JP2001330222A - Rotating after-burning cylinder incinerator - Google Patents

Rotating after-burning cylinder incinerator

Info

Publication number
JP2001330222A
JP2001330222A JP2000151975A JP2000151975A JP2001330222A JP 2001330222 A JP2001330222 A JP 2001330222A JP 2000151975 A JP2000151975 A JP 2000151975A JP 2000151975 A JP2000151975 A JP 2000151975A JP 2001330222 A JP2001330222 A JP 2001330222A
Authority
JP
Japan
Prior art keywords
post
waste gas
combustion
combustion cylinder
incinerator
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2000151975A
Other languages
Japanese (ja)
Inventor
Kazuyoshi Shinoda
和義 信田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Priority to JP2000151975A priority Critical patent/JP2001330222A/en
Publication of JP2001330222A publication Critical patent/JP2001330222A/en
Pending legal-status Critical Current

Links

Landscapes

  • Incineration Of Waste (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide an incinerator of a fixed fire grate type, which incinerates incineration processing objects containing hazardous substance producing the reduced amount of incineration residue and, of which thermal decomposition holding time is satisfactory for the decomposition of waste gas and cost of construction, and check and maintenance is low. SOLUTION: The length of an after-burning furnace or a thermal decomposition duct can be reduced or the height of a funnel 28 can the lowered by installing a rotating after-burning cylinder 14 inside fin rotating system, of which inside duct pressure loss of waste gas flow is uniform and, which is compact and less in heat radiation on the downstream side of the incinerating furnace 18. The problem of the shortage of the holding time of waste gas 22 for decomposing the waste gas 22 containing hazardous substance can be solved, and the efficiency of the thermal decomposition can be more stabilized by the controlled operation using a combustion controller. The quantity of polluting or hazardous substance such as smoke and soot, dioxin discharged into the air from the funnel not only limited to regular operation but direct after the start of incineration process or during the tens of seconds after the stop of the operation can be drastically reduced.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、産業廃棄物、並び
に一般ごみ廃棄物の焼却処理で、焼却残渣の減少および
毒性の強い有害ガスを燃焼熱分解し、有害物質の大気放
出を効果的に軽減する固定火格子式焼却炉、特に、旋回
後燃焼筒焼却炉に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to the incineration of industrial waste and general refuse waste, which reduces the amount of incineration residues and burns and decomposes highly toxic harmful gases, thereby effectively reducing the release of harmful substances to the atmosphere. The present invention relates to a reduced grate incinerator, and more particularly to a post-swirl combustion tube incinerator.

【0002】[0002]

【従来の技術】廃棄物焼却炉の後燃焼ゾーンで螺旋状流
路を形成させて内部流体を移送もしくは加熱移送する本
発明の様な形状の旋回後燃焼筒焼却炉は、従来の技術と
しては存在しない。何故ならば、今までは燃焼廃ガスに
おいての熱分解時間については重要視されておらず、焼
却処理物の燃焼時間を短くする方法についての技術が優
先されていた。
2. Description of the Related Art A post-swirling cylinder incinerator having a shape as in the present invention in which a spiral flow path is formed in a post-combustion zone of a waste incinerator to transfer or heat-transfer an internal fluid is known as a conventional technique. not exist. Until now, the thermal decomposition time in the combustion waste gas has not been regarded as important, and the technology regarding the method for shortening the combustion time of the incinerated product has been given priority.

【0003】しかし、社会問題となっている焼却炉の廃
ガス中のダイオキシン類を例として述べると、その生成
は塩素が共存する条件で有機化合物を燃焼する過程で非
意図的に行われる。ダイオキシン類の排出を抑制する上
では、廃ガス中の有機塩素化合物の炭素と塩素の結合を
破壊して炭素は炭酸ガスに塩素は塩素イオンの状態にま
で熱分解する必要が有る。そのために、焼却炉内の熱分
解温度を850℃以上で滞留時間2秒が望ましいとされ
るが、小型の固定火格子式焼却炉では、公害物質として
排出ガス中のばいじんとSOx除去を重視して、自燃焼
させる方法、燃焼温度の管理と熱エネルギーの有効利用
を考慮しただけで、ダイオキシン類の熱分解まで配慮さ
れていない焼却炉が多い。また、これらの焼却炉は、焼
却温度や熱分解時間が不安定というのが現状である。可
燃性の硫化水素系化合物を含有する処理物が高温焼却処
理をしていることから、不燃性の塩化水素系化合物を含
有する処理物についても高温焼却処理方法の研究がされ
ているが、建設費と運転費と保守点検費が高価なため普
及していない。
However, taking dioxins in waste gas from an incinerator, which is a social problem, as an example, their production is performed unintentionally in the process of burning an organic compound under conditions in which chlorine coexists. In order to suppress the emission of dioxins, it is necessary to break down the bond between carbon and chlorine in the organic chlorine compound in the waste gas and thermally decompose carbon to carbon dioxide and chlorine to chlorine ions. For this reason, it is considered desirable that the pyrolysis temperature in the incinerator is 850 ° C or more and the residence time is 2 seconds. However, small fixed grate incinerators place importance on the removal of dust and SOx in the exhaust gas as pollutants. However, many incinerators do not take into account the thermal decomposition of dioxins just by considering the method of self-combustion, the management of combustion temperature, and the effective use of thermal energy. At present, these incinerators are unstable in incineration temperature and pyrolysis time. High-temperature incineration treatment of inflammable hydrogen sulphide-containing compounds has been studied, and research has been conducted on high-temperature incineration methods for inflammable hydrogen chloride-containing compounds. It is not widely used due to the high cost, operation cost, and maintenance and inspection cost.

【0004】排ガスを強制的に吸引していない小型の固
定火格子式焼却炉では、焼却処理開始直後の数十秒間
に、炉内温度と廃ガス温度が上昇していない状態で急激
に燃焼が始まるために、焼却炉内の圧力が増し、処理物
が不完全燃焼のまま、多くの未燃焼処理物(焼却残渣)
を排出し、煤塵が煙突等より大気に放出される。また、
運転停止前数十秒間は、焼却処理物が少ないので炉内温
度と廃ガス温度が下がるために、廃ガスは、熱分解が不
完全のまま煙突より大気に放出されることとなる。熱分
解時間が不足している焼却炉に於いては、処理物中の塩
素分含有総量を制限し可燃性ごみの水分%の少ない処理
物と混焼させて、時間当たりの処理量と補助燃焼量を検
討し、炉内燃焼温度を高温にして焼却処理をする運転方
案が採用されている。
[0004] In a small fixed grate incinerator that does not forcibly suck exhaust gas, combustion occurs rapidly for several tens of seconds immediately after the start of the incineration process in a state where the temperature in the furnace and the temperature of the waste gas have not risen. To start, the pressure inside the incinerator increases, and many unburned treated materials (incineration residues) remain while the treated material remains incompletely burned.
And dust is released to the atmosphere from a chimney or the like. Also,
For several tens of seconds before the operation is stopped, the in-furnace temperature and the temperature of the waste gas decrease because there are few incineration products, so that the waste gas is released to the atmosphere from the chimney with incomplete thermal decomposition. In incinerators where the thermal decomposition time is insufficient, the total chlorine content in the treated material is limited, and the waste is combusted with the treated material with a low moisture content of combustible waste, and the amount treated per hour and the amount of auxiliary combustion In consideration of the above, an operation plan in which the in-furnace combustion temperature is increased to perform incineration treatment is adopted.

【0005】[0005]

【発明が解決しようとする課題】よって、安定した燃焼
温度で廃ガスの熱分解時間を長くした構造で、焼却処理
開始時の急激過剰燃焼時の運転制御が可能であり、運転
停止前数十秒間において、廃ガス温度の保持と熱分解時
間の確保が可能な廃棄物焼却炉が必要とされる。が、従
来の後燃炉付焼却炉思想のままでは、熱分解時間を確保
するためには後燃焼ゾーンを太く長くして、外壁表面か
らの放散熱量が少ない構造にする必要がある。排風機を
取付けない小型焼却炉においては、煙突による吸引力が
限られてしまうために、内部廃ガス流体の圧力損失を少
なくする必要もある。上記性能が満たされて建設費と運
転費と保守点検費が安価な焼却炉が必要となる。
Therefore, with a structure in which the thermal decomposition time of waste gas is extended at a stable combustion temperature, operation control during sudden excessive combustion at the start of incineration processing is possible, and several tens of In seconds, a waste incinerator capable of maintaining the waste gas temperature and securing the pyrolysis time is required. However, in the conventional concept of an incinerator with a post-combustion furnace, it is necessary to make the post-combustion zone thick and long so as to reduce the amount of heat dissipated from the outer wall surface in order to secure the pyrolysis time. In a small incinerator without an exhaust fan, the suction power of the chimney is limited, so it is necessary to reduce the pressure loss of the internal waste gas fluid. An incinerator that satisfies the above performance and requires low construction, operation, and maintenance costs is required.

