focal position and beam direction The beam characteristics can be changed in various ways, and a compact beam characteristic variable type ultrasonic transceiver can be provided, which has a great engineering effect.
本発明の各実施例で共通していることは、 C C Dなどの電荷転送素子 を受信信号の遅延に用いるため、 C C Dに与えるクロックを制御するこ とに特徴があり、 また、 各超音波送受信素子を、 送受信の両方に使用, 送信のみに使用, 受信のみに使用, 不使用のいずれにも制御できて、 こ れらの制御データは、 各送受信回路ごとにメモリに格納される。  The common feature of the embodiments of the present invention is that a charge transfer element such as a CCD is used for delaying a received signal, so that a clock supplied to the CCD is controlled. Can be controlled to be used for both transmission and reception, used only for transmission, used only for reception, and not used. These control data are stored in memory for each transmission and reception circuit.
これらの制御により、 ビームの焦点位置やビ一ム方向など、 フレキシ ブルにビーム特性を変えることができ、 しかも小型化が可能なので、 ビ ーム特性が可変な小型超音波送受信装置を提供でき、 工学的な効果が大 きい。  By these controls, the beam characteristics such as the beam focal position and the beam direction can be flexibly changed, and the size can be reduced, so that a small ultrasonic transmitter / receiver with variable beam characteristics can be provided. Great engineering effect.