【0006】[0006]

【課題を解決するための手段】まず、安定した燃焼温度
で廃ガスの熱分解時間を確保するためには後燃焼ゾーン
を太く長くして、外壁表面からの放散熱量が少ない構造
にする必要があるので、熱風の気流特性と熱分解必要長
さに付いて添付図を参照しながら説明する。図5は既存
の後燃焼炉付焼却炉における廃ガスの流れ方の状態を示
す図である。図示するように、焼却炉18の廃ガス出口
に付いた後燃焼筒14は煙突28に接続している。ま
ず、気流特性について説明すると、後燃焼筒14及び煙
突28の壁内面側は摩擦抵抗が生ずるために気流は中央
に集まりやすい。廃ガス22にバーナー熱がより良く絡
まるように加温する後燃焼バーナー15を後燃焼筒14
に偏芯させた位置に取付けて廃ガス22を旋回させるよ
うにしても、気流自らは比重が軽いために遠心力が働か
ず、その廃ガスは中央部に集まろうとして層流となる。
廃ガスは温風であるので温度が低い側壁側より温度の高
い中央に集まりやすくなり、煙突28内径D1での見掛
け内断面積よりも実際の負圧ガス30の流路断面積は小
さくなる。また、焼却炉18よりの廃ガス22は内面積
を拡大させた後燃焼筒14内を通る際に後燃焼バーナー
15よりの旋回熱風によって渦巻き流となって中央部は
真空状態になり流速が増すことになり、廃ガス22の一
部は焼却炉18より加温されないままに後燃焼筒14を
通り、後に旋回流26熱風は渦巻き流と化して中央部の
負圧ガス30と合流する現象が起こる。上記方法の問題
点は廃ガスが後燃炉14の軸芯上流側より流入し軸芯下
流側に一直線に通過するために後燃焼筒14内の上流側
ガス停滞部分31と下流側ガス停滞部分32にガスの流
れない現象が起こり、長さL2の見掛けほどに滞留接触
せずに、廃ガス流が竜巻の如くに真空状態の気流を起す
ことである。次に、熱分解必要ダクト長さについて説明
すると、本図と同様形状の後燃焼筒14及び煙突28を
取付けている処理能力1000kg/hの焼却炉で、廃
ガスの平均ガス温度800℃での乾き燃焼ガス量が67
300m3/hである時、熱分解必要長さ:Loから炉内
での滞留時間1秒を減じて後燃焼筒14と煙突28内で
1秒必要とした場合に、ガス流速15m/秒、内径D1
が1.26m、外径D2が1.56mでの煙突28と後
燃焼筒14の必要相当長さ:L1は15mを必要とし、
表面積計算長さ:L2は15.2mになり、その表面積
は76m2テ゛放散熱量は45710kcal/hにな
る。しかし乍ら、煙突は煙突内径D1が0.8mで高さ
10m程度の焼却炉の多いのが現状である。よって、滞
留時間を確保するための後燃焼炉が必要となり、後燃焼
炉内での滞留時間を長くさせるために、円滑な旋回流を
与える手段と、ガス流の真空ゾーンを止めるための障害
物を固定する手段を採用するに至った。
First, in order to secure the pyrolysis time of waste gas at a stable combustion temperature, it is necessary to make the post-combustion zone thick and long so that the heat dissipation from the outer wall surface is small. Therefore, the airflow characteristics of hot air and the required length of thermal decomposition will be described with reference to the accompanying drawings. FIG. 5 is a diagram showing the state of the flow of waste gas in an existing incinerator with a post-burning furnace. As shown, the post-combustion tube 14 attached to the waste gas outlet of the incinerator 18 is connected to a chimney 28. First, the airflow characteristics will be described. Since the frictional resistance is generated on the inner surface of the wall of the post-combustion cylinder 14 and the chimney 28, the airflow tends to gather at the center. The post-burning burner 15 is heated so that the burner heat is more entangled with the waste gas 22.
Even if the waste gas 22 is swirled by being mounted at an eccentric position, the centrifugal force does not work because the air flow itself has a low specific gravity, and the waste gas tends to gather at the center and becomes a laminar flow.
Since the waste gas is hot air, the waste gas is more likely to collect at the center where the temperature is higher than the side wall where the temperature is low, and the actual cross-sectional area of the flow path of the negative pressure gas 30 is smaller than the apparent internal cross-sectional area at the inner diameter D1 of the chimney 28. Further, the waste gas 22 from the incinerator 18 is swirled by the swirling hot air from the post-burner 15 when passing through the post-combustion cylinder 14 after the inner area is enlarged, and the central portion is in a vacuum state to increase the flow rate. That is, a part of the waste gas 22 passes through the post-combustion cylinder 14 without being heated by the incinerator 18, and the swirling flow 26 hot air later becomes a spiral flow and merges with the negative pressure gas 30 in the center. Occur. The problem with the above method is that the waste gas flows in from the upstream side of the shaft center of the post-combustion furnace 14 and passes straight through the downstream side of the shaft center. A phenomenon in which no gas flows occurs at 32, and the waste gas stream produces a vacuum-like air stream like a tornado without apparently staying in contact with the length L2. Next, the length of the duct required for pyrolysis will be described. In the incinerator with a processing capacity of 1000 kg / h, which is equipped with the post-combustion cylinder 14 and the chimney 28 having the same shape as this figure, the waste gas at an average gas temperature of 800 ° C. Dry combustion gas volume is 67
When it is 300 m 3 / h, the required thermal decomposition length: when the residence time in the furnace is reduced from Lo by 1 second to require 1 second in the post-combustion cylinder 14 and the chimney 28, the gas flow rate is 15 m / sec. Inner diameter D1
Required length of the chimney 28 and the post-combustion cylinder 14 having a diameter of 1.26 m and an outer diameter D2 of 1.56 m: L1 requires 15 m,
The calculated surface area length: L2 is 15.2 m, the surface area is 76 m 2゛, and the heat dissipation is 45710 kcal / h. However, at present, many chimneys have an incinerator with a chimney inner diameter D1 of 0.8 m and a height of about 10 m. Therefore, a post-burning furnace for securing the residence time is required.In order to prolong the residence time in the post-combustion furnace, means for providing a smooth swirling flow and obstacles for stopping the vacuum zone of the gas flow are provided. Has come to adopt the means for fixing.

【0007】本発明は、基本的には焼却炉において、前
記焼却炉が、両端部に廃ガス入口と廃ガス出口を備え、
内面に耐火断熱材を施工してある円筒ダクト状の後燃焼
筒本体と、該後燃焼筒の軸線に沿って設けた固定軸と、
前記後燃焼筒内の前記固定軸周りで廃ガスの螺旋状流路
を形成する円盤型螺旋状の旋回羽根とを有する内フィン
旋回型熱分解筒を焼却炉一次燃焼ゾーン下流側に一体型
に取付けることにより前記課題の熱分解滞留時間を長く
する課題を解決した。
The present invention basically provides an incinerator, wherein the incinerator has a waste gas inlet and a waste gas outlet at both ends,
A cylindrical duct-shaped post-combustion cylinder main body on which a refractory heat insulating material is installed on the inner surface, and a fixed shaft provided along the axis of the post-combustion cylinder,
An inner fin swirling type pyrolysis cylinder having a disk-shaped spiral swirling blade forming a spiral flow path of waste gas around the fixed axis in the post-combustion cylinder is integrated with the downstream side of the incinerator primary combustion zone. By mounting, the problem of prolonging the thermal decomposition residence time was solved.