Claims

請求の範囲 The scope of the claims
1 . 複数の発信子から各発信子ごとに遅延時間を異にして波動を発信す る発信器と、 前記波動の反射波を受信して電気信号に変換する複数の受 信子と、 前記各受信子からの各信号が入力される前記各受信子に対応し た複数の電荷転送素子と、 シフ 卜速度指令信号に基づいて前記各電荷転 送素子内のデータのシフ 卜速度を変更する手段と、 前記各電荷転送素子 からの出力を加算する加算器と、 前記加算器からの出力に基づいて前記 反射波を可視化する表示器とを備えた波動を用いた探査装置。  1. A transmitter that transmits a wave from a plurality of transmitters with different delay times for each transmitter, a plurality of receivers that receive a reflected wave of the wave and convert the reflected wave into an electric signal, and each of the receivers A plurality of charge transfer elements corresponding to the respective receivers to which respective signals from the respective elements are input; and means for changing a shift speed of data in the respective charge transfer elements based on a shift speed command signal. An exploration apparatus using a wave, comprising: an adder that adds outputs from the charge transfer elements; and a display that visualizes the reflected wave based on the output from the adder.
2 . 複数個の超音波送受信素子に与える送信タイ ミングと、 反射波の遅 延量を制御して超音波の送受信特性を変える超音波送受信装置において, 各超音波送受信素子ごとに設けた送信または受信の信号処理部に、 電荷 転送素子と、 該電荷転送素子に与えるクロック信号を切り替えるクロッ ク制御装置と、 送受信の遅延量から求まる数値データと各超音波送受信 素子を送信、 または、 受信に使うか否かの制御データを記憶する記億素 子と、 前記電荷転送素子に与えるクロックの切り換えタイ ミングを前記 遅延量から求まる数値データから決定するカウンタ素子と、 前記制御デ —タに基づいてオン, オフされるゲ一 卜またはスイ ッチング素子と、 前 記遅延量から求まる数値デ一タと前記制御データの設定と前記記憶素子 への転送動作を行う制御装置と、 遅延された複数の受信信号を加え合わ せる加算器と、 前記加算器からの出力に基づいて前記反射波を可視化す る表示器とを備え、 複数の周期の異なるク口ック信号で電荷転送素子の 信号転送遅延量を制御することにより選択された各超音波送受信素子の 送信タイ ミ ング、 または、 受信の遅延量を決定し、 超音波受信波形を得 ることを特徴とする超音波を波動として用いた探査装置。  2. In the transmission / reception device that changes the transmission timing given to a plurality of ultrasonic transmission / reception elements and the transmission / reception characteristics of the ultrasonic wave by controlling the delay amount of the reflected wave, the transmission / reception provided for each ultrasonic transmission / reception element A charge transfer element, a clock control device that switches a clock signal to be applied to the charge transfer element, a numerical data obtained from a transmission / reception delay amount, and each ultrasonic transmission / reception element are used for transmission or reception in a reception signal processing unit. A storage element for storing control data of whether or not the counter element determines a switching timing of a clock to be applied to the charge transfer element from numerical data obtained from the delay amount, and is turned on based on the control data. A gate or switching element to be turned off, numerical data obtained from the delay amount, setting of the control data, and transfer operation to the storage element. And a display for visualizing the reflected wave based on the output from the adder, and a plurality of ports having different periods. By controlling the signal transfer delay amount of the charge transfer element with the clock signal, the transmission timing or reception delay amount of each selected ultrasonic transmission / reception element is determined, and the ultrasonic reception waveform is obtained. An exploration device that uses the characteristic ultrasonic waves as waves.
3 . 請求項 2の超音波送受信装置において、 超音波の送信から電荷転送 素子の動作を開始させる時間を求めて動作開始信号を発生する演算器を 備え、 該動作開始信号の発生タイ ミ ングを、 超音波送受信素子の位置と 制御する超音波ビーム特性と超音波の速度から設定することを特徴とす る超音波を波動として用いた探査装置。 3. The ultrasonic transmitting and receiving apparatus according to claim 2, further comprising: a computing unit that determines an operation start time of the charge transfer element after transmitting the ultrasonic wave and generates an operation start signal. An exploration apparatus using ultrasonic waves as waves, wherein the generation timing of the operation start signal is set based on the position of the ultrasonic transmission / reception element, the characteristics of the ultrasonic beam to be controlled, and the speed of the ultrasonic waves.
4 . 請求項 2または請求項 3の超音波送受信装置において、 各超音波送 受信素子ごとに、 送信信号振幅の制御器、 または、 受信信号の増幅度を 制御できる可変増幅器と、 送信振幅、 または、 増幅度の設定データを記 憶する記憶素子を備え、 超音波ビームの特性をもとに、 送信振幅, 受信 増幅度を求めて記憶素子に格納した格納データにより送信振幅、 または、 増幅度を制御することを特徴とする超音波を波動として用いた探査装置。 4. The ultrasonic transmitting and receiving apparatus according to claim 2 or 3, wherein for each ultrasonic transmitting and receiving element, a controller for a transmission signal amplitude, or a variable amplifier capable of controlling the degree of amplification of a reception signal, and a transmission amplitude or And a storage element for storing amplification degree setting data. Based on the characteristics of the ultrasonic beam, the transmission amplitude and the reception amplification degree are obtained, and the transmission amplitude or the amplification degree is determined by the stored data stored in the storage element. An exploration device using ultrasonic waves as waves, which is controlled.
5 . 請求項 2または請求項 3または請求項 4の超音波送受信装置におい て、 1 次元状または多次元状の湾曲面に沿って複数の超音波送受信素子 を配置したことを特徴とする超音波を波動として用いた探査装置。 5. The ultrasonic transmission / reception apparatus according to claim 2, 3, or 4, wherein a plurality of ultrasonic transmission / reception elements are arranged along a one-dimensional or multidimensional curved surface. An exploration device using waves as waves.
6 . 請求項 2から請求項 5までのいずれか一項の超音波送受信装置にお いて、 送信のタイ ミ ングと受信の遅—延量は、 各送受信素子の配置位置と、 超音波伝搬媒質の超音波伝搬速度と、 超音波送受信特性とから求める演 算装置を備えたことを特徴とする超音波を波動と して用いた探査装置。 6. In the ultrasonic transmitting and receiving apparatus according to any one of claims 2 to 5, the timing of transmission and the amount of delay of reception are determined by the position of each transmitting / receiving element and the ultrasonic propagation medium. An exploration device using ultrasonic waves as waves, comprising a calculating device for obtaining the ultrasonic wave propagation speed and the ultrasonic transmission / reception characteristics.
7 . 請求項 2から請求項 6 までのいずれか一項の超音波送受信装置にお いて、 集積回路で製作した送受信信号処理部と制御部を備え、 前記送受 信処理部と超音波送受信素子とを電気的に結線し、 集積回路化した制御 装置とともに一体構造としたことを特徴とする超音波を波動として用い た探査装置。 7. The ultrasonic transmission / reception device according to any one of claims 2 to 6, further comprising a transmission / reception signal processing unit and a control unit manufactured by an integrated circuit, wherein the transmission / reception processing unit, the ultrasonic transmission / reception element, An exploration device using ultrasonic waves as waves, which is electrically connected to and integrated with a control device integrated into an integrated circuit.
PCT/JP1995/000144 1995-02-03 1995-02-03 Acoustic probing apparatus WO1996024053A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP52339896A JP3279572B2 (en) 1995-02-03 1995-02-03 Exploration equipment using waves
PCT/JP1995/000144 WO1996024053A1 (en) 1995-02-03 1995-02-03 Acoustic probing apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP1995/000144 WO1996024053A1 (en) 1995-02-03 1995-02-03 Acoustic probing apparatus

Publications (1)

Publication Number Publication Date
WO1996024053A1 true WO1996024053A1 (en) 1996-08-08

Family

ID=14125607

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP1995/000144 WO1996024053A1 (en) 1995-02-03 1995-02-03 Acoustic probing apparatus

Country Status (2)

Country Link
JP (1) JP3279572B2 (en)
WO (1) WO1996024053A1 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10277035A (en) * 1997-04-03 1998-10-20 Advanced Technol Lab Inc Portable ultrasonic device and its diagnostic device
FR2778462A1 (en) * 1998-05-07 1999-11-12 Snecma METHOD FOR ULTRASONIC CONTROL IN IMMERSION OF PARTS WITH CYLINDRICAL GEOMETRY
JP2000033087A (en) * 1998-05-28 2000-02-02 Hewlett Packard Co <Hp> Phased array acoustic device provided with intra-group processor
US8052606B2 (en) 1996-06-28 2011-11-08 Sonosite, Inc. Balance body ultrasound system
US8216146B2 (en) 1996-06-28 2012-07-10 Sonosite, Inc. Ultrasonic signal processor for a hand held ultrasonic diagnostic instrument