【0008】その結果を、本発明の後燃焼筒の関連重要
要素である熱風の気流特性と熱分解必要長さに付いて添
付図6を参照しながら説明する。図6は本発明に係る旋
回後燃焼筒焼却炉内における廃ガスの流れ方の状態を示
す図である。図示するように、焼却炉18の後燃焼筒1
4は一次燃焼ゾーン23下流の廃ガス22の熱分解時間
を確保するための手段として、固定軸4及び旋回羽根5
を有する。これにより、廃ガスは旋回流となる。好まし
くは、後燃焼筒14の直径を拡大させ加温するための後
燃焼バーナー15が、廃ガス22が旋回するように螺旋
状流路に沿って偏芯させた位置に取付けられる。渦巻き
流の中央真空部の発生を防ぐための固定軸4及び螺旋状
廃ガス流路を形成する旋回羽根5により、廃ガス22熱
風は旋回流26熱風となり、負圧ガス30の状態で煙突
28に流入する。該後燃焼筒14は上流側ガス停滞部分
31と下流側ガス停滞部分32が少ないので、前記処理
能力1000kg/hの焼却炉で、後燃焼筒14内径D
1を2.44mとして、乾き燃焼ガス量が67300m
3/hである時に内面積4.674m2と3600秒で割
ると、相当ガス流速は4.0m/秒(旋回羽根5の条数
が3の時の実際平均流速は12m/秒)で、後燃焼筒1
4外径D2を2.74mとした場合に必要相当長さ:L
1は4mを必要とし、表面積計算長さ:L2は4.6m
であり、その表面積は後燃焼筒両端部の面積を加えても
55m2で放散熱量は32850kcal/hとなり、
前記既存の後燃焼筒付焼却炉の後燃焼炉と煙突の表面よ
りの放散熱量45710kcal/hの72%に減少す
る。よって、一次燃焼ゾーンの下流に位置する後燃焼ゾ
ーンの外壁表面よりの放散熱量が少なく、廃ガス流体の
管内圧力損失の変わらない、内フィン旋回型分解筒を廃
ガスの螺旋状流路を形成する円盤型螺旋状の旋回羽根と
を有する旋回後燃焼筒を焼却炉下流側に一体型として取
付ける。
The results will be described with reference to FIG. 6 regarding the airflow characteristics of hot air and the required length of thermal decomposition, which are important factors related to the post-combustion cylinder of the present invention. FIG. 6 is a diagram showing the state of the flow of waste gas in the post-swirl combustion cylinder incinerator according to the present invention. As shown, the post-combustion cylinder 1 of the incinerator 18
Reference numeral 4 denotes a fixed shaft 4 and a swirling blade 5 as means for securing the time for thermal decomposition of the waste gas 22 downstream of the primary combustion zone 23.
Having. Thereby, the waste gas becomes a swirling flow. Preferably, a post-combustion burner 15 for increasing the diameter of the post-combustion cylinder 14 for heating is mounted at a position eccentric along the spiral flow path so that the waste gas 22 swirls. The hot air of the waste gas 22 is turned into the hot air of the swirling flow 26 by the fixed shaft 4 for preventing generation of the central vacuum portion of the swirling flow and the swirling blade 5 forming the spiral waste gas flow path. Flows into. Since the post-combustion cylinder 14 has few upstream gas stagnation portions 31 and downstream gas stagnation portions 32, the post-combustion cylinder 14 has an inner diameter D
1 is 2.44 m, the dry combustion gas amount is 67300 m
When 3 / h is divided by 4.674 m2 of inner area and 3600 seconds, the equivalent gas velocity is 4.0 m / sec (the actual average velocity is 12 m / sec when the number of swirling blades 5 is 3). Combustion cylinder 1
4 Required equivalent length when the outer diameter D2 is 2.74 m: L
1 requires 4 m, and the calculated surface area length: L2 is 4.6 m
The surface area is 55 m2 even if the area of both ends of the post-combustion cylinder is added, and the amount of heat dissipated is 32850 kcal / h.
The amount of heat dissipated from the surface of the post-combustion furnace and the chimney of the existing incinerator with the post-combustion cylinder is reduced to 72% of 45710 kcal / h. Therefore, the amount of heat dissipated from the outer wall surface of the post-combustion zone located downstream of the primary combustion zone is small, and the pressure loss in the pipe of the waste gas fluid does not change. The swirl combustion cylinder having the disk-shaped spiral swirl vanes is integrally mounted on the downstream side of the incinerator.

【0009】次に、焼却処理開始時と運転停止前数十秒
間の課題を解決する手段を、添付図3を参照しながら説
明する。図3は本発明に係る旋回後燃焼筒焼却炉の旋回
後燃焼筒の一形態を示す構成断面図である。図示するよ
うに、焼却炉18の後燃焼筒14は一次燃焼ゾーン23
下流に取付いている。熱分解を安定させるために燃焼コ
ントローラーを装備したコンパクトな制御盤により運転
をする。まず、運転開始時に一次燃焼ゾーン23を負圧
状態にするために後燃焼ゾーン25と後燃焼筒14を後
燃焼バーナー15で加温して一次燃焼ゾーン23の吸引
圧力を上昇させ良好な負圧燃焼準備状態にし、後燃焼ゾ
ーン25上流の吸引圧力センサー7と後燃焼筒14下流
の2次ガス温度センサー8の計測値信号を燃焼コントロ
ーラー17にて受け、排ガス風量調整ダンパー9にて開
度を制御した後に、着火バーナー21の点火をさせる制
御回路を組み。処理物20の良好な焼却処理が始まり一
次燃焼ゾーン23の1次廃ガス温度が870度以上に上
昇した時には、後燃焼ゾーン25の後燃焼バーナー15
の燃焼量を少なくし、一次燃焼ゾーン23下流に取付け
てある廃ガス吸引圧力センサー7の値を安定させ、廃ガ
ス22の速度を一定にさせる制御回路を組み。また、運
転停止前数十秒間に焼却処理物が少ないために一次燃焼
ゾーン23の炉内温度が下がり、廃ガス22の熱分解温
度が低い状態のまま煙突28より大気に放出されること
となるので、後燃焼バーナー15の燃焼量を多くし、未
燃焼残渣の焼却処理及び熱分解温度の確保をする制御回
路を組み。運転開始時と運転停止時の温度の急激な変化
による各センサーの測定時間差による燃焼コントローラ
ー17の演算誤差を少なくするためと後燃焼筒14の廃
ガス温度をより安定させるために、後燃焼筒14の内面
で旋回羽根5の外側に耐火断熱材製の蓄熱材16を充填
する。蓄熱材16は焼却処理最盛期の過剰昇温時には廃
ガス熱を吸収し、運転停止前数十秒間の一次燃焼ゾーン
23の廃ガス温度が降下した時には熱を排出することと
なる。
Next, means for solving the problems at the start of the incineration process and for several tens of seconds before stopping the operation will be described with reference to FIG. FIG. 3 is a cross-sectional view showing the configuration of one embodiment of the post-swirl combustion cylinder of the post-swirl combustion cylinder incinerator according to the present invention. As shown, the post-combustion cylinder 14 of the incinerator 18 has a primary combustion zone 23.
Installed downstream. It operates with a compact control panel equipped with a combustion controller to stabilize pyrolysis. First, at the start of the operation, the post-combustion zone 25 and the post-combustion cylinder 14 are heated by the post-combustion burner 15 in order to bring the primary combustion zone 23 into a negative pressure state, and the suction pressure of the primary combustion zone 23 is increased to improve the negative pressure. The combustion controller 17 is set in a combustion ready state, and the measurement values of the suction pressure sensor 7 upstream of the post-combustion zone 25 and the secondary gas temperature sensor 8 downstream of the post-combustion cylinder 14 are received by the combustion controller 17, and the opening degree is adjusted by the exhaust gas air volume adjustment damper 9. After the control, a control circuit for igniting the ignition burner 21 is assembled. When the incineration of the treated material 20 starts and the temperature of the primary waste gas in the primary combustion zone 23 rises to 870 ° C. or higher, the post-burning burner 15
And a control circuit for stabilizing the value of the waste gas suction pressure sensor 7 attached downstream of the primary combustion zone 23 and keeping the speed of the waste gas 22 constant. In addition, since there is little incineration in the tens of seconds before the operation is stopped, the temperature in the furnace of the primary combustion zone 23 decreases, and the waste gas 22 is released to the atmosphere from the chimney 28 while the pyrolysis temperature is low. Therefore, a control circuit for increasing the amount of combustion of the post-burning burner 15, incinerating unburned residues, and ensuring the thermal decomposition temperature is assembled. In order to reduce a calculation error of the combustion controller 17 due to a measurement time difference of each sensor due to a sudden change in temperature between the start of operation and the stop of operation, and to further stabilize the waste gas temperature of the post-combustion cylinder 14, A heat storage material 16 made of a refractory and heat-insulating material is filled inside the swirl vanes 5 on the inner surface. The heat storage material 16 absorbs waste gas heat when the temperature rises excessively during the peak period of the incineration treatment, and discharges the heat when the waste gas temperature in the primary combustion zone 23 drops for several tens of seconds before the operation is stopped.

【0010】[0010]

【発明の実施の形態】また、前記焼却炉に取付ける、固
定軸と廃ガスの螺旋状流路を形成する円盤型螺旋状の旋
回羽根とを有する内フィン旋回型の前記後燃焼筒内の上
流側端部に、前記螺旋状流路に沿って正圧の後燃焼バー
ナーを設けることにより、未燃焼処理物の燃焼及び廃ガ
スを加温することができる。そして、後燃焼バーナー
が、前記後燃焼筒外套の接線方向に取付けられ、廃ガス
入口が螺旋状流路の上流側基端部に開口を有し、廃ガス
出口が後燃焼筒外套の接線方向の下流側基端部に開口を
有することにより、より効果的に廃ガスに旋回流を与え
ることができる。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS In addition, an upstream of the inner fin swirling type after-combustion cylinder, which is attached to the incinerator and has a fixed shaft and a disk-shaped spiral swirling blade forming a spiral flow path of waste gas. By providing a positive pressure post-burning burner along the spiral flow path at the side end, it is possible to heat the combustion of the unburned processed product and the waste gas. A post-burning burner is mounted in a tangential direction of the post-combustion cylinder jacket, the waste gas inlet has an opening at the upstream base end of the spiral flow path, and the waste gas outlet is in a tangential direction of the post-combustion cylinder jacket. By providing an opening at the downstream base end of the waste gas, a swirling flow can be given to the waste gas more effectively.