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6957583B2 (en) * 2002-10-31 2005-10-25 Hitachi, Ltd. Ultrasonic array sensor, ultrasonic inspection instrument and ultrasonic inspection method

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS54113357A (en) * 1978-01-27 1979-09-04 Raytheon Co Device for making beam
JPS6116031B2 (en) * 1979-03-29 1986-04-26 Yokogawa Hokushin Electric
JPS6222631A (en) * 1985-07-22 1987-01-30 株式会社東芝 Electronic focus apparatus

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS54113357A (en) * 1978-01-27 1979-09-04 Raytheon Co Device for making beam
JPS6116031B2 (en) * 1979-03-29 1986-04-26 Yokogawa Hokushin Electric
JPS6222631A (en) * 1985-07-22 1987-01-30 株式会社東芝 Electronic focus apparatus

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
MICROFILM OF THE SPECIFICATION AND DRAWINGS ANNEXED TO THE WRITTEN APPLICATION OF JAPANESE UTILITY MODEL, Application No. 182727/1987, (Laid-open No. 87277/1989) (HONTA DENSHI K.K.), 8 June 1989. *

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8052606B2 (en) 1996-06-28 2011-11-08 Sonosite, Inc. Balance body ultrasound system
US8216146B2 (en) 1996-06-28 2012-07-10 Sonosite, Inc. Ultrasonic signal processor for a hand held ultrasonic diagnostic instrument
JPH10277035A (en) * 1997-04-03 1998-10-20 Advanced Technol Lab Inc Portable ultrasonic device and its diagnostic device
JP2009034533A (en) * 1997-04-03 2009-02-19 Sonosight Inc Hand-held ultrasonic apparatus and diagnostic instrument
JP4696150B2 (en) * 1997-04-03 2011-06-08 ソノサイト・インコ−ポレイテッド Portable ultrasonic device and diagnostic device
FR2778462A1 (en) * 1998-05-07 1999-11-12 Snecma METHOD FOR ULTRASONIC CONTROL IN IMMERSION OF PARTS WITH CYLINDRICAL GEOMETRY
EP0959350A1 (en) * 1998-05-07 1999-11-24 Societe Nationale D'etude Et De Construction De Moteurs D'aviation "Snecma" Process for ultrasonic testing of imersed cylindrical pieces
US6202489B1 (en) 1998-05-07 2001-03-20 Societe Nationale D'etude Et De Construction De Moteurs D'aviation (S.N.E.C.M.A.) Ultrasonic testing method for a part of complex geometry
JP2000033087A (en) * 1998-05-28 2000-02-02 Hewlett Packard Co <Hp> Phased array acoustic device provided with intra-group processor
JP4579357B2 (en) * 1998-05-28 2010-11-10 コーニンクレッカ フィリップス エレクトロニクス エヌ ヴィ Phased array acoustic device with in-group processor

Also Published As

Publication number Publication date
JP3279572B2 (en) 2002-04-30

Similar Documents

Publication Publication Date Title
US4290310A (en) Ultrasonic imaging system using digital control
JP3645938B2 (en) Beam shaper and method of generating beam shaper signals
US4545251A (en) Electronic scanning type ultrasonic non-destructive testing apparatus
US4161121A (en) Ultrasonic imaging system
JPH01207042A (en) Method and apparatus for reducing repeated adaptation of phase differential effect
JP3700990B2 (en) Beam former and ultrasonic imaging system
EP0535962A1 (en) Ultrasonic diagnosing apparatus
US5817023A (en) Ultrasound imaging system with dynamic window function generator
JPH01135333A (en) Method and apparatus for adaptive reduction of phase difference effect
JPH067350A (en) Ultrasonic imaging apparatus
JPS59149132A (en) Ultrasonic diagnostic apparatus
JPH05228147A (en) Method for obtaining display of size and direction of flowing reflector and coherent imaging system
WO1994011757A1 (en) High resolution phased array echo imager
US4862892A (en) Ultrasonic reflex transmission imaging method and apparatus with artifact removal
JP2004053360A (en) Ultrasonic imaging system
WO1996024053A1 (en) Acoustic probing apparatus
JPS6070381A (en) Ultrasonic imaging apparatus
JPH08140971A (en) Ultrasonic diagnostic apparatus
JPS60220051A (en) Ultrasonic diagnostic apparatus
JPH069563B2 (en) Ultrasonic diagnostic equipment
JP2001212140A (en) Ultrasonic diagnosing device
JP5416947B2 (en) Ultrasonic diagnostic equipment
KR101998466B1 (en) Method of generating plane wave using convex ultrasound probe, apparatus using the same, and system using the same
JP2006087677A (en) Ultrasonic diagnostic apparatus
JPS6020007Y2 (en) Analog signal time width changing device

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): JP US

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): AT BE CH DE DK ES FR GB GR IE IT LU MC NL PT SE

DFPE Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed before 20040101)
121 Ep: the epo has been informed by wipo that ep was designated in this application
122 Ep: pct application non-entry in european phase