【0011】旋回羽根が前記後燃焼筒内の上面鏡板の上
部より吊り下げた前記固定軸に取付けられ、前記固定軸
を中空状にすることで、固定軸の内部に冷却流体を通過
させ固定軸の温度を下げ固定軸の強度を確保する。ま
た、その内部流体に吸収させた熱エネルギーを熱交換器
等に供給し、その熱交換器を介して余熱利用設備にエネ
ルギ−を供給することが可能となる。
A swirl vane is attached to the fixed shaft suspended from an upper part of the upper end plate in the post-combustion cylinder. By making the fixed shaft hollow, a cooling fluid passes through the inside of the fixed shaft to allow the fixed shaft to pass therethrough. Temperature to secure the strength of the fixed shaft. Further, the heat energy absorbed by the internal fluid is supplied to a heat exchanger or the like, and the energy can be supplied to the residual heat utilization equipment via the heat exchanger.

【0012】前記螺旋状流路を形成する前記後燃焼筒の
内面で前記旋回羽根の外側に、蓄熱材として固形セラミ
ック材料もしくは繊維質セラミック材料を充填すること
で、一次燃焼ゾーンの廃ガス温度が急上昇した時には蓄
熱材が温度吸収をし、1次廃ガス温度が低下し始めた時
に蓄熱材は廃ガス温度の急降下を押さえるために熱を放
出するので熱分解温度の安定を図ることができる。
By filling a solid ceramic material or a fibrous ceramic material as a heat storage material on the inner surface of the post-combustion cylinder forming the spiral flow path and outside the swirl vanes, the waste gas temperature in the primary combustion zone can be reduced. When the temperature rises sharply, the heat storage material absorbs the temperature, and when the temperature of the primary waste gas starts to decrease, the heat storage material emits heat in order to suppress a rapid decrease in the temperature of the waste gas, so that the thermal decomposition temperature can be stabilized.

【0013】運転開始時に一次燃焼ゾーンの吸引圧力を
上昇させ良好な負圧燃焼準備状態にし、焼却処理開始直
後の数十秒間に発生する異常燃焼と処理物が不完全燃焼
のまま未燃焼処理物を排出し、煤塵等の公害物質が煙突
等より大気に放出されることを防止する制御回路と、定
常時の熱分解を安定させる制御回路と、運転停止前数十
秒間の炉内温度と廃ガス温度が下がることを防止し旋回
後燃焼筒内部流体の廃ガス分解温度をより安定させるた
めの制御回路を組込んだ前記燃焼コントローラーを使用
したコンパクトな制御盤での運転をする。
At the start of operation, the suction pressure of the primary combustion zone is increased to make a good negative pressure combustion ready state, and abnormal combustion occurring for several tens of seconds immediately after the start of the incineration process and the unburned processed material remain incompletely burned. A control circuit to prevent pollutants such as dust from being released to the atmosphere from a chimney, etc., a control circuit to stabilize thermal decomposition in a steady state, The operation is performed on a compact control panel using the combustion controller incorporating a control circuit for preventing the gas temperature from lowering and stabilizing the waste gas decomposition temperature of the fluid inside the combustion cylinder after turning.

【0014】[0014]

【実施例】以下、図面を参照しながら、本発明による焼
却炉の実施例を説明する。図1は本発明に係る旋回後燃
焼筒焼却炉の一形態を示す代表的な構成断面図であり、
図2は本発明に係る旋回後燃焼筒焼却炉の図1の上面図
である。図示するように、焼却炉18の一次燃焼ゾーン
23の下流上部に廃ガス22に螺旋状流路を形成する円
盤型螺旋状の旋回羽根5を付けた後燃焼筒14を垂直に
配置し、後燃焼ゾーン25側端部に、未燃焼処理物の燃
焼及び廃ガス22を加温するための正圧の後燃焼バーナ
ー15を螺旋状流路に沿って設けた一体型焼却炉として
いる。廃ガス入口10が螺旋状流路の上流側基端部に開
口を有し、廃ガス出口11が後燃焼筒14外套の接線方
向の下流側基端部に開口を有している。処理物20は、
投入口19より焼却炉18の一次燃焼ゾーン23に投入
され、着火バーナー21が点火されて焼却処理が開始さ
れる。処理物20は酸化燃焼熱分解して焼却灰と廃ガス
22が生成され、廃ガス22は燃焼分解が継続した状態
で耐火物隔壁24の通風穴を通過して後燃焼ゾーン25
に流入し、後燃焼バーナー15で加温され、固定軸4周
りで廃ガス22の螺旋状流路を形成する円盤型螺旋状の
旋回羽根5を設けた後燃焼筒14に流入し、2回270
度回転した後、熱分解され公害物質の含有量が軽減され
た排ガス27は煙突28から大気放出される。焼却炉1
8は、処理運転中の安定燃焼と運転停止前数十秒間の炉
内温度と廃ガス温度が下がることを防止するための制御
回路を組み込んだ燃焼コントローラー17を装備した制
御盤により運転制御をする。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS An embodiment of an incinerator according to the present invention will be described below with reference to the drawings. FIG. 1 is a typical structural sectional view showing one embodiment of a post-swirl combustion cylinder incinerator according to the present invention,
FIG. 2 is a top view of FIG. 1 of the post-swirl combustion cylinder incinerator according to the present invention. As shown in the figure, after the disc-shaped spiral swirl vanes 5 forming a spiral flow path in the waste gas 22 are attached to the upper portion of the downstream of the primary combustion zone 23 of the incinerator 18, the combustion cylinder 14 is vertically arranged. At the end of the combustion zone 25, an integrated incinerator is provided with a post-combustion burner 15 having a positive pressure for burning the unburned processed material and heating the waste gas 22 along the spiral flow path. The waste gas inlet 10 has an opening at the upstream base end of the spiral flow passage, and the waste gas outlet 11 has an opening at the tangential downstream base end of the afterburning cylinder 14. The processed material 20 is
The incinerator 18 is put into the primary combustion zone 23 through the inlet 19, the ignition burner 21 is ignited, and the incineration process is started. The treated material 20 undergoes oxidative combustion and thermal decomposition to generate incinerated ash and waste gas 22, and the waste gas 22 passes through the ventilation holes of the refractory partition 24 in a state where the combustion decomposition continues, and the post-combustion zone 25.
And is heated by a post-burning burner 15, and flows into a post-combustion cylinder 14 provided with a disk-shaped spiral revolving blade 5 forming a spiral flow path of the waste gas 22 around the fixed shaft 4, 270
After the rotation, the exhaust gas 27, which has been pyrolyzed to reduce the content of pollutants, is discharged to the atmosphere from a chimney 28. Incinerator 1
8 controls the operation by a control panel equipped with a combustion controller 17 which incorporates a control circuit for preventing stable combustion during the processing operation and a decrease in the furnace temperature and the waste gas temperature for several tens of seconds before the operation is stopped. .

【0015】前記焼却炉18の焼却処理運転制御回路に
ついて述べる。まず、焼却処理運転開始時の燃焼を安定
させる目的で、一次燃焼ゾーン23を負圧状態にする。
ために、後燃焼ゾーン25と後燃焼筒14を後燃焼バー
ナー15で加温して一次燃焼ゾーン23の吸引圧力を上
昇させ良好な負圧燃焼準備状態にし、後燃焼ゾーン25
上流の吸引圧力センサー7と螺旋状流路を形成する後燃
焼筒14下流の2次ガス温度センサー8の計測値信号を
燃焼コントローラー17にて受け、ガス風量調整ダンパ
ー9にて開度を制御した後に、着火バーナー21の点火
をさせる制御回路を組み。処理物20の良好な焼却処理
が始まり一次燃焼ゾーン23の1次廃ガス温度が870
度以上に上昇した時には、後燃焼ゾーン25の後燃焼バ
ーナー15の燃焼量を少なくし、一次燃焼ゾーン23下
流に取付けてあるガス吸引圧力センサー7の値を安定さ
せ、廃ガス22の速度を一定にさせる制御回路を組み。
定常運転になった後には、処理物の一次燃焼ゾーン23
の廃ガス温度に対応させて、2次ガス温度センサー8と
廃ガスの吸引圧力センサー7の信号値を燃焼コントロー
ラー17にて再演算し、後燃焼バーナー15の燃料量の
燃料量制御をする。前記運転制御動作を燃焼コントロー
ラー17の集積回路にプログラミングしている操作盤を
使用する。次に、運転停止前数十秒間の不安定焼却処理
を解決するための運転制御状態について述べる、運転停
止前数十秒間に焼却処理物が少ないために一次燃焼ゾー
ン23の炉内温度が下がり、廃ガス22の熱分解温度が
低い状態のまま煙突28より大気に放出されることとな
るので、後燃焼バーナー15の燃焼量を多くし、未燃焼
残渣の焼却処理及び熱分解温度の確保をする制御回路を
燃焼コントローラー17に組込む。
The operation control circuit of the incinerator 18 will now be described. First, in order to stabilize combustion at the start of the incineration operation, the primary combustion zone 23 is set to a negative pressure state.
For this purpose, the post-combustion zone 25 and the post-combustion cylinder 14 are heated by the post-combustion burner 15 to increase the suction pressure of the primary combustion zone 23 to make a good negative pressure combustion preparation state.
The measurement value signal of the secondary gas temperature sensor 8 downstream of the post-combustion cylinder 14 forming the spiral flow path with the upstream suction pressure sensor 7 was received by the combustion controller 17, and the opening was controlled by the gas air volume adjustment damper 9. Later, a control circuit for igniting the ignition burner 21 is assembled. Good incineration of the treated material 20 starts, and the temperature of the primary waste gas in the primary combustion zone 23 becomes 870.
When the temperature rises to a degree or more, the combustion amount of the post-burning burner 15 in the post-combustion zone 25 is reduced, the value of the gas suction pressure sensor 7 attached downstream of the primary combustion zone 23 is stabilized, and the speed of the waste gas 22 is kept constant. Set up a control circuit to make
After the steady operation, the primary combustion zone 23
The signal value of the secondary gas temperature sensor 8 and the signal value of the waste gas suction pressure sensor 7 are recalculated by the combustion controller 17 in accordance with the waste gas temperature, and the fuel amount of the post combustion burner 15 is controlled. An operation panel in which the operation control operation is programmed in the integrated circuit of the combustion controller 17 is used. Next, the operation control state for solving the unstable incineration process for several tens of seconds before the operation stop is described.The in-furnace temperature of the primary combustion zone 23 decreases because there is little incineration in the several tens of seconds before the operation stop, Since the waste gas 22 is released to the atmosphere from the chimney 28 while the thermal decomposition temperature is low, the amount of combustion of the post-burning burner 15 is increased, and the incineration of unburned residues and the thermal decomposition temperature are ensured. The control circuit is incorporated in the combustion controller 17.

【0016】次に、本発明の旋回後燃焼筒14の実施例
について、図3と図4を参照しながら説明する。図3は
本発明に係る旋回後燃焼筒焼却炉の旋回後燃焼筒の一形
態を示す構成断面図であり、図4は旋回後燃焼筒の図3
の上面図である。図示するように、焼却炉18一次燃焼
ゾーン23下流の後燃焼ゾーン25の上部に、内面に耐
火断熱材3を施工した鋼板製の円筒ダクト状の前記内フ
ィン旋回型後燃焼筒14を垂直に配置させ、廃ガス入口
10が螺旋状流路の上流側基端部に開口を有し、廃ガス
出口11が後燃焼筒14外套の接線方向の下流側基端部
に開口を有している。廃ガス22は後燃焼ゾーン25に
流入し、後燃焼バーナー15で加温され、後燃焼筒14
に流入し、2回90度回転した後、熱分解され公害物質
の含有量が軽減された排ガス27は煙突28から大気放
出される。後燃焼筒14内部には、軸線に沿って設けた
耐熱金属鋼管製の2本の固定軸4が該後燃焼筒14の上
面鏡板2の上部より吊り下がり、固定軸4の両端は後燃
焼筒14の外側に突き出ている。後燃焼筒14の固定軸
4周りで固定されている廃ガスの螺旋状流路を形成する
耐熱金属鋼板製の円盤型螺旋状の旋回羽根5は、例え
ば、2本の固定軸4の外接円を螺旋状に延びる外側の旋
回羽根と、2本の固定軸4の外接円の内側を分割セグメ
ント数6で密閉し軸方向で隣り合う螺旋状流路の間で廃
ガスのバイパス(ショートパス)が生じないように構成
されている。このようにして、後燃焼筒14の内部廃ガ
スの螺旋状流路が形成される。
Next, an embodiment of the post-swirl combustion cylinder 14 of the present invention will be described with reference to FIGS. 3 and 4. FIG. FIG. 3 is a cross-sectional view showing an embodiment of a post-swirl combustion tube of the post-swirl combustion tube incinerator according to the present invention, and FIG.
FIG. As shown in the figure, the inner fin swirling type post-combustion cylinder 14 in the form of a cylindrical duct made of a steel plate having the refractory heat insulating material 3 installed on the inner surface thereof is vertically disposed above the post-combustion zone 25 downstream of the incinerator 18 primary combustion zone 23. The waste gas inlet 10 has an opening at the upstream base end of the spiral flow path, and the waste gas outlet 11 has an opening at the tangential downstream base end of the afterburning cylinder 14. . The waste gas 22 flows into the post-combustion zone 25, is heated by the post-combustion burner 15, and
After rotating twice 90 degrees, the exhaust gas 27, which has been pyrolyzed to reduce the content of pollutants, is discharged from the chimney 28 to the atmosphere. Inside the post-combustion cylinder 14, two fixed shafts 4 made of a heat-resistant metal steel tube provided along the axis line are suspended from above the upper end plate 2 of the post-combustion cylinder 14. 14 project outside. The disk-shaped spiral revolving blade 5 made of a heat-resistant metal steel plate forming a spiral flow path of waste gas fixed around the fixed shaft 4 of the post-combustion cylinder 14 is, for example, a circumcircle of the two fixed shafts 4. The outer swirl vane extending spirally and the inside of the circumcircle of the two fixed shafts 4 are sealed with the number of divided segments 6, and waste gas is bypassed (short path) between spiral flow paths adjacent in the axial direction. Is configured not to occur. In this way, a spiral flow path for the waste gas inside the post-combustion cylinder 14 is formed.

【0017】未燃焼処理物の燃焼及び廃ガス22を加温
するための正圧の後燃焼バーナー15は、後燃焼ゾーン
25側端部に取付られ、後燃焼筒14の外套の接線方向
に吹き出し口を有する。後燃焼バーナー15は、螺旋状
流路に沿って廃ガス22を加熱するとともに、廃ガスの
流れ方向に指向させることで廃ガスに推進力も付与す
る。廃ガス入口10が螺旋状流路の上流側基端部に開口
を有し、廃ガス出口11が後燃焼筒14外套の接線方向
の下流側基端部に開口し、螺旋状流路に指向するように
配置している。これらの入出口を特定の方向に指向させ
ることで、後燃焼筒14内の廃ガスの管内圧力損失によ
る吸引力の減少を少なくすることができる。流路を鋭角
的に変えないので直線後燃焼筒と比較しても廃ガス流体
の管内圧力損失が変わらなく、角型もしくは円筒型後燃
焼筒と比較して外套表面よりの放散熱量が少ない熱分解
筒が可能となる。
A post-combustion burner 15 for burning the unburned processed material and heating the waste gas 22 is attached to the end of the post-combustion zone 25 on the side of the post-combustion zone 25 and blows out in the tangential direction of the jacket of the post-combustion cylinder 14. Has a mouth. The post-burning burner 15 heats the waste gas 22 along the spiral flow path and also imparts propulsion to the waste gas by directing the waste gas 22 in the flow direction of the waste gas. The waste gas inlet 10 has an opening at the upstream base end of the spiral flow path, and the waste gas outlet 11 opens at the downstream base end in the tangential direction of the post-combustion cylinder 14, and is directed toward the spiral flow path. It is arranged to be. By directing these inlets and outlets in specific directions, it is possible to reduce a decrease in suction force due to a pressure loss in the pipe of the waste gas in the post-combustion cylinder 14. Since the flow path is not changed at an acute angle, the pressure loss in the pipe of the waste gas fluid does not change even when compared with the straight post-combustion cylinder, and the amount of heat dissipated from the outer jacket surface is smaller compared to the square or cylindrical post-combustion cylinder. A disassembly cylinder becomes possible.

【0018】該後燃焼筒の固定軸4は中空状であり、内
側に冷却流体が通過できるようになっている。鏡板2の
上部より吊り下げて内部構成部材重量を引張荷重として
受ける耐熱金属製固定軸4の内部に水を通過させること
により温度を下げて固定軸4の強度を確保する。また、
その内部流体に吸収させた熱エネルギーを熱交換器等に
供給し、その熱交換器を介して余熱利用設備にエネルギ
−を供給することが可能となる。
The fixed shaft 4 of the post-combustion cylinder is hollow, so that a cooling fluid can pass therethrough. Water is passed through the inside of the heat-resistant metal fixed shaft 4 which is suspended from the upper portion of the end plate 2 and receives the weight of the internal components as a tensile load, thereby lowering the temperature and securing the strength of the fixed shaft 4. Also,
The heat energy absorbed by the internal fluid is supplied to a heat exchanger or the like, and the energy can be supplied to the residual heat utilization facility via the heat exchanger.

【0019】前記後燃焼筒14の内面で旋回羽根5の外
側に、球形、棒状、円筒状、サイコロ状及びハニカム状
多孔質なる固形セラミック材料もしくは繊維質セラミッ
ク材料からなる蓄熱材16を充填することで、1次ガス
温度センサー6での温度が急上昇した時には蓄熱材16
が温度吸収をし、1次ガス温度センサー6での温度が低
下し始めた時に蓄熱材16は廃ガス温度の急降下を押さ
えるために熱を放出する。運転開始時と運転停止時の温
度の急激な変化時及び焼却処理中の安定燃焼コントロー
ルは、蓄熱材16を充填することにより、急激な廃ガス
温度変化と各センサーの測定時間差による燃焼コントロ
ーラー17の演算誤差を小さく、制御信号動作修正値の
幅を小さくできるので旋回後燃焼筒内部流体の廃ガスの
熱分解温度がより安定する。
A heat storage material 16 made of a porous solid ceramic material or a fibrous ceramic material having a spherical shape, a rod shape, a cylindrical shape, a dice shape, or a honeycomb shape is filled on the inner surface of the post-combustion cylinder 14 and outside the swirl vanes 5. When the temperature at the primary gas temperature sensor 6 rises sharply, the heat storage material 16
When the temperature of the primary gas temperature sensor 6 begins to decrease, the heat storage material 16 emits heat to suppress a rapid drop in the waste gas temperature. Stable combustion control at the time of rapid change in temperature at the start and stop of operation and during the incineration treatment is performed by filling the heat storage material 16 with the rapid change of the waste gas temperature and the measurement time difference of each sensor. Since the calculation error can be reduced and the range of the control signal operation correction value can be reduced, the thermal decomposition temperature of the waste gas in the fluid inside the combustion cylinder after turning is more stable.

【0020】次に、本発明の旋回後燃焼筒焼却炉の一実
施形態について図7と図8を参照しながら説明する。図
7は本発明に係る旋回後燃焼筒焼却炉の一形態を示す構
成断面図であり、図8は本発明に係る旋回後燃焼筒焼却
炉の図7の上面図である。図示するように、一体型の旋
回後燃焼筒焼却炉であって、焼却炉18の一次燃焼ゾー
ン23の下流上部に廃ガス22に螺旋状流路を形成する
円盤型螺旋状の旋回羽根5を付けた後燃焼筒14を垂直
に配置している。廃ガス入口10が螺旋状流路の上流側
基端部に開口を有し、廃ガス出口11が後燃焼筒14外
套の接線方向の下流側基端部に開口を有している。処理
物20は、投入口19より焼却炉18の一次燃焼ゾーン
23に投入され、着火バーナー21が点火されて焼却処
理が開始される。処理物20は酸化燃焼熱分解して焼却
灰と廃ガス22が生成され、廃棄ガス22は、固定軸4
周りで螺旋状流路を形成する円盤型螺旋状の旋回羽根5
を設けた後燃焼筒14に流入し、2回90度回転した
後、熱分解され公害物質の含有量が軽減された排ガス2
7は煙突28から大気放出される。
Next, an embodiment of the post-swirling combustion tube incinerator of the present invention will be described with reference to FIGS. 7 and 8. FIG. FIG. 7 is a sectional view showing a configuration of one embodiment of the post-swirl combustion tube incinerator according to the present invention, and FIG. 8 is a top view of FIG. 7 of the post-swirl combustion tube incinerator according to the present invention. As shown in the figure, a disc-shaped spiral swirl vane 5 that forms a spiral flow path in the waste gas 22 in the upper part downstream of the primary combustion zone 23 of the incinerator 18 is an integrated swirl combustion cylinder incinerator. After the attachment, the combustion cylinder 14 is arranged vertically. The waste gas inlet 10 has an opening at the upstream base end of the spiral flow passage, and the waste gas outlet 11 has an opening at the tangential downstream base end of the afterburning cylinder 14. The treated material 20 is introduced into the primary combustion zone 23 of the incinerator 18 through the inlet 19, the ignition burner 21 is ignited, and the incineration process is started. The treated material 20 undergoes oxidative combustion and thermal decomposition to generate incinerated ash and waste gas 22.
Disc-shaped spiral swirling vane 5 forming a spiral flow path around it
After flowing into the combustion cylinder 14 and rotating twice 90 degrees, and then thermally decomposed to reduce the content of pollutants 2
7 is released from the chimney 28 to the atmosphere.

【0021】次に、本発明の旋回後燃焼筒焼却炉の一実
施形態について図9と図10を参照しながら説明する。
図9は本発明に係る旋回後燃焼筒焼却炉の一形態を示す
構成断面図であり、図10は本発明に係る旋回後燃焼筒
焼却炉の図9の上面図である。図示するように、一体型
の旋回後燃焼筒焼却炉であって、焼却炉18の後燃焼ゾ
ーン25の下流に隣接させて、廃ガス22に螺旋状流路
を形成する円盤型螺旋状の旋回羽根5を付けた後燃焼筒
14を垂直に配置し、後燃焼ゾーン25側端部に、未燃
焼処理物の燃焼及び廃ガス22を加温するための正圧の
後燃焼バーナー15を設けている。廃ガス入口10が螺
旋状流路の上流側基端部に開口を有し、廃ガス出口11
が後燃焼筒14外套の接線方向の下流側基端部に開口を
有している。処理物20は、投入口19より焼却炉18
の一次燃焼ゾーン23に投入され、着火バーナー21が
点火されて焼却処理が開始される。処理物20は酸化燃
焼熱分解して焼却灰と廃ガス22が生成され、廃ガス2
2は、一次燃焼ゾーン23より耐火物隔壁24を通過し
て後燃焼ゾーン25に入り、後燃焼バーナー15により
加温され、後燃焼ゾーン25に隣接して垂直に設置した
固定軸4周りで廃ガス22に螺旋状流路を形成する円盤
型螺旋状の旋回羽根5を設けた後燃焼筒14に流入し、
2回90度回転した後、熱分解され公害物質の含有量が
軽減された排ガス27は煙突28から大気放出される。
後燃焼ゾーン25を広いスペースとしたことにより後燃
焼バーナー15の燃焼量は増加することになるが、一次
燃焼ゾーン23で燃え残った未燃焼の処理物22の燃焼
を継続し、後燃焼ゾーン25に飛灰が落下することにな
る。よって処理物の焼却残渣量が減少し、大気放出され
る煤塵も減少する。
Next, an embodiment of the post-swirl combustion cylinder incinerator of the present invention will be described with reference to FIGS. 9 and 10. FIG.
FIG. 9 is a sectional view showing a configuration of an embodiment of the post-swirl combustion cylinder incinerator according to the present invention, and FIG. 10 is a top view of FIG. 9 of the post-swirl combustion cylinder incinerator according to the present invention. As shown, this is an integrated post-swirl combustion tube incinerator, which is a disk-shaped spiral swirler that forms a spiral flow path in the waste gas 22 adjacent to the downstream of the post-combustion zone 25 of the incinerator 18. The post-combustion cylinder 14 with the blades 5 is arranged vertically, and a positive-pressure post-combustion burner 15 is provided at the end of the post-combustion zone 25 for burning the unburned processed material and heating the waste gas 22. I have. The waste gas inlet 10 has an opening at the upstream base end of the spiral flow path, and the waste gas outlet 11
Have an opening at the downstream base end in the tangential direction of the afterburning cylinder 14. The treated material 20 is supplied from an incinerator 18 through an inlet 19.
And the ignition burner 21 is ignited to start the incineration process. The treated product 20 undergoes oxidative combustion and thermal decomposition to produce incinerated ash and waste gas 22, and waste gas 2
2 passes through the refractory partition 24 from the primary combustion zone 23, enters the post-combustion zone 25, is heated by the post-combustion burner 15, and is disposed around the fixed shaft 4 installed vertically adjacent to the post-combustion zone 25. After providing the disk-shaped spiral swirling blade 5 forming a spiral flow path in the gas 22, the gas 22 flows into the combustion cylinder 14,
After two 90-degree rotations, the exhaust gas 27, which has been pyrolyzed to reduce the content of pollutants, is discharged to the atmosphere from a chimney 28.
Although the post-burning zone 25 has a large space, the amount of combustion in the post-burning burner 15 increases, but the unburned processed material 22 remaining in the primary combustion zone 23 continues to be burned, and the post-burning zone 25 Fly ash will fall. Therefore, the amount of the incineration residue of the treated material is reduced, and the dust emitted to the atmosphere is also reduced.

【0022】次に、本発明の旋回後燃焼筒焼却炉の一実
施形態について図11と図12を参照しながら説明す
る。図11は本発明に係る旋回後燃焼筒焼却炉の一形態
を示す構成断面図であり、図12は本発明に係る旋回後
燃焼筒焼却炉の図11の上面図である。図示するよう
に、一体型の旋回後燃焼筒焼却炉であって、焼却炉18
の一次燃焼ゾーン23の下流上部に廃ガス22に螺旋状
流路を形成する円盤型螺旋状の旋回羽根5を付けた後燃
焼筒14を垂直に配置し、後燃焼ゾーン25側端部に、
未燃焼処理物の燃焼及び廃ガス22を加温するための正
圧の後燃焼バーナー15を後燃焼筒14下部に螺旋状流
路に沿わせて設けている。廃ガス入口10が螺旋状流路
の上流側基端部に開口を有し、廃ガス出口11が後燃焼
筒14外套の接線方向の下流側基端部に開口を有してい
る。処理物20は、投入口19より焼却炉18の一次燃
焼ゾーン23に投入され、着火バーナー21が点火され
て焼却処理が開始される。処理物20は酸化燃焼熱分解
して焼却灰と廃ガス22が生成され、廃棄ガス22は、
一次燃焼ゾーン23より耐火物隔壁24を通過して後燃
焼ゾーン25に入り、後燃焼筒14の外套の接線方向に
取付けた後燃焼バーナー15により加温され、固定軸4
周りで廃ガス22は螺旋状流路を形成する円盤型螺旋状
の旋回羽根5を設けた後燃焼筒14に流入し、2回90
度回転した後、熱分解され公害物質の含有量が軽減され
た排ガス27は煙突28から大気放出される。
Next, an embodiment of the post-swirl combustion cylinder incinerator of the present invention will be described with reference to FIGS. 11 and 12. FIG. FIG. 11 is a sectional view showing the configuration of one embodiment of the post-swirl combustion tube incinerator according to the present invention, and FIG. 12 is a top view of FIG. 11 of the post-swirl combustion tube incinerator according to the present invention. As shown in the figure, an integrated post-swirl combustion cylinder incinerator, comprising an incinerator 18
At the downstream upper part of the primary combustion zone 23, the disk-shaped spiral swirl vanes 5 forming a spiral flow path in the waste gas 22 are attached, and the combustion cylinder 14 is vertically arranged.
A post-combustion burner 15 for burning the unburned processed product and heating the waste gas 22 is provided below the post-combustion cylinder 14 along the spiral flow path. The waste gas inlet 10 has an opening at the upstream base end of the spiral flow passage, and the waste gas outlet 11 has an opening at the tangential downstream base end of the afterburning cylinder 14. The treated material 20 is introduced into the primary combustion zone 23 of the incinerator 18 through the inlet 19, the ignition burner 21 is ignited, and the incineration process is started. The treated material 20 undergoes oxidative combustion and pyrolysis to generate incinerated ash and waste gas 22, and the waste gas 22
After passing through the refractory partition wall 24 from the primary combustion zone 23 and entering the post-combustion zone 25, the post-combustion cylinder 14 is attached in the tangential direction of the jacket, and then heated by the combustion burner 15, and
The surrounding waste gas 22 flows into the combustion cylinder 14 after the provision of the disk-shaped spiral swirl vanes 5 forming a spiral flow path, and the waste gas 22
After the rotation, the exhaust gas 27, which has been pyrolyzed to reduce the content of pollutants, is discharged to the atmosphere from a chimney 28.

【0023】[0023]

【発明の効果】請求項1の発明により、一次燃焼ゾーン
の下流に位置する後燃焼ゾーンの外壁表面よりの放散熱
量が既存の後燃焼炉付焼却炉と比較して28%少なく、
廃ガス流体の管内圧力損失の変わらなくコンパクトな放
散熱量の内フィン旋回型の旋回後燃焼筒を焼却炉下流側
に一体に取付けることで後燃焼筒長さや煙突高さもしく
はダクト長さを短くすることが可能となり、有毒物質を
含有する廃ガスを熱分解する上での滞留時間の不足を解
決することができ、燃焼コントローラーを制御回路に装
備した制御盤による運転をすることで熱分解効率を安定
させ、定常運転時のダイオキシン類の排出抑制はもとよ
り、運転開始直後の数十秒間及び運転停止前数十秒間に
不完全燃焼や廃ガス熱分解温度が低いままに不完全処理
状態で煙突より大気に放出される廃ガス中の煤塵等とダ
イオキシン類の公害・有害物質の量を低減する上で優れ
た効果を発揮することができる。
According to the first aspect of the present invention, the amount of heat dissipated from the outer wall surface of the post-combustion zone located downstream of the primary combustion zone is reduced by 28% as compared with the existing incinerator with post-combustion furnace.
The length of the post-combustion cylinder, the height of the chimney, or the length of the duct is shortened by integrally mounting the swirl-type combustion cylinder of the inner fin swirl type, which has a compact heat dissipation amount without changing the pressure loss in the pipe of the waste gas fluid, downstream of the incinerator It is possible to solve the shortage of residence time when pyrolyzing waste gas containing toxic substances, and to improve the pyrolysis efficiency by operating the combustion controller with a control panel equipped with a control circuit. Stabilize and control the emission of dioxins during steady-state operation.In addition, the incomplete combustion and waste gas pyrolysis temperature will remain low for several tens of seconds immediately after the start of operation and several tens of seconds before the stop of operation. An excellent effect can be exhibited in reducing the amount of pollutants and harmful substances such as dust and dioxins in waste gas released to the atmosphere.

【図面の簡単な説明】[Brief description of the drawings]

【図1】 本発明に係る旋回後燃焼筒焼却炉の一形態を
示す代表的な構成断面図である。
FIG. 1 is a typical sectional view showing one embodiment of a post-swirl combustion cylinder incinerator according to the present invention.

【図2】 本発明に係る旋回後燃焼筒焼却炉の図1の上
面図である。
FIG. 2 is a top view of FIG. 1 of the post-swirl combustion cylinder incinerator according to the present invention.

【図3】 本発明に係る旋回後燃焼筒焼却炉の旋回後燃
焼筒の一形態を示す構成断面図である。
FIG. 3 is a structural sectional view showing one embodiment of a post-swirl combustion cylinder of the post-swirl combustion cylinder incinerator according to the present invention.

【図4】 本発明に係る旋回後燃焼筒の図3の上面図で
ある。
FIG. 4 is a top view of FIG. 3 of the post-swirling combustion cylinder according to the present invention.

【図5】 既存の後燃焼炉付焼却炉における廃ガスの流
れ方の状態を示す図である。
FIG. 5 is a diagram showing a state of a flow of waste gas in an existing incinerator with a post-burning furnace.

【図6】 本発明に係る旋回後燃焼筒焼却炉内における
廃ガスの流れ方の状態を示す図である。
FIG. 6 is a diagram showing a state of a flow of waste gas in a post-swirl combustion cylinder incinerator according to the present invention.

【図7】 本発明に係る旋回後燃焼筒焼却炉の一形態を
示す構成断面図である。
FIG. 7 is a sectional view showing the configuration of an embodiment of a post-swirl combustion cylinder incinerator according to the present invention.

【図8】 本発明に係る旋回後燃焼筒焼却炉の図7の上
面図である。
8 is a top view of FIG. 7 of the post-swirl combustion cylinder incinerator according to the present invention.

【図9】 本発明に係る旋回後燃焼筒焼却炉の一形態を
示す構成断面図である。
FIG. 9 is a cross-sectional configuration view showing one embodiment of a post-swirl combustion cylinder incinerator according to the present invention.

【図10】 本発明に係る旋回後燃焼筒焼却炉の図9の
上面図である。
10 is a top view of FIG. 9 of the post-swirl combustion cylinder incinerator according to the present invention.

【図11】 本発明に係る旋回後燃焼筒焼却炉の一形態
を示す構成断面図である。
FIG. 11 is a sectional view showing a configuration of an embodiment of a post-swirl combustion cylinder incinerator according to the present invention.

【図12】 本発明に係る旋回後燃焼筒焼却炉の図11
の上面図である。
FIG. 12 shows a post-swirling combustion tube incinerator according to the present invention;
FIG.

【符号の説明】[Explanation of symbols]

1 胴板 2 鏡板 3 耐火・断熱材 4 固定軸 5 旋回羽根 6 1次ガス温度センサー 7 吸引圧力センサー 8 2次ガス温度センサー 9 ガス風量調整ダンパー 10 廃ガス入口 11 廃ガス出口 12 水入口 13 水出口 14 後燃焼筒 15 後燃焼バーナー 16 蓄熱材 17 燃焼コントローラー 18 焼却炉 19 投入口 20 処理物 21 着火バーナー 22 廃ガス 23 一次燃焼ゾーン 24 耐火物隔壁 25 後燃焼ゾーン 26 旋回流 27 排ガス 28 煙突 29 灰取出し口 30 負圧ガス 31 上流側ガス停滞部分 32 下流側ガス停滞部分 DESCRIPTION OF SYMBOLS 1 Body plate 2 End plate 3 Fireproof and heat-insulating material 4 Fixed shaft 5 Revolving blade 6 Primary gas temperature sensor 7 Suction pressure sensor 8 Secondary gas temperature sensor 9 Gas flow rate adjustment damper 10 Waste gas inlet 11 Waste gas outlet 12 Water inlet 13 Water Outlet 14 Post-combustion cylinder 15 Post-combustion burner 16 Heat storage material 17 Combustion controller 18 Incinerator 19 Input port 20 Processed material 21 Ignition burner 22 Waste gas 23 Primary combustion zone 24 Refractory partition 25 Post-combustion zone 26 Swirling flow 27 Exhaust gas 28 Chimney 29 Ash discharge port 30 Negative pressure gas 31 Upstream gas stagnation part 32 Downstream gas stagnation part

フロントページの続き Fターム(参考) 3K062 AA18 AB01 AC01 AC19 BA02 CB10 DA01 DA11 DB13 3K078 AA06 BA03 BA26 CA02 CA04 CA17 CA22 Continued on the front page F term (reference) 3K062 AA18 AB01 AC01 AC19 BA02 CB10 DA01 DA11 DB13 3K078 AA06 BA03 BA26 CA02 CA04 CA17 CA22

Claims (7)

【特許請求の範囲】[Claims] 【請求項1】 廃棄物焼却炉の一次燃焼ゾーンの下流
に、内面に耐火断熱材を施工した円筒ダクト状の後燃焼
筒を垂直に配置させた後燃焼ゾーン付き一体型焼却炉本
体と、該後燃焼筒の軸線に沿って設けた固定軸を該後燃
焼筒の上面鏡板の上部より吊り下げて、前記後燃焼筒の
前記固定軸周りで廃ガスの螺旋状流路を形成する円盤型
螺旋状の旋回羽根とを有する、旋回後燃焼筒焼却炉。
An integrated incinerator body with a post-combustion zone, wherein a post-combustion cylinder having a cylindrical duct shape on which an inner surface is provided with refractory insulation material is vertically disposed downstream of a primary combustion zone of a waste incinerator. A disk-shaped spiral that suspends a fixed shaft provided along the axis of the post-combustion cylinder from above the upper end plate of the post-combustion cylinder to form a spiral flow path of waste gas around the fixed axis of the post-combustion cylinder. And a swirl combustion cylinder incinerator having a swirl-shaped swirl vane.
【請求項2】 前記炉本体の一次燃焼ゾーンの下流で後
燃焼筒の上流側端部に、螺旋状流路に沿って未燃焼処理
物の燃焼及び廃ガスを加温するための正圧の後燃焼バー
ナーを設けた、第1項の旋回後燃焼筒焼却炉。
2. A downstream side of the primary combustion zone of the furnace main body, at an upstream end of a post-combustion cylinder, a positive pressure for heating the combustion of the unburned processed material and the waste gas along a spiral flow path. Item 2. The post-swirl combustion cylinder incinerator according to Item 1, which is provided with a post combustion burner.
【請求項3】 前記後燃焼バーナーが前記後燃焼筒の外
套の接線方向に取付けられ、接線方向に廃ガス出口を有
する、第2項の旋回後燃焼筒焼却炉。
3. The incinerator according to claim 2, wherein said afterburner is mounted tangentially to a jacket of said afterburner and has a tangential waste gas outlet.
【請求項4】 前記後燃焼筒の前記廃ガス入口及び廃ガ
ス出口のそれぞれが後燃焼筒の外套の接線方向に開口を
有し、廃ガス入口と廃ガス出口が前記螺旋状流路の上流
側基端部及び下流側基端部に指向するように配置され
た、第1項の旋回後燃焼筒焼却炉。
4. A waste gas inlet and a waste gas outlet of the post-combustion cylinder each have an opening in a tangential direction of a jacket of the post-combustion cylinder, and a waste gas inlet and a waste gas outlet are upstream of the spiral flow path. 2. The post-swirl combustion cylinder incinerator according to claim 1, which is disposed so as to be directed to the side base end and the downstream base end.
【請求項5】 前記旋回羽根が前記鏡板の上部より吊り
下げた固定軸に取付けられ、前記固定軸内が流体を通過
させる中空状である、第1項乃至第4項のいずれかの旋
回後燃焼筒焼却炉。
5. The swivel blade according to claim 1, wherein the swirl vane is attached to a fixed shaft suspended from an upper portion of the end plate, and the fixed shaft has a hollow shape through which a fluid passes. Combustion cylinder incinerator.
【請求項6】 前記螺旋状流路を形成する円盤型螺旋状
の旋回羽根とを有する円筒ダクト状の後燃焼筒の内面で
旋回羽根の外側に、球形、棒状、円筒状、サイコロ状又
はハニカム状の多孔質性の蓄熱用固形セラミック材料も
しくは繊維質セラミック材料が充填されている、第1項
乃至第5項のいずれかの旋回後燃焼筒焼却炉。
6. A spherical, rod-shaped, cylindrical, dice-shaped or honeycomb-shaped outer surface of the swirl vanes on the inner surface of a cylindrical duct-shaped post-combustion cylinder having a disk-shaped spiral swirl vane forming the spiral flow passage. Item 6. The post-swirling combustion cylinder incinerator according to any one of Items 1 to 5, which is filled with a porous porous heat storage solid ceramic material or a fibrous ceramic material.
【請求項7】 前記後燃焼ゾーンと後燃焼筒を後燃焼バ
ーナーで加熱し、螺旋状流路を形成する後燃焼筒の下流
の2次ガス温度センサーと廃ガスの吸引圧力センサーの
計測値信号を燃焼コントローラーにて受け、ガス風量調
整ダンパーにて開度を制御した後に、着火バーナーの点
火をさせ、処理物の一次燃焼ゾーンの廃ガス温度に対応
させて、後燃焼バーナーの燃料量の制御を行い、定常運
転になった後には2次ガス温度センサーと廃ガスの吸引
圧力センサーの信号値を燃焼コントローラーにて再演算
し、廃ガス分解温度の安定と後燃焼バーナーの燃料量制
御をする。前記運転制御動作を燃焼コントローラーの集
積回路にプログラミングしている操作盤で操作される、
1項乃至第6項のいずれかの旋回後燃焼筒焼却炉。
7. A measurement value signal of a secondary gas temperature sensor and a waste gas suction pressure sensor downstream of the post-combustion cylinder forming a spiral flow path by heating the post-combustion zone and the post-combustion cylinder with a post-combustion burner. After controlling the opening degree with the gas flow rate adjustment damper, the ignition burner is ignited, and the fuel amount of the post-burning burner is controlled according to the waste gas temperature in the primary combustion zone of the processed material. After the steady operation, the signal values of the secondary gas temperature sensor and the waste gas suction pressure sensor are recalculated by the combustion controller to stabilize the waste gas decomposition temperature and control the fuel amount of the post-burning burner. . The operation control operation is operated by a control panel which is programmed in an integrated circuit of the combustion controller.
Item 7. A post-swirl combustion cylinder incinerator according to any one of Items 1 to 6.
JP2000151975A 2000-05-23 2000-05-23 Rotating after-burning cylinder incinerator Pending JP2001330222A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2000151975A JP2001330222A (en) 2000-05-23 2000-05-23 Rotating after-burning cylinder incinerator

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2000151975A JP2001330222A (en) 2000-05-23 2000-05-23 Rotating after-burning cylinder incinerator

Publications (1)

Publication Number Publication Date
JP2001330222A true JP2001330222A (en) 2001-11-30

Family

ID=18657457

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000151975A Pending JP2001330222A (en) 2000-05-23 2000-05-23 Rotating after-burning cylinder incinerator

Country Status (1)

Country Link
JP (1) JP2001330222A (en)

Similar Documents

Publication Publication Date Title
JP4479655B2 (en) Grate-type waste incinerator and its combustion control method
TWI238236B (en) Vertical refuse incinerator for incinerating wastes and method for controlling the same
JPH0363408A (en) Method of burning exhaust smoke
JP3813927B2 (en) Centrifugal combustion method using airflow in furnace
JP2004084981A (en) Waste incinerator
CN102042602B (en) Processing method and device for incinerating toxic waste liquid by smoke concentration and gasification
CN210241581U (en) Second combustion chamber
JP3956862B2 (en) Combustion control method for waste incinerator and waste incinerator
CN110131723B (en) Two-combustion chamber
JP2001330222A (en) Rotating after-burning cylinder incinerator
KR100348746B1 (en) Waste treatment apparatus
JP2015161444A (en) waste incinerator
JP3210859B2 (en) Secondary combustion gas supply mechanism of garbage incinerator
JP2002364836A (en) Incinerator, and heat exchanger tank and ejector for incinerator
JP2642568B2 (en) Secondary combustion method of refuse incinerator
KR101299029B1 (en) Burner with anti-backfire device
JP3059935B2 (en) Dioxin removal equipment in refuse incinerators
JP6008187B2 (en) Waste incinerator and waste incineration method
JP2004163009A (en) Operation method of waste incineration system and waste incineration system
JP2006153371A (en) Combustion control method of vertical refuse incinerator for incinerating industrial wastes
JP2000240916A (en) Secondary combustion chamber of incinerator
KR200244119Y1 (en) Waste incinerator
JPH07233921A (en) Refuse incinerator
JP3995237B2 (en) Operation method of waste incinerator
JP3252281B2 (en) Incinerator, circulating air pipe and incineration